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1Abstract—Wheel slip compensation is vital for building 

accurate and reliable dead reckoning based robot localization 
and mapping algorithms. This investigation presents stochastic 
slip compensation scheme for robot localization and mapping. 
Main idea of the slip compensation technique is to use wheel-
slip data obtained from experiments to model the variations in 
slip velocity as Gaussian distributions. This leads to a family of 
models that are switched depending on the input command. To 
obtain the wheel-slip measurements, experiments are 
conducted on a wheeled mobile robot and the measurements 
thus obtained are used to build the Gaussian models. Then the 
localization and mapping algorithm is tested on an 
experimental terrain and a new metric called the map spread 
factor is used to evaluate the ability of the slip compensation 
technique. Our results clearly indicate that the proposed 
methodology improves the accuracy by 72.55% for rotation 
and 66.67% for translation motion as against an 
uncompensated mapping system. The proposed compensation 
technique eliminates the need for extro receptive sensors for 
slip compensation, complex feature extraction and association 
algorithms. As a result, we obtain a simple slip compensation 
scheme for localization and mapping. 
 

Index Terms—error compensation, Gaussian processes,   
mobile robots, motion estimation, simultaneous localization 
and mapping 

I. INTRODUCTION 

Robot localization and mapping has wide-spread 
applications in exploring hazardous and difficult 
environments, docking, material handling, transportation, 
planetary explorations, robotic surgeries, autonomous 
navigation (see, [1-6]). The localization approaches in 
literature can be broadly classified [7] into three categories: 
(1) model based [8, 9], (2) extro-receptive sensors [10-15], 
and (3) dead reckoning [16]. Model based approaches use 
dynamic model of the robot to design a localization 
algorithm. Although, building robot models are simple, 
modeling their interactions with environment is rather 
difficult due to the uncertainties. Therefore, model based 
approaches are best suited for static environments. The need 
to have additional sensors such as  global positioning system 
(GPS) [1,10], LIDAR [11-12], motion camera [13], 
ultrasonic sensor [14], received signal strength (RSS) sensor 
[15] and  complexity associated with the feature extraction 
algorithms limit the use of extro-receptive sensor based 
localization methods. 
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 Dead reckoning (DR) based localization[16] overcomes 
the shortcomings of the model based and extra receptive 
sensors approaches as it uses simple odometers and initial 
position to perform localization leading to reduced cost and 
complexity. In spite of such pressing advantages, 
performance and accuracy of the DR localization method is 
restricted by the wheel-slip forces. In particular, this is 
important for robots deployed in outdoor environments such 
as defense applications. Consequently, building reliable DR 
based localization algorithm requires good slip 
compensation [17] schemes. Our objective in this 
investigation is to build a slip compensation scheme that 
uses on-board robot sensors and wheel-slip model. 

To reach the objectives, this investigation uses the 
measurements from robot internal sensor to model the wheel 
slip variations as linear Gaussian models. The slip is 
compensated by switching among these models based on the 
robot input i.e. duty ratio. As a result of the switching, a 
compensating velocity is generated that reduces the 
influences of the wheel-slip. Thus the proposed 
compensation scheme eliminates the need for costly sensors, 
feature extraction algorithms and complexities associated 
with existing wheel-slip compensation techniques.  

In literature, significant attention has been devoted to slip 
compensation schemes for robot localization and mapping, 
and several methods are available. Existing techniques 
include fusion of extro-receptive and dead reckoning 
techniques [10-12, 14] by using stochastic filters such as 
Kalman filter [18], Extended Kalman filter [19] and Particle 
filters [12] for sensor fusion. The use of uncompensated 
odometers and the computation complexity with online 
feature extraction algorithms restricts the use of these 
compensation schemes. To overcome these issues, 
interactive multiple model (IMM) framework [9-10, 17, 20] 
for slip compensation has been proposed. Typically, in IMM 
methods, the robot models are designed for slip and no slip 
conditions either using conventional mathematical or fuzzy 
logic [20] techniques. To switch over these models, a 
switching mechanism using techniques like support vector 
machine [17] are employed. However, the wheel-slip differs 
from one robot to another, and depends on various factors 
such as terrain interaction, wheel force, acceleration and 
others. Capturing the influences of these factors with fuzzy 
or mathematical approach is rather difficult. Furthermore, 
these approaches cannot use experimental data inherently in 
their design. On the other hand, experimental data provides 
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valuable information to model slip. Therefore, models that 
use measurement data to capture uncertainty in wheel-slip 
compensation technique are required. 

 
Figure 1. Wheeled mobile robot with LRF 

 
This investigation proposes a modified IMM based 

approach to design slip compensation mechanism for dead-
reckoning based robot localization and mapping. Main 
contributions of this investigation are: (i) IMM based 
stochastic slip compensation technique for dead-reckoning 
based localization that uses linear Gaussian models to 
capture the uncertainties in wheel slip, (ii) localization and 
mapping algorithm that builds on the compensation 
technique, (iii) propose a new validation metric called the 
map spread factor (MSF) for benchmarking the slip 
compensation scheme, and (iv) experimental validation of 
the proposed slip compensation based localization and 
mapping algorithm. Our experiments demonstrate that the 
proposed slip compensation scheme improves the mapping 
by 72.55% for rotation motion and 66.67% for translation 
motion as compared to uncompensated system. 

Rest of the paper is organized as follows; Section II 
presents the hardware specification, classification of robot 
motion, and the robot dynamic model. Section III, presents 
the experiment performed to quantify wheel-slip for a given 
test condition and the role of linear Gaussian models are 
also described. Section IV, presents the formulation of MSF 
and its background in validating the mapping performance. 
The experimental results and evaluate the performance of 
localization and mapping algorithms are presented in 
Section V. Conclusions and future directions of the 
investigation are presented in Section VI. 

II. SINGLE WHEEL TURN MOBILE ROBOT 

To design the slip compensation scheme, Coroware®-
CoroBot classic two wheel drive (CL2) mobile robot (Fig. 
1) is used as the reference model. It is a differential drive 
robot with two rear and one caster wheel in the front. The 
speed and direction of the robot is changed by varying the 
duty ratio of the pulse-width modulation based voltage 
controller.  A high speed optical shaft encoder measures the 
wheel displacement as quantized distances called ticks 
( ). The velocity of the robot wheels can be 

calculated using rate of change of the tick values and a tick 
conversion factor ( ) which converts the ticks to 

corresponding centimeters.  
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where,   and   are the instantaneous right and 

left wheel velocity in cm/s respectively and  

( )lwV n ( )rwV n

ticld  and 

 ticrd  are the difference in measured tick displacement. The 

tick conversion factor can be calculated as ( 2cf ticT r Rw ) 

using the robot wheel radius ( ) in cm and ( ) ticks 

taken for one revolution of the robot wheel. 
wr ticR

 In order to design the slip compensation scheme, the 
robot is operated in single wheel turn mode; a special form 
of differential drive mode in a two wheel drive mobile 
robots that has been used to estimate the turning efficiency  
and quantify the amount of wheel slip in angular motion 
[21]. Typically, the effect of wheel slip will be predominant 
during acceleration/deceleration [22] and in angular motion 
that requires a slip compensation model. This is due to the 
robot experience a continuously change in torque direction 
during the robot motion. This investigation develops slip 
compensation model for accelerated angular motion, with 
the robot cross-section length (L) as radius and the 
stationary wheel as the center whose measured velocity 
( ) is given by (3).  rmV

   ( ) 0( ) |( ) 0
rw lw

rm
lw rw

V n V
V n V

 
( )
( )
n
nV n   (3) 

With the choice of control inputs, the robot can be 
operated in four different rotation and two translation modes 
depending with different duty ratios ( for left wheel and 

 for right wheel) applied to the left and right wheel, 

respectively,   as shown in Table I. 

lwD

rwD

TABLE I. TYPES OF ROBOT MOTION  

Motion Type Control Signal 
Center of 
Rotation 

Direction of 
Rotation 

Left wheel 
forward (LF) 

0lw rwD D  0  Right Wheel Clockwise 

Left wheel 
reverse (LR) 

0lw rwD D 0   Right Wheel 
Anti-

clockwise 
Right wheel 
forward (RF) 

0lw rwD D 0   Left Wheel Clockwise 

Right wheel 
reverse (RR) 

0lw rwD D 0   Left Wheel 
Anti-

clockwise 
Robot 

Forward  
0 0lw rwD D   --- --- 

Robot Reverse 0 0lw rwD D   --- --- 

 

For localization and mapping algorithm, the mathematical 
model of the robot is derived as follows. The Euclidean 
distance between the center of the robot to its wheels 
( and for left and right wheels) is given by, _lw rcr _rc rwr

_ _ 2lw rc rc rw

L
r r      (4) 

The relative position of the wheels for a givens robot 
center ( ,rc rcx y ) and robot barring ( bar ) in global 

coordinates can be calculated as follows, from (4), the 
position of the robot left wheel ( ,lw lwx y ) and right wheel 

( ,rw rwx y ) can be given by (5) and (6), 
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Figure 2. Robot localization and mapping system with proposed slip compensation technique 
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where,  

[ cos , sin ]
2 2

t
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L L A     

The center of the robot and its bearing are calculated 
using the instantaneous wheel velocities and the center of 
rotation ( ,CR CRx y ). Based on the wheel velocities the center 

of rotation will change as shown in (7).  Thus the overall 
robot model can be derived as in (8). 
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In this mode the robot will always be in angular motion 
which can be used to evaluate the turning efficiency of the 
wheels in robot itself rather than having a separate test set 
up as in [22].  

III. PROPOSED LOCALIZATION AND MAPPING 

METHODOLOGY 

The proposed slip compensation approach in this 
investigation uses simple sensors and dead-reckoning based 
approach for robot localization and mapping. To this extent, 
odometers fitted to each wheel of the mobile robot were 
used as dead reckoning sensor, whose incremental 
measurements are used to determine the robot navigation 
path and for building global map from local maps. The 
measurements thus obtained are subjected to error due to 
slip forces arising from wheel-terrain interaction, which in-
turn depends on the wheel speed, type of wheel motion, and 
terrain type. In order to compensate these slip forces, this 
investigation proposes a stochastic slip compensation 
technique that uses Gaussian distribution to model wheel-
slip. The compensation schemes uses experiments to obtain 

the Gaussian models that are used to generate slip 
compensation velocity that works against the measured 
velocity in run-time. This Gaussian description of wheel-slip 
results in a hybrid model wherein the compensation model is 
selected depending on the type of motion described in Table 
I and based on the terrain type.  

With the compensated robot velocity, the robot can be 
localized using the robot model described by (8). This 
instantaneous robot location is used for mapping the robot 
environment using the local map scans. To acquire the local 
map scans, a laser range finder (LRF) was fitted on top of 
the mobile robot (Fig. 1) which scans the obstacles in the 
environment to produce a scan of local area in its vicinity. 
The acquired local scans will be translated to its original 
global position using the localized robot position and 
accumulated to reconstruct the original map of the 
environment. 

Finally the quality of the reconstructed map was 
evaluated using MSF which in turn reflects the accuracy of 
localization and its slip compensation efficiency. This 
creates a framework in which the slip compensation 
technique can be evaluated in a more reliable and realistic 
procedure as shown in Fig. 2.             

A. Quantification of wheel slip 

 Wheel slip causes perturbations in robot velocity 
measurements leading to performance degradation of dead 
reckoning based localization methods. Among the factors 
causing perturbation in measurements, terrain type is a 
predominant one. A hard surfaced terrain like cement 
concrete will increase the slip force leading to increase in 
measured robot wheel velocity where as a soft or slippery 
surface will lead to reduction in measured robot wheel 
velocity. 

The perturbations in measurements can be detected by 
knowing the actual velocity of the robot accurately, which 
in-turn requires reliable measurement technique. To obtain 
such measurement, this investigation uses a binary 
measurement technique using distance measurement unit 
(DMS) with simple form of feature extraction and data 
association makes it to be accurate and reliable. The DMS 
which is an infrared (IR) based reflection type sensor was 
fitted focusing outwards along the vertical axis of each 
wheels. The robot was set to be in any one of the motion as 
described in Table. I along its path a reflective surfaced 
reference point was placed such that that the DMS senses it 
as obstacle only once for a rotation as shown in Fig. 3. 
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Figure 3. Robot motion for estimating the wheel slip 

 

To measure the actual velocity of robot, a set of peak 
points   with their corresponding time 

stamps 

 1 2, ,.... NP p p p

 1 2, ,...


P p p pNT t t t  are acquired. A peak point is the 

one in which the reflection intensity is maximum as it 
corresponds to the possible closest distance of the robot with 
the reference point which can be determined by finding the 
local maxima point using differential function[23]. The time 
difference between the consecutive peak points which gives 
the time taken for the robot to take one full rotation was 
used to calculate the angular velocity ( bar ) of the robot as 

in (9) and the displacement of the robot can be calculated 
using the robot model in (10).   
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The actual velocity  ( ) of the robot was quantified 

using DMS by (11), 
raV

ra barV L        (11) 

The obtained actual velocity is an averaged velocity 
which is up sampled by linear interpolation to match up the 
sampling rate of the instantaneous robot velocity measured 
using odometer. Such that instantaneous wheel slip velocity 
( scV ) can be calculated from the deviation between the 

measured and actual robot velocity as in (12). 

( ) ( ) ( )sc ra l rmV n V k N V n     (12) 

Where,  lk nN   with  up-sampling rate. lN

B. Linear Gaussian model 

In [24], non-recursive linear Gaussian model was 
considered to be an optimal model to capture the wheel-slip 
dynamics and uncertainty in wheel-slip velocity. As the 
wheel slip depends on the wheel velocity, the model has a 
biased linear relation and an unbiased Gaussian noise ( ) 
to account for the uncertainties as in (13). 

( ) ( ) ( )sc o ma oV n A V n B n      (13) 

Where, ( ) (0,n )S    is the Gaussian distribution 

modeling the slip with zero mean and covariance ( S ). The 

vectors,  oA  and  denote the coefficient and bias, 

respectively. The linear trend in the acquired wheel slip data 
with respect to the measured wheel velocity are fitted with a 
first order polynomial using least square estimate [25]. The 
linear models thus generated provide the wheel-slip data 
(

oB

gs ) that can be modeled using a Gaussian distribution as 

described by the algorithm in Fig. 4. For each type of 
motion (MT), a stochastic slip compensation model was 
generated and the models will be switched according to the 
input command.  

 
Figure 4. Wheel slip modeling algorithm 

C. Terrain identifier 

Identifying the type of terrain is essential for designing 
slip compensation schemes. As wheel slip depends primarily 
on the nature of the terrain in which the robot navigates [20, 
22, 24], the proposed approach in this investigation selects 
the compensation model depending on the terrain type. The 
type of terrain is identified by evaluating the wheel friction 
from the steady state gain ( K ). K is calculated as a ratio of 
wheel velocity ( ) to its duty ratio ( ) which controls the 

applied voltage to the wheels at steady state as in (14).  A 
system is said to be at steady state when there is a minimal 
rate change in output. Therefore, the robot is driven until the 
rate change in wheel velocity is minimal i.e. within a 
tolerance limit (

wV

toV

D

l ) to achieve steady state. 

 
Figure 5. Robot wheel behaviour in various terrains 

 

To evaluate the performance of the proposed terrain 
identifier, three terrains namely, (i) cement concrete floor 
(CCF), (ii) vinyl flex floor (VFF), and (iii) laminate wooden 
floor (LWF) having different wheel-terrain interactions are 
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considered for this investigation. Table I shows the various 
modes of operation in which the robot is subjected with a 
constant duty ratio to analyze the steady state behaviors of 
wheel in these terrains and a graph illustrating the wheel 
velocity is obtained as shown in Fig. 5. It is observed that 
the terrains can be easily identified by fixing mode specific 
thresholds for steady state gain ( K ) as shown in Fig. 6.       

( )
( ) ( 1)

( )
w

w w to

V n
K V n V n

D n


   


lV


 


                (14) 

 
Figure 6. Steady state gain of robot wheels in various terrains 
 

The obtained linear Gaussian models are validated using 
the acquired wheel slip data and its corresponding measured 
velocity. It is observed that the distribution of wheel slip 
noise follows the Gaussian relation with zero mean as 
shown in Fig. 7. Thus the designed models can be used to 
design compensation schemes for robot localization and 
mapping. 

 
   Figure 7. Linear Gaussian models for slip compensation 

IV.  VALIDATION USING MAP SPREAD FACTOR 

The slip compensation technique requires metrics that can 
be used to evaluate the performance in terms of 
reconstructing the original map using local maps. In 
addition, such metric should be equally valid for robot 
deployments in unknown environments. Furthermore, the 

metric should be able to validate the algorithm in run-time. 
In order to suit our evaluation criteria a new metric called 
the map spread factor (MSF).  MSF is a measure of relative 
occupancy of the obstacles to the free space in the 
retranslated map. The idea behind MSF formulation is that 
an inaccurate localization will lead to a spread of estimated 
obstacle locations and cause an increase in MSF, which 
indicates an increased error in retranslated map. On the 
other hand, an accurate localization reduces spread of 
obstacle position and MSF indicating an accurate mapping. 

MSF can be calculated by converting the map into 
pixilated binary image with the specified resolution ( rM ) 

into black and while pixels. A white pixel corresponds to an 
obstacle and a black indicates a free space. The acquired 
analog map data points from the LRF will be level shifted in 
order to quantize into a digital binary image. The cardinality 
of white pixel and black pixel are calculated, whose ratio 
determines the MSF as described in the flow chart at Fig. 
10.   In other words, MSF gives the relative degree of 
obstacle occupancy and free space in a map.  

The MSF defined above does not directly measure the 
mapping efficiency, but provides a measure to study it. To 
obtain a measure for improvement in map reconstruction, 
we define the new measure called the percentage mapping 
improvement ( ), defined as in (15) impM

100%u c
imp

u

MSF MSF
M

MSF


       (15) 

Where ( cMSF ) and ( uMSF ) denote the MSF of the 

compensated and uncompensated localization, respectively. 
It is defined the ratio of difference between the MSF of 
uncompensated and compensated map to the MSF of 
uncompensated reconstructed map. It indicates the 
percentage reduction in MSF with introduction of proposed 
slip compensation technique which in turn indicates the 
percentage improvement in localization accuracy. 

   

 
Figure 8. Peformance validation of slip compensation models 
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Figure 9. Flow chart to calculate MSF 

V. RESULTS AND DISCUSSIONS 

To study the accuracy of the slip compensated 
localization and mapping technique, this study compares the 
experimental results of the uncompensated with that of the 
compensated mapping algorithms. As stated earlier, MSF 
can be used to ascertain the performance of the 
compensation scheme. 

The performance of the proposed slip compensation 
technique is evaluated in three test conditions: At the first 
test, the slip compensation technique for each type of 
rotation mode is evaluated individually as shown in Fig. 8. 
Our results show that the proposed compensation scheme 
significantly improves the map reconstruction capability of 
the localization algorithm. In the second test, the proposed 
IMM based switching technique was validated based on its 
ability to perform localization and mapping by subjecting 
the robot into a random rotation motion across various 
terrains as shown in Fig. 10. The desired robot track have be 
determined based the time at which the robot switches its 
type of motion and the results demonstrates the ability of the 
proposed slip compensation to keep in track of robot as in 
Fig 10(c).Thus the  proposed compensation scheme 
enhances the robot mapping capability as in Table. II.  

The third test condition studies the performance of the 
proposed slip compensation technique when the robot is in 
either forward or reverse translation motion. While in 
forward motion, the proposed technique uses LF and RF slip 
compensation model to compensate the slip in left and right 
wheel of the robot, respectively. Whereas in reverse motion 
LR and RR models are used for slip compensation.  The 
performance of these slip compensation models is evaluated 

by subjecting the robot to perform a loop closure in a narrow 
arena where translation motion is predominant. From Fig. 
11, it is observed that the proposed slip compensation 
technique is able to reduce the deviation between the 
estimated and actual robot track thereby, improving the 
localization accuracy.  

TABLE II. PERFORMANCE VALIDATION USING MSF 

Type of Motion & 
Terrain uMSF  cMSF  %  impM

Rotation Motion in CCF 1.3410 0.3681 72.55 
Rotation Motion in VFF 1.4275 0.2965 79.23 
Rotation Motion in LWV 1.3381 0.3522 73.68 
Translation Motion in CCF 0.6747 0.2246 66.71 

 

A minimal spread in retranslated map indicates improved 
mapping performance during robot translation motion.  
Table. II illustrates the spread in retranslated map using an 
uncompensated and proposed compensation system. It is 
observed that in translation motion, only a smaller map 
spread occurs as compared with the rotation motion. This is 
mainly because only a smaller incremental scene change 
will be observed in translation motion where as a wider 
scene change leading to a large number of new features may 
be observed in rotation motion.  

VI. CONCLUSION 

Thus the article proposed stochastic slip compensation 
based dead-reckoning based mapping and localization 
algorithm. To compensate the wheel-slip, measurements 
were collected from the robot and the slip forces were 
modeled as linear Gaussian distribution. This lead to a 
family of hybrid models that needs to be switched based on  
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Figure 10. Localization and mapping performance of proposed technique in rotation motion across various terrains
 

 
Figure 11. Localization and mapping performance of proposed technique during translation motion  
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the input command. The proposed methodology was tested 
using experiments on a mobile robot and our results 
demonstrated the enhancements achieved using the 
localization technique. To study the performance of the 
proposed mapping algorithm, a new metric called the MSF 
was introduced. Our results demonstrated that the proposed 
slip compensation scheme improved the mapping efficiency 
by around 72% during rotation and 67 % during translation 
motion over uncompensated localization and mapping. 

The proposed compensation based localization method 
not only increases the accuracy of dead-reckoning based 
localization, but the realization is also simple and cheap. 
Extension to adaptive slip compensation technique based on 
terrains, robot type etc and testing the proposed methods in 
various deployment environments are the future course of 
this investigation. 
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