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1Abstract—Meta-heuristic techniques are powerful tools 

used to find an optimal solution for complex problems to which 
classical techniques find difficult to solve. The features among 
all the meta-heuristic techniques are the high amount of 
computational resources spent on their implementation and the 
computing effort generated on their execution. For this reason, 
many works have proposed their use on the base of software 
methodologies without achieving online or real-time 
performance. In the present work, two strategies that 
implement the Genetic Algorithms are presented by using the 
micro-population concept with the objective of reducing 
computational resources, increasing the heuristic search speed, 
and providing simplicity in its design. Both strategies are 
implemented in hardware architecture; the first, as a software 
strategy in a proprietary embedded processor, the second, as a 
hardware co-processor unit. In order to validate the proposed 
approaches, several tests to optimize a motion controller in a 
servo system are presented and compared with a classical 
tuning technique. 
 

Index Terms—Control design, Genetic algorithms, Field 
programmable gate arrays, Microprocessors, Servo systems. 

I. INTRODUCTION 

During the last decades, the study of modern techniques 
based on heuristic search, called meta-heuristics, has 
captured more attention than the study of classical 
techniques based on gradients to solve a wide variety of 
problems in many research fields [1-2]. Some classical 
techniques provide optimal results to problems whose 
design space and constraints can be described by a convex 
function; whereas modern optimization techniques can 
handle functions with convexity, non-convexity, linearity, 
and non-linearity features, meaning that the gradient 
information is not required. Hence, through these 
techniques, concepts and algorithms are applied so as to 
develop a searching method to provide optimal solutions to 
a problem that would be a challenging task to be solved if 
classical techniques were used. Moreover, meta-heuristic 
techniques provide solutions even for problems which 
require multi-objective optimization [3]. These techniques 
can be designed and applied where there is poor knowledge 
of a particular problem; for instance, in problems in which 

the dynamic model is not available or is not known. The 
meta-heuristic techniques explore promising regions of the 
design space, containing high-quality solutions, and escape 
from the local optimal solutions [4]. Considering all the 
advantages of the meta-heuristic techniques to solve 
complex problems, it is easy to see why they are widely 
used in optimization problems. Although the importance of 
implementing meta-heuristic techniques to perform 
parameters optimization in online applications should be 
highlighted, they required many computational resources. 

 
1This work was partially supported by CONACyT scholarship 331141 

and by project SEP-CONACyT 222453-2013. 

 
Many works have presented studies of the meta-heuristic 

techniques such as the Genetic Algorithms (GA), the 
Particle Swarm Optimization (PSO), the Ant Colony 
Optimization (ACO), and the Simulated Annealing (SA), 
among others [5-8]. Other investigations report comparative 
studies of their implementation, explaining their features, 
benefits, advantages and disadvantages [1], [4], [9]. Among 
all the different heuristic techniques, the GA is the most 
popular due to its resemblance with nature behavior based 
on natural genetics and selection [10-12]. They have been 
intensively studied and applied in many optimization 
problems demonstrating to have obtained better results than 
classical techniques [13-16]. However, the Standard GA 
(SGA) has the drawback of pre-maturity and stagnation, 
while an optimal solution is being looked for, not to mention 
the huge quantity of computational resources required to its 
implementation [17-19]. Nevertheless, there is a necessity of 
online implementations that can show the technique 
effectiveness [20-21]. Although alternative solutions based 
on hardware implementations are being considered, they 
still need improvement in order to overcome the 
aforementioned drawbacks [22-27]. Therefore, it would be 
desirable to develop an architecture that allows the 
implementation of the GA in embedded systems for the 
online optimization. Recently, the micro-population concept 
coupled to the GA, known as the Micro-Genetic Algorithms 
(MGA), has drawn the attention of scientists due to its 
advantages over the SGA. This methodology reduces the 
computational resources required for a digital 
implementation, and provides appropriate solutions to many 
optimization problems [28-29]. These particularities make 
the MGA technique an excellent candidate for an online 
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implementation through hardware-software strategies. 
This paper presents the implementation of the MGA 

scheme for the online parameter optimization of motion 
system controllers. This scheme compares the 
implementation of two strategies of the MGA algorithm; 
one based on software (SW), and the other based on 
hardware-software co-design (HS). The SW approach is a 
description of the heuristic technique, mainly coding the 
genetic operators into a proprietary embedded processor. 
Meanwhile, in the HS approach the genetic operations are 
implemented in a hardware architecture described as a co-
processor unit which executes genetic actions and makes use 
of the embedded processor as a data-flow control unit for 
the optimization process. The embedded processor and its 
peripherals are described under a hardware description 
language (HDL) and synthesized in a low-cost field 
programmable gate array (FPGA) implemented in a 
proprietary board, conforming a complete embedded 
system. The MGA scheme was used instead of other 
heuristic techniques due to its simplicity and compatibility 
with digital systems. Besides, the micro-population concept 
allows increasing the convergence rate and reduces 
considerably the computational resources required [30]. The 
above mentioned schemes were used in this investigation for 
the online optimization of the PID controller parameters 
used in an industrial servo system. Several experimental 
tests were performed to validate the proposed schemes and 
they were compared with the parameters obtained by using a 
classical tuning technique to show the improvement 
reached. 

II. GA OVERVIEW AND THE MICRO-POPULATION CONCEPT  

The GA is a powerful technique used for heuristic search 
in optimization problems; this technique is based on the 
Darwin’s theory of survival of the fittest [11], [31-32]. Yet, 
the SGA scheme could not be the most appropriate in 
solving complex problems because it requires many function 
evaluations implying a high computational effort and 
deriving in a slow convergence [22-28]. To overcome these 
drawbacks the MGA scheme was defined to use a very 
small population [29]. It is applied to prevent both the 
premature convergence and the problem of stagnation in the 
SGA [28]. In this work, the MGA scheme is proposed as a 
process that possesses simplicity and minimizes the 
computational cost allowing the computational speed to be 
increased. Despite the benefits mentioned, global optimal 
solutions are not guaranteed, but for the purposes of this 
work, this scheme provides appropriate near optimal 
solutions in a short time.  

 
In the SGA, the design variables corresponding to the 

genomes in the natural genetics are represented as binary 
strings and they are concatenated to form an individual, 
corresponding analogically to a chromosome in natural 
genetics; then, a number of individuals conforms the 
population [11]. In the present paper, the parameters of the 
motion controller are proposed as the design variables. The 
specified population size, Ps, consists of only four 
individuals; which are initially generated taking equidistant 
values in the design range to avoid the generation of 
individuals closely located when the design range is 

extensive. The genetic operators consist of selection, 
crossover and mutation [10]. In this paper, the “tournament 
selection” is applied considering that the micro-population 
concept is adopted, as consequence tournaments between 
individuals require less evaluation time. Then, the selected 
individuals are classified according to their fitness value, 
f=1/J, typically provided by an objective function, J. For this 
work, the objective function is the sum of the integral of 
absolute error (IAE) and the integral of square error (ISE) 
defined in (1) to (3). Equations (4) and (5) are used to 
decode an individual from the population. This means that 
every design variable is converted from its binary string 
representation to a decimal value, vreal, which in this work 
corresponds to a PID gain. First, the design range is defined 
by the difference between the maximum, vmax, and the 
minimum, vmin, values that the gain can reach. Then, this 
range is multiplied by the normalization factor Kind. Finally, 
the vmin value is added to the obtained result in order to get a 
vreal value (PID gain) into the design range. The Kind term is 
a normalization factor, from 0 to 1, obtained by dividing the 
magnitude from the binary string of the individual, di, and 
the maximum magnitude considering the binary string 
length, Sl. The i=1,2,3, and 4 are the individuals to be 
decoded. 
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The dynamic for the generation of the next population in 

the iterative process is defined as: the fittest individual is 
directly copied to the next population; the worst individual 
is randomly replaced, and by using the remaining 
individuals in the actual population, through crossover and 
mutation, the rest of the individuals are generated. The 
uniform crossover and one-point mutation operations are 
employed in this work with the purpose of achieving 
simplicity in the application, diversity of the population, and 
fast convergence of the methodology. Since the population 
size is small, the crossover probability, Cp, is fixed as a 
value of one, while the mutation operation is executed 
according to an adaptive mutation probability, aMp, whose 
value is initialized at 0.4 based on repeated observations of 
previous experiments. The aMp value is decreased linearly 
to a zero value during the iterative process and its objective 
is to raise the searching speed at initial iterations. It must be 
remarked that the mutation operation could be applied to all 
the individuals with the exception of the fittest one to avoid 
losing possible potential solutions. A maximum number of 
iterations, G, is defined as the end criterion for the proposed 
scheme. Fig. 1 shows the general flow chart of the proposed 
MGA scheme and the implementation of the two strategies 
developed in this work (SW and HS) are based on it. 
Additionally, Table I summarizes the parameters specified 
for the optimization process. 
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Figure 1.  General flow chart of the proposed MGA scheme 

 
TABLE I. SPECIFIED PARAMETERS OF THE METHODOLOGY 

Parameter Value 
Maximum number of iterations, G 64 

Population size, Ps 4 
Variable string length, Sl (bits) 16 

Crossover probability, Cp 1 
Adaptive mutation probability, aMp.  (initial value) 0.4 

Objective value, J IAE + ISE 
Fitness value, f 1/J 

III. HARDWARE AND SOFTWARE STRATEGIES OF THE 

PROPOSED SCHEME 

In this section, the description of an embedded system for 
the online parameters optimization by using the proposed 
MGA scheme is made. The goal is to implement the 
heuristic technique through the SW and HS strategies, and 
compare them with a classical tuning technique as it is 
shown in the following sections. 
 

A. General system architecture 

A mechatronic application was selected in order to test 
the proposed scheme, consisting of the online parameter 
optimization of a PID controller used in an industrial servo 
system. Fig. 2 depicts the general block diagram of the 
proposed methodology based on a hardware-software 
platform. It may be noticed that three main parts can be 
identified: the software implementation, the hardware 
implementation, and the physical system. The 
implementation of the MGA scheme of Fig. 1 into the 
proprietary FPGA board is performed through the SW 
approach, depicted in Fig. 3a, and through the HS approach, 
shown in Fig. 3b. 
 

The software part is constituted by the user-PC interface, 
which drives and manages the actions of the optimization 
process; the data visualization is performed here, as well. 
The proprietary embedded processor and all the peripherals 
required for the optimization are described under HDL and 
are synthetized in a proprietary low-cost FPGA board, 
which makes up the hardware part. The FPGA usage is 

justified due to its characteristics such as parallel data 
processing, versatility, configurability and high performance 
[33]. For example, motion commands to the PID controller 
in the FPGA are sent to the motor driver making the system 
move while the encoder data is passed to the FPGA to be 
coded and processed. Additionally, the implementation of 
the MGA schemes (SW or HS) searches for an optimal 
solution at the same time.  

 

 
Figure 2.  Block diagram of the embedded system for online parameter 
optimization 
 

 
Figure 3.  Implementation of the MGA scheme through a) the SW strategy 
and b) the HS strategy 

 
The sequence of the actions managed by the user-PC 

interface and executed in the embedded processor is 
presented in Fig. 4, this sequence is followed in both the SW 
and the HS approaches.  
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Figure 4. General flow chart of the actions sequence followed in the 
processor 

 
The proprietary FPGA-embedded processor is a reduced 

instruction set computer (RISC) with partially-decoded 
instructions. This processor has a set of software 
development tools in order to be programmed and 
configured. 

 

B. SW strategy implementation 

The implementation of the SW strategy into the 
embedded processor is according to the flow chart shown in 
Fig. 5, and the pseudo-code of every event in the genetic 
process is presented in Table II. 

 

 
Figure 5. Flow chart of the implementation of the MGA scheme through the 
SW strategy 

 

C. HS strategy implementation 

The general block diagram shown in Fig. 6a depicts the 
implementation of the MGA scheme through the HS 
strategy, as a co-processor unit that executes the genetic 
operators giving support to the embedded processor; which 

is in turn the data-flow control unit of the optimization 
process, in accordance with what is displayed in Fig. 3b.  

 
TABLE II. PSEUDO-CODE OF THE GENETIC EVENTS  

Crossover Individuals_selection 
function Crossover{ 

c_point = randnumber; 
head_mask = 0xFFFF << c_point; 

tail_mask = 0xFFFF << 16-c_point; 
Head1 = Individual1 & head_mask; 

Tail1 = Individual1 & tail_mask; 
Head2 = Individual2 & head_mask; 

Tail2 = Individual2 & tail_mask; 
NewIndividual1 = Head1 | Tail2; 

NewIndividual2 = Head2 | Tail1; } 
Adaptive_mutation 

function Adaptive_mutation{ 
value= 

MaxIterations/mutation_probability; 
if ActualIteration=value 

decrement mutation_probability;} 
Mutation 

function Mutation{ 
m_point = randnumber; 

m_mask = 1 << m_point; 
if randnumber < mutation_probability 

NewIndividual = NewIndividual ^ 
m_mask;} 

 
Function Select_individuals{ 

for(i=0; i<3;i++){ 
for(j=0; j<2;j++){ 

if Objective_value[j]> 
Objective_value[j+1]{ 

auxiliar = Objective_value[j]; 
Objective_value[j]= 

Objective_value[j+1]; 
Objective_value[j+1]=auxiliar

; 
auxiliar2=Individual[j]; 

Individual[j]=Individual[j+1]; 
Individual[j+1]=auxiliar2; 

}}} 
if Objective_value[0] < 

ObjectiveBest { 
ObjectiveBest = 

Objective_value[0];  
BestIndividual = 
Individual[0];} 

 
 

 
The hardware module receives the individuals to be 

operated (I1 and I2), a random number (RND) which 
defines the operation points, the value of the mutation 
probability (MP) to specify whether the operations will be 
executed or not, and a configuration value (CNF) that 
defines if the genetic operation is either the crossover or the 
mutation. Finally, the module provides the operated 
individual offspring (OFFS), and a flag that indicates the 
end of the operation (RDY). Since all the genetic processes 
depend on the generation of random numbers.  A random 
number generator is also developed in hardware so as to 
provide this function. The module of the random number 
generator is shown in Fig. 6b, remarking that this module is 
also used to give support in the SW strategy. 

IV. EXPERIMENTAL TESTS AND DISCUSSION 

In this section, the case studies for the implementation of 
the SW and HS strategies are described. Both experiments 
are described in detail with the purpose of demonstrating the 
robustness and versatility of the proposed architecture, 
compared with the classical tuning technique. 

 

 
Figure 7.  Experimental setup and physical system 
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Figure 6. Block diagram of the hardware implementations: a) the MGA module and b) the random number generator 
 

A. Experimental setup 

The experimental tests are carried out online by using a 
proprietary board based on a high-performance FPGA 
technology. The board is a proprietary motion controller of 
four axes designed to be used in CNC machinery or 
industrial robots, integrated in two main parts: the system 
interface media (SIM) and the signal processing unit module 
(SPU). The SIM consists of the physical connectors, digital 
inputs/outputs, supplying voltage, analog-to-digital (ADC) 
converter and digital-to-analog (DAC) converter. Another 
characteristic is that the SPU includes the external memories 
and a Spartan 3E-1600 FPGA operating at 48MHz. The 
proprietary embedded processor is implemented into the 
FPGA, operating at 24MHz, together with the necessary 
complementary modules for the embedded system. The 
user-PC interface is developed using standard C++ language 
and free libraries in a PC-laptop with an operating system of 
64-bits, 16 GB of RAM, an Intel Core i7-6312QM CPU 
operating at 2.1 GHz. Additionally, the classical tuning 
method used in the comparison with the proposed 
optimization is the Gain Phase Margin Method (GPM) 
presented in [34] and programed in the PC. The servo-
system consists of a CNC milling machine of three axes. 
The x-axis is selected to perform the tests. In this axis a 
brushless servo motor 3485-ME8137 of MCG with a 4000 
counts/rev incremental encoder is used. The servo motor is 
driven by a brushless PWM servo-amplifier from Advanced 
Motion Control. The motion test used for the optimization 
process consists of a step motion reference of 200 counts for 
a total of 300 samples acquired at 1 kHz. On the other hand, 
the motion test used to evaluate the performance of the 
optimized PID gains finally obtained uses a trapezoidal 
profile for a motion command of 1000 counts forward and a 
motion command of 1000 counts backward. The specified 
values of the profile are a maximum velocity of 
25600counts/s and ±256000counts/s2 for the acceleration 
and deceleration, respectively. Finally, the test bench of 

each strategy and the GPM tuning consists of 40 tests and 
the results presented in this work are the average values 
obtained. The Fig. 7 shows the experimental setup described 
previously. 
 

B. Case studies 

In both strategies the general parameters are defined in 
Table I, and the criterion of the obtained behavior uses the 
performance indexes specified in (1) and (2). The decoding 
of equations (4) and (5) to obtain the PID gains for the 
optimization process considers the design ranges 
summarized in Table III. These ranges were proposed 
aiming to make the heuristic search into a wide design 
space. 
 

TABLE III. PROPOSED DESIGN VARIABLE AND DESIGN RANGE 

Design variable Design range   maxmin ,vv
Proportional gain, Kp [1, 5000] 

Integral gain, Ki [0.1, 50000] 
Derivative gain, Kd [0.1,50] 

 

C. Results and discussion 

The computing times required for each implemented 
strategy are presented in Table IV. They only consider the 
events related to the genetic process. Referring to this table, 
it can be observed that the HS approach executes the genetic 
process faster than the SW approach since this strategy 
implements the architecture shown in Fig. 6a as a hardware 
module; in the meantime, the SW approach implements the 
genetic process according to the pseudo-code shown in 
Table II in the embedded processor. The evaluation of the 
individuals and their selection take the same computing time 
because these events are performed in the processor. The 
total time required per generation considers the performance 
indexes, selection, crossover process, mutation process, 
random individuals and adaptive mutation probability 
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events. The computing time of the crossover operation and 
mutation operation in Table IV specifies the time required to 
apply these operations only between two design variables.  

 
TABLE IV. COMPUTING TIME REQUIRED BY THE STRATEGIES 

Computing time MGA-SW MGA-HS 
Performance indexes 2.86 ms 2.86 ms 

Selection ≈ 47.763 µs ≈ 47.763 µs 
Crossover operation 168.0 µs 160.0 ns 
Crossover process * 1.0 ms 960.0 ns 
Mutation operation 453.3 µs 480.0 ns 
Mutation process * 2.72 ms 2.88 µs 
Random individual 300.0 ns 160.0 ns 

Random individuals a 900.0 µs 480.0 ns 
Adaptive mutation probability 12.7 µs 12.7 µs 

Total time per generation ≈  6.6413 ms ≈ 2.9247 ms 
* Time consumed in executing the genetic operations for all the individuals 

in one iteration of the process. aTime spent in the generation of all the 
individuals randomly replaced. 

 
In the case of the GPM tuning method implemented in the 

PC offline, it takes approximately 2 seconds to provide the 
PID gains for the system model. It must be emphasized that 
due to the inaccuracy of the model, it is necessary to make a 
manual adjustment to the gains in order to obtain a good 
performance. The servo system model obtained through the 
least square method is presented in equation (6). 
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Table V presents the summary of the resources used to 
implement the MGA trough the SW and HS strategies into 
the FPGA. From this table, it can be seen that the complete 
embedded system was implemented into the device. 
Therefore, if additional cores and functions were needed, 
they can still be added. 
 

TABLE V. RESOURCES USED BY THE EMBEDDED SYSTEM 
Logic Utilization Used Available Utilization 
Number of Slice Flip Flops 6,340 29,504 21% 
Number of 4 input LUTs 10,322 29,504 34% 
Number of occupied Slices 5,453 14,752 36% 
Total Number of 4 input LUTs 10,583 29,504 35% 
Number of bonded IOBs 50 250 20% 
Number of RAMB16s 1 36 2% 
Number of BUFGMUXs 2 24 8% 
Number of MULT18X18SIOs 6 36 16% 

 

Fig. 8 to Fig. 10 show the plots of some relevant steps in 
the optimization process of the MGA implementation. As 
mentioned before, four individuals are initially distributed, 
being named the initial seed, and for illustrative purposes 
only two of them are selected to show the evolution of the 
variables in the optimization process, specified in Fig. 8 and 
Fig. 9 as “Individual 1” and “Individual 2.” Fig. 8 shows the 
performance of the individuals from the first to the final 
iteration in the SW strategy. Fig. 8a depicts the dynamic 
response of individuals in the first iteration (notice that the 
response is far from the reference). After the optimization 
process, the dynamic response of the individuals at the last 
iteration is remarkably improved as can be seen in Fig. 8b. 
The behavior of the mean error along the 64 iterations 
during the optimization process is shown in Fig. 8c, where 
this error is significantly reduced against the first iterations. 
For the time being, Fig. 9 depicts the same plots 

corresponding to the HS strategy. 
 

 
Figure 8. Individuals performance of the SW strategy in a) the first 
iteration, in b) the final iteration and in c) the mean error along the 64 
iterations. 

 
The plots of Fig. 10 show the evolution of the design 

variables along the 64 iterations of the optimization process. 
Fig. 10a shows the convergence of the controller gains to 
their final values in the SW strategy, and Fig. 10b displays 
the convergence of the gains to their final values 
corresponding to the HS approach. In both cases, the initial 
values of the design variables are equally distributed, but the 
optimal local values of the gains are reached in the iteration 
20 for the case of the HS approach and in the iteration 50 for 
the case of the SW description. The gains obtained for the 
proportional, integral and derivative parts of the PID are 
from the SW strategy: 292.82, 30196.09, and 2.1814; and 
from the HS strategy: 386.39, 31677.05, and 2.65, 
respectively. The corresponding gains obtained from the 
GPM tuning are: 250, 29000, and 1.78. The graphical 
response of the motion test using the motion profile, 
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described in the Experimental setup section, and the gains 
recently presented are shown in Figs. 11a to 11c. The 
corresponding tracking errors of every approach are 
depicted in Fig 12. 

 

 
Figure 9. Individuals performance of the HS strategy in a) the first iteration, 
in b) the final iteration and in c) the mean error along the 64 iterations 

 
Table VI summarizes the values of the IAE and the ISE of 

the motion tests. In this table, it can be noticed that the HS 
approach slightly improves the performance over the SW 
approach by minimizing the errors, since they are based on 
the same MGA scheme. Nevertheless, both strategies 
present a better performance than the GPM tuning. 

 
TABLE VI. IAE AND ISE VALUES OF EACH MOTION TEST WITH PROFILE  
Implementation of the MGA  IAE (counts) ISE (counts) 

SW strategy 2185 18769 
HS strategy 2095 18167 
GPM tuning 30746 4167484 

 
The positioning control systems used in the 

manufacturing industry require that the overshoot value 
remains below 25% and the steady state error falls into the 

2% of the reference input, in accordance with the control 
theory, since those values can affect the quality of the final 
product [35]. Considering the above mentioned, in the 
proposed optimization process, every individual is evaluated 
iteration by iteration for a step response, described in the 
Experimental setup section. Then, in Fig. 8a the step 
response of the gains obtained by using equation (4) of 
individuals 1 and 2 in the first iteration of the SW strategy 
can be appreciated.  A deficient behavior in the response can 
be noticed in both individuals; the overshoot is over 100% 
and there is no steady state (oscillatory response), due to the 
initial distribution of the individuals which can be located 
far from the optimal local individuals. In contrast, Fig. 8b 
presents the graphical response in the final iteration, when 
the individuals have converged to the optimal local solution. 
The overshoot is reduced to a value of 12% for both 
individuals and the steady state error is minimized into the 
required 2%. A similar analysis could be made to Fig. 9 for 
the case of the HS strategy where there is no overshoot 
visualized in Fig. 9b and the steady state error is also into 
the required 2% (final iteration of the process). Therefore, it 
can be concluded that the gains acquired from the 
individuals after the optimization process are local optimal 
gains. 

 

 
Figure 10. Evolution of the design variables, PID controller gains, using 

a) the SW and b) the HS approaches 
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Figure 11. Motion test with profile, reference and actual motion dynamics of a) SW strategy and b) HS strategy, and c) GPM tuning. 

 

 
Figure 12. Tracking error of the motion trajectory of a) SW strategy, b) HS strategy, and c) GPM tuning. 

 
The gains evolution of the PID controller, Fig. 10, along 

the optimization process demonstrates the functionality of 
the embedded system and the effectiveness in the online 
implementation of the heuristic technique, since both 
strategies reach similar values. These graphics show how the 

initial seeds evolve iteration by iteration, converging to a 
near optimal solution.  

 
It must be highlighted that the kinematics of the motion 

profile, as specified in the Experimental setup section, 
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demands a fast response of the controller due to the inertia 
presented in the physical system for the command reference 
given. For this reason, the parameters of the controller must 
be effectively tuned. Then, the obtained parameters through 
the optimization process in the embedded system 
demonstrate the effectiveness of the MGA scheme, as 
shown in Figs. 11a and 11b. From Fig. 11c it is observed 
that the GPM tuning provides good controller parameters 
since the performance satisfies the specifications of control 
theory; in this case, the overshoot value is 3.9%. However, 
the proposed SW and HS strategies perform better than the 
GPM tuning since they do not present overshoot value. 

 
Additionally, Fig. 11 indicates that the system reach the 

reference around the sample 150. Therefore, from Fig. 12a 
the SW strategy provides controller gains that reach the 
reference around the specified sample with steady state error 
of ±2counts from sample 200 to 250. Also, from Fig. 12b 
the HS strategy provides controller gains that reach the 
reference around the specified sample without steady state 
error once the system reaches the reference. Finally, Fig. 
12c indicates that GPM tuning provides controller gains 
with steady state error around the reference into ±2%. 

V. CONCLUSIONS 

This work proposes a new architecture that implements an 
online parameter optimization of a PID controller in a real 
system through two strategies, the SW and HS. These 
strategies reduce the amount of resources demanded by the 
heuristic process and they attain the computing time 
required to achieve an online optimization. The online 
implementation is achieved through the usage of the micro-
population concept. Even when the MGA scheme does not 
provide optimal global solutions, the obtained results 
demonstrated that local solutions were excellent options to 
the mechatronic problem defined in this research, when it is 
compared with a classical tuning method such as the GPM. 
It can be seen from the obtained results that the mean error 
is decreased along the iterative process in magnitude enough 
to consider the MGA scheme as a good architecture, which 
achieves its goal in tuning optimization of the PID controller 
in the motion system. Moreover, the convergence time 
indicates that the proposed architecture is suitable for the 
online parameters optimization. Finally, the MGA scheme 
through the SW approach provides flexibility if some 
modifications are needed to be done quickly; for the time 
being, the HS approach increases the speed of convergence 
of the optimization process, and the HS implementation 
allows having a modular system in which only the required 
cores can be selected in order to use them in a specific 
optimization problem, reducing both computing effort and 
resources. 
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