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Abstract
Background/Aims: Hepatocellular carcinoma (HCC)
is one of the most deadly diseases; metastasis and
recurrence are the most important factors that affect
the therapy of HCC chronically. Until now, the prog-
nosis for the metastasis of HCC had not improved.
Recently, several proteins that are related to metas-
tasis and invasion of HCC were identified, but the ef-
fective markers still remain to be elucidated. Meth-
ods: In this study, comparative proteomics was used
to study the differentially expressed proteins in two
HCC cell lines MHCC97L and HCCLM9, which have
low and high metastatic potentials, respectively. Re-
sults: Our findings indicated that filamin A (FLNA) and
phosphoglycerate kinase 1 (PGK1) were two signifi-
cantly differentially expressed proteins, with high ex-
pression in HCCLM9 cells, and may influence the
metastasis of HCC cells. Conclusion: Taken together
with the confirmation of expression on the mRNA level,
we propose the use of FLNA and PGK1 as potential
markers for the progression of HCC.

Introduction

Hepatocellular carcinoma (HCC) is currently the
third most common cause of cancer-related mortality
worldwide, but it is the second most common in China [1,
2]. Each year there are nearly 600,000 deaths worldwide
as a result of HCC, and China accounts for over 50% of
the world’s cases [3, 4]. Although most HCC cases
(>80%) occur in Eastern Asia and in sub-Saharan Africa
[3, 5, 6], the incidence in the West is expected to double
over the next 10 to 20 years [7]. Although surgery re-
mains the primary treatment of HCC, the recurrence rate
after resection is as high as 70% within 5 years [8]. There-
fore, metastatic recurrence is believed to be the main
barrier to the improvement of treatment efficacy [1].
Recently, many proteins related to metastatic recurrence
of HCC were identified, but the molecular mechanisms
that promote invasiveness and the biomarkers that can
be widely used in clinical settings remain largely unknown.

For improved insight into the molecular mechanisms
of HCC metastasis, we utilized two human HCC cell lines,
HCCLM9 and MHCC97L, with high and low metastatic
potentials, respectively. These cell lines were derived from
two similar genetic backgrounds, although significant dif-
ferences exist in their metastatic behaviors [9-11]. None-
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theless they provide a perfect model to learn the
molecular mechanisms of HCC metastasis in vitro [1,
12, 13].

A proteomics approach provides a powerful tool
to simultaneously analyze and identify many proteins
exhibiting differential expression among different sam-
ples, including cell line and tissue samples. This technique
enables the identification of cancer-related proteins for
therapeutic intervention and the establishment of
biomarkers for early diagnosis of metastatic recurrence
[14, 15].

FLNA, a 280-kDa actin-binding protein encoded by
an X-linked gene, has been demonstrated to interact with
more than 70 diverse cellular proteins, including signaling
molecules and membrane receptors. It thus provides es-
sential scaffolding functions and crucial links from
receptor-mediated signal transduction to the actin cy-
toskeleton [16-18]. It has been reported that FLNA is
required for the migration of cortical neurons and
melanoma cells [18-20] and plays a key role in the meta-
static progression of prostate cancer and ovarian cancer
[21, 22]. Hence, a role for FLNA in HCC metastasis and
migration is to be expected.

PGK1 is an ATP-generating enzyme that is involved
in the glycolytic pathway and is regulated by hypoxia-
inducible factor-1  (HIF-1 ) [23, 24]. Several proteins
associated with PGK1 signaling have been identified al-
ready, including -catenin (CTNNB1), chemokine
receptor 4 (CXCR4), and hypoxia-inducible factor 1
(HIF1). All of them were also shown to promote inva-
sion and metastasis in many carcinomas. At present,
PGK1 is known to be overexpressed in several carcino-
mas, including breast, ovarian, pancreatic, and gastric
carcinoma, and plays an important role in their malignan-
cies [25-28]. Its role in HCC metastasis, however, re-
mains to be further explored.

In the present study, proteins extracted from
MHCC97L and HCCLM9 cells were analyzed by SDS-
PAGE coupled with mass spectra (MS) technology.
FLNA and PGK1 were identified for the first time and
were overexpressed in HCCLM9 cells (lung metastasis
rate 100%) as compared with in MHCC97L cells (lung
metastasis rate 40%) [11-13]. In addition, the
overexpression of FLNA and PGK1 at the mRNA level
was further confirmed by RT-PCR in HepG2 cells. These
findings suggested that FLNA and PGK1 might be two
potential biomarkers for predicting the possibility of HCC
metastasis progression and additionally could be targeted
therapeutically for the treatment of HCC patients with
metastases.

Materials and Methods

Cell culture
The two cloned cell lines, MHCC97L and HCCLM9, were

received as gifts from Professor Yan Li (Wuhan University,
Wuhan, China). These lines were derived from the same host
cell line MHCC97 by cloning culture and 9 successive pulmo-
nary metastases selection in vivo, as described previously [9-
11]. And the other two cell lines, SMMC-7721 and HepG2, were
obtained from cancer center of State Key Laboratory of
Biotherapy in Sichuan University. These cells were respec-
tively cultured in RPMI 1640 and DMEM (GIBCO, USA) sup-
plemented with 10% fetal bovine serum (GIBCO, USA) and 100
units/ml streptomycin/penicillin at 37°C in a humidified atmos-
phere of 5% CO2.

Migration assay
A wound-healing assay was used to investigate the cell

migration in the cell lines as described previously [29]. The
cells were seeded in six-well culture plates at a density of 105

cells per well. After one day of culture, a 10 μl pipette tip was
used to scrape a line across the cell monolayer. The status of
the wound line was recorded by microscopy at 0, 24, and 48 h
respectively.

Protein extraction
Cells (107) were harvested following digestion with

trypsin, collected by centrifugation at 1500g for 10 minutes
(min) and washed three times with sufficient phosphate buff-
ered saline (PBS). Cells were then counted using a
hemocytometer. Five volumes (or 60-100 μl/1×106 cells) of lysis
buffer was added, and samples were mixed. Cell lysates were
then freeze-thawed three times in liquid nitrogen and sonicated
for 60 seconds total, 1 s on, 1 s off, at 22% amplitude, rested at
room temperature for 30 min. Finally, lysates were centrifuged
at 40000 rpm for 1 hour (h) at room temperature, and the
supernatants were collected and stored at -70°C.

Bradford assay
The staining solution was diluted 1:5 with water, and bo-

vine serum albumin (BSA) was diluted to a concentration gra-
dient of 0, 0.28, 0.56, 0.84, 1.12, and 1.4 mg/ml. Next, 100 μl of
diluted standard protein and samples were independently
added to 5 ml diluted staining solution. Samples were then
mixed and incubated at room temperature for 5 min, and then
absorbance at 595 nm was detected by the Multiskan Spec-
trum. After making a standard curve of the proteins, the precise
concentration of samples can be calculated according to the
formula of the standard curve.

SDS-PAGE analysis
First, 5X and 1X protein loading buffer (Takara, Japan)

was added to protein extracted from MHCC97L and HCCLM9
cells. The mixture was then boiled in a microwave for 10 min
and immediately placed on ice for 5 min. Samples were loaded
onto a 10% SDS-PAGE gel, run at 60 V for 10 min and then 100
V for 1.5 h to separate the proteins. The gel was stained with
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coomassie brilliant blue (CBB) for 2 h and then destained to
remove excess color by destaining solution (10% acetic acid
and 5% ethanol).

Tryptic in-gel digestion
The differential protein bands were excised from the

stained gel and cut into cubes of about 1-2 mm3. The gel cubes
were then immersed in 100 μl destaining solution and shaken
for 20 min, discarding the solution completely. This procedure
was repeated 1-2 times to clear remaining color, and then gels
were dehydrated with 100 μl acetonitrile (ACN) for 5 min. Next,
50 μl of DTT solution was then added, and then samples were
incubated at 56°C for 30 min. The solution was again discarded,
and dehydration with ACN was repeated. Alkylation of the
proteins was achieved by adding 50 μl iodoacetamide (IOA)
and incubating the samples in the dark for 30 min. Dehydration
of the gel with ACN was then repeated again. The gels were
then incubated with 15-20 μl trypsin (0.01 μg/μl) at 4°C for 30
min, and then 15-20 μl trypsin buffer (25 mM NH4HCO3) was
added while the trypsin was absorbed completely. Finally, the
samples were incubated at 37°C overnight. The gels were then
treated with extracting solution I (5% TFA) for 1 h at 40°C and
sonicated per half an hour. The peptides were extracted again
with solution II (50% ACN and 2.5% TFA) for 1 h at 40°C and
sonicated per half an hour. At last, the samples were combined
and evaporated by Speedvac (Savant).

ESI-Q-TOF
A Q-TOF mass spectrometer (Micromass, Manchester,

UK) fitted with an ESI source (Waters, Massachusetts, USA)
was used to obtain the mass spectra. The dry peptides were
dissolved in 10 μl of 50% ACN. MS/MS was performed in a
data-dependent mode in which the top 10 most abundant ions
for each MS scan were selected for MS/MS analysis. The MS/
MS data were acquired and processed using MassLynx soft-
ware (Micromass, Manchester, UK), and MASCOT was used
to search the database. Database searches were performed with
using the following parameters: database, Swiss-Prot; tax-
onomy, Homo sapiens; enzyme, trypsin; mass tolerance, ± 0.1
Dalton (Da); MS/MS tolerance, ±0.05 Da, an allowance of one
missed cleavage, and data format, Micromass (.pkl). In addi-
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tion, variable modifications of methionine oxidation and fixed
modifications of cysteine carbamidomethylation were allowed.
Proteins with MOWSE scores exceeding their threshold
(p<0.05) were considered to be positively identified, and the
proteins with highest MASCOT scores belonging to H. sapi-
ens were selected for further study [30].

Semi-quantitative RT-PCR
To check the mRNA levels of differentially expressed pro-

teins observed in the CBB stained SDS-PAGE gel, semi-quan-
titative RT-PCR was performed in triplicate. Total RNA was
extracted with Trizol Reagent (Invitrogen), first strand cDNA
was synthesized with EasyScript First-Strand cDNA Synthe-
sis SuperMix (TransGen Biotech), and RT-PCR was carried out
using a PCR kit from Fermentas. Semi-quantitative RT-PCR was
performed according to the manufacturer’s instructions using
the primers as shown in Table 2. GAPDH was used for normali-
zation. The PCR amplification profile whouras as follows: 94°C
for 2 min, followed by 30 cycles of 94°C for 30 s, 48°C for 30 s,
and 72°C for 30 s, with a final extension of 72°C for 7 min.

Statistical analysis
Data are presented as means ± the standard deviation

(SD) or means ± the standard error of the mean (SEM). Statisti-
cal significance for comparisons between groups was deter-
mined using a Student’s paired t-test in Prism 4.0, and p < 0.05
was the level of significance.

Results

Migration ability of HCCLM9 cells is stronger
than MHCC97L cells
To investigate the difference in migration ability be-

tween MHCC97L and HCCLM9 cells, a wound-healing
assay was employed. The real-time images of cell mi-
gration were obtained after the monolayer of cells was
wounded by a 10-μl pipette tip. At 0, 24, and 48 h, we
observed the status as the wound healed. As shown in

Fig. 1. Migration of MHCC97L and
HCCLM9 cells. (A) The real-time im-
ages of migration status of MHCC97L
cells; from 0 to 48 h, a faint migration
occurs in these cells. (B) The real-
time images of migration status of
HCCLM9 cells; the cells showed
strong ability to migrate and the
wound appeared healed by 48 h.

Cell Physiol Biochem 2011;27:207-216
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Fig. 1A, MHCC97L cells did not clearly present the abil-
ity of migration at all time points; in contrast, HCCLM9
cells primarily showed aspects of migration at 24 h, and
the wound was almost healed at 48 h (Fig. 1B). These
findings suggest the migration ability of HCCLM9 cells
is markedly greater than that of MHCC97L cells, and
this phenomenon is in agreement with previous reports
[6].

Separation of total proteins by SDS-PAGE elec-
trophoresis
After confirming the differential migration ability of

MHCC97L and HCCLM9 cells, efforts were made to
identify the proteins that actually affect the migration
between the two cells. Proteins were extracted from the
two cell types, and the protein concentration was deter-
mined using the Bradford assay (Fig. 2A). Next, 50 μg of
protein was separated on a 10% SDS-PAGE gel and
stained by CBB, and the protein bands were analyzed
(Fig. 2B). The differentially stained bands were quanti-
fied by grayscale as shown in Fig. 2C. These data indi-
cate significant differential expression between
MHCC97L and HCCLM9 cells. Four differentially stained
bands were extracted to be further identified by ESI-Q-

TOF MS/MS as described previously [30].

Identification of differentially expressed proteins
by ESI-Q-TOF MS/MS
To clearly identify the differentially expressed

proteins, peptides of these proteins were freeze-dried and
dissolved in 18 μl of 50% ACN. The top 10 most abun-
dant ions for each MS scan were selected for MS/MS
analysis with a data dependent mode when we performed
the ESI-Q-TOF MS/MS. As shown in Fig. 3, each of the
four samples presented showed excellent and depend-
able quality, thus the proteins identified were accurate.
Peptides derived from trypsin and keratin were automati-
cally excluded. The proteins identified by MS/MS
are listed in Table 1, along with accession numbers, pro-
tein names, gene names, and MS/MS scores. In addition,
as shown in Fig. 4A and 4B, proteins were classified
into seven groups based on their biological function and
divided into 3 parts according to their subcellular locali-
zation. Detailed information regarding proteomic
identification of FLNA and PGK1 are presented in
Fig. 4C and 4D respectively. Both FLNA and PGK1
had high MOWSE scores, and at least eight peptides
matched to their protein sequences. These data

Fig. 2. Separation of total
proteins by SDS-PAGE. (A)
The concentration of total pro-
teins was measured by the
Bradford assay, and the val-
ues of the gradient concentra-
tion of proteins and gradient
absorbance were used to make
the standard curve. (B) Total
proteins were separated by
SDS-PAGE and stained with
coomassie brilliant blue (CBB).
The gel was scanned and
analyzed by ImageScan, and
four differential bands were
found. (C) The four differen-
tial bands were quantified
by gray scale. Bands 1 and 3
are brighter in HCCLM9 than
in MHCC97L; in contrast,
bands 2 and 4 are brighter
in MHCC97L than in
HCCLM9, *p < 0.05;
**p < 0.01; ***p < 0.001.
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suggest that the proteins identified by MS/MS are
accurate, and it is worthwhile to analyze the levels of

mRNA expression from which these proteins are en-
coded.

Two Potential Biomarkers in Hepatocellular Carcinoma

Fig. 3. MS/MS spectra image of identified proteins. (A) The MS/MS spectra of FLNA and FLNB. (B) The MS/MS spectra of
AKR1C1, AKR1C2, PTGR1 and HNRNPA2B1. (C) The MS/MS spectra of PGK1 and ACTA2. (D) The MS/MS spectra of UGDH,
CES1, CES4, TUBA1B, TUBA8, PKM2, CCT7 and CCT4.

Table 1. Proteins identified by ESI-Q-TOF. All protein spots were identified by ESI-Q-TOF MS/MS. aAccession numbers were
derived from the ExPASy database. bTheoretical molecular mass (Da) and location from the ExPASy database. cProbability-based
MOWSE scores.

Band

NO.

Accession

NO a
Protein name Gene

name

Theoretical

molecular

mass b

No. of

peptides

Coverage

(%)

MS/MS

Score c
Location b

P21333 Filamin-A FLNA 283301 8 4 205 Cytoplasm1

O75369 Filamin-B FLNB 280157 6 2 89 Cytoplasm

2 Q04828 Aldo-keto reductase family 1 member C1 AKR1C1 37221 18 51 287 Cytoplasm
P52895 Aldo-keto reductase family 1 member C 2 AKR1C2 37111 14 39 165 Cytoplasm
Q14914 Prostaglandin reductase 1 PTGR1 36075 3 11 31 Cytoplasm

P22626
Heterogeneous nuclear

ribonucleoproteins A2/B1

HNRNP

A2B1
37464 1 4 27 Nucleus/Cytoplasm

3 P00558 Phosphoglycerate kinase 1 PGK1 44985 23 31 319 Cytoplasm
P62736 Actin ACTA2 42381 2 4 68 Cytoplasm

4 O60701 UDP-glucose 6-dehydrogenase UGDH 55674 14 30 136 cytoplasm

P23141 Liver carboxylesterase 1 CES1 62766 12 17 134 Endoplasmic reticulum
lumen

Q9UKY3 Putative inactive carboxylesterase 4 CES4 30773 4 9 118 secreted
P68363 Tubulin alpha-1B chain TUBA1B 50804 3 6 61 Microtubule
Q9NY65 Tubulin alpha-8 chain TUBA8 50746 3 6 61 Microtubule
P14618 Pyruvate kinase isozymes M1/M2 PKM2 58470 2 3 37 Cytoplasm/Nucleus
Q99832 T-complex protein 1 subunit eta CCT7 59842 1 2 19 Cytoplasm
P50991 T-complex protein 1 subunit delta CCT4 58401 2 4 19 Cytoplasm

Cell Physiol Biochem 2011;27:207-216
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Fig. 4. Classification of identified proteins and proteomic identification of FLNA and PGK1. (A) First, 16 distinct proteins were
classified into 7 groups based on their biological functions: cytoskeleton (31%), transport (13%), redox regulation (6%), tran-
scription (6%), metabolism (25%), molecular chaperone (13%) and others (6%). (B) The identified proteins were categorized into
groups according to their subcellular locations. Among them, 88% of the proteins were located in the cytoplasm, and the others
were located in nucleus and secreted as indicated. (C) MS/MS identification of FLNA revealed 8 matched-peptides, with a
MOWSE score of 205. (D) MS/MS identification of PGK1 revealed 23 matched-peptides, with a MOWSE score of 319.

Detection of mRNA levels of selected proteins
and PGK1 signaling by RT-PCR in MHCC97L
and HCCLM9 cells
To confirm the differential expression of identified

proteins at the mRNA level, semi-quantitative RT-PCR
was performed using the primers for each gene as listed
in Table 2 and using GAPDH as an internal control. As
shown in Fig. 5A and 5B, expression of FLNA, PGK1,
and ACTA2 was significantly increased in HCCLM9 cells,
but AKR1C1, UGDH, and CES1 were dramatically
downregulated in MHCC97L cells. Furthermore, proteins
related to the PGK1 signaling pathway were also de-

tected by RT-PCR. -catenin (CTNNB1), chemokine
receptor 4 (CXCR4), and hypoxia-inducible factor 1
(HIF1) were overexpressed in HCCLM9 cells (Fig. 5C
and 5D). These findings indicate that FLNA and
PGK1 can be two biomarker candidates for progression
of HCC.

Confirmation of differential expression of FLNA
and PGK1 by RT-PCR in SMMC-7721 and
HepG2 cells
To confirm the differential expression of FLNA and

PGK1 in cell lines own different metastatic abilities, we
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Fig. 5. Semi-quantitative RT-PCR con-
firmation of identified proteins. (A)
Among the 16 identified proteins, the
transcripts that encode 6 of the proteins
were further assayed by RT-PCR. Total
mRNA was normalized by GAPDH. (B)
The electrophoresis bands were analyzed
by Quantity-One software, and the aver-
age intensity of each band was obtained
by triplicate experiments. (C) PGK1-re-
lated proteins were tested by RT-PCR.
Three proteins including CTNNB1, HIF1,
and CXCR4 were upregulated in
HCCLM9 cells. (D) The quantification
and statistical analysis of the electro-
phoresis bands presented in (C),
*p < 0.05; **p < 0.01; ***p < 0.001.

further selected two other hepatoma carcinoma cells,
SMMC-7721 and HepG2 cells, which own differential
ability of migration. As shown in Fig. 6A and 6B, the
ability of migration of HepG2 cells is stronger than
SMMC-7721 cells significantly. Next, total RNA was
extracted from those two cell lines, the differential ex-
pression of FLNA and PGK1 was also detected by RT-
PCR. Compared with SMMC-7721, the expression of
FLNA and PGK1 were markedly increased in HepG2
cells (Fig. 6C and 6D), GAPDH as an internal control.
These findings confirmed the differential expression of
FLNA and PGK1 in HCC cells with different ability of
migration.

Discussion

Hepatocellular carcinoma (HCC) is currently the
third leading cause of cancer mortality worldwide [2],
and the incidence is expected to increase over the next
few decades due to increased rates of HBV and HCV
infection [3, 7]. We thus have to develop systems for the
diagnosis, prognosis, and treatment of HCC. Several pro-
teins including alpha-fetoprotein (AFP) and fibroleukin
were identified as potential makers for early HCC diag-
nosis, and AFP is used most widely to test for HCC [31,
32]. Even after curative therapies while HCC remains

Two Potential Biomarkers in Hepatocellular Carcinoma

Table 2. Information of RT-PCR for selected genes.

Target protein Primer sequence
(sense (+) and antisense (-))

Annealing
temperature

Product
length

(+)5' -CCGCAATGACAATGACACC-3'FLNA
(-)5' -TGGAGATACTGCCACTGAGA-3'

48 0C 421bp

(+)5' -ACGTGACATCCGCAAAGAC-3'ACTA2
(-)5' -AAAGGGTGTAACGCAACTAA-3'

48 0C 302 bp

(+)5' -CTGGGATTTGGCACCTAT-3'AKR1C1
(-)5' -TTGGGATCACTTCCTCACC-3'

48 0C 337 bp

(+)5' -CGGTAGTCCTTATGAGCC-3'PGK1
(-)5' -CATGAAAGCGGAGGTTCT-3'

48 0C 207 bp

(+)5' -TGGGCTCCACAATGAACT-3'UGDH
(-)5' -GAGAATGGCGTGAACCTG-3'

48 0C 353 bp

(+)5' -CTCCGTGCCTTTATCCTG-3'CES1
(-)5' -TGTTCTCCTTTCGGTTTGT-3'

48 0C 316 bp

(+)5' -ACCTCCCAAGTCCTGTAT-3'CTNNB1
(-)5' -CCTGGTCCTCGTCATTTA-3'

450C 322 bp

(+)5' -AAAATCTTCCTGCCCACC-3'CXCR4
(-)5' -ATCCAGACGCCAACATAG-3'

50 0C 374 bp

(+)5' -GCTTGGTGCTGATTTGTG-3'HIF1A
(-)5' -TGTTTGTTGAAGGGAGAA-3'

450C 416 bp

(+)5' -GGAGTCCACTGGCGTCTT-3'GAPDH
(-)5' -CATCATATTTGGCAGGTTTT -3'

48 0C 482 bp

early and localized, the incidence of metastatic recur-
rence for HCC is still high [6]. Many efforts have been
made to identify more effective molecules related to the
progression and metastasis of HCC, including transform-
ing growth factor-b1 (TGFb) [33], insulin-like growth fac-
tor-II (IGF-II) [34], and human cervical cancer oncogene
(HCCR) [35]. However, these currently available
biomarkers have inadequate specificity and sensitivity.
Hence, the specific prognostic biomarkers for metastatic

Cell Physiol Biochem 2011;27:207-216
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progression of HCC are still lacking.
It is believed that the metastatic recurrence of HCC

is a complex process with numerous molecular altera-
tions [31]. The current biomarkers seem to be insuffi-
cient to monitor the metastasis of HCC. It is possible to
improve the diagnosis and prognosis of HCC metastasis
with global profiling of metastatic progression of HCC,
thus providing more novel and effective biomarkers.

In the present study, we coupled SDS-PAGE with
MS/MS technology to address the large-scale differences
in protein expression between MHCC97L and HCCLM9
cells, a perfect cell model to study the metastasis of
HCC[1, 12, 13] (Fig. 2). Sixteen proteins were identified
in four bands (Table 1): four were identified in bands 1
and 3 and overexpressed in HCCLM9 cells, namely
FLNA, FLNB, PGK1, and ACTA2. The other proteins
identified from bands 2 and 4 were upregulated in
MHCC97L cells. Two proteins that were overexpressed
in HCCLM9 cells, FLNA and PGK1, were further se-
lected, due to their high MOWSE score, to confirm their
expression at the mRNA level and study their involve-
ment with metastasis in HCC. Indeed, FLNA and PGK1
were overexpressed in HCCLM9 cells, as confirmed by
RT-PCR (Fig. 5).

FLNA is one of the members of the filamin family,
and the other two members are FLNB and FLNC. These
three proteins are highly conserved, showing 60-80%

homology over their entire sequence to each other [20,
36, 37]. In this study, FLNB was identified meantime,
and FLNA and FLNB were reported to form a
heterodimer to compensate for the loss of FLNA [20].
So far, more than 70 proteins were validated to interact
with FLNA, which works as a cellular scaffold as well
as a linker between receptor signaling and the cytoskel-
eton [16-18]. In addition, FLNA may play an important
role in vascular development and tumor cell metastasis
[38].

Recently, R.G. Bedolla et al. [21] reported that the
expression of FLNA in the cytoplasm (280 kDa) pro-
motes cell invasion of prostate cancer cells, whereas the
nuclear translocation (90 kDa) of the protein inhibits this
process[21]. In our study, FLNA was overexpressed in
HCCLM9 cells, which have a 100% lung metastasis rate
and was localized in the cytoplasm of these cells, as indi-
cated in Fig. 2B. We propose that cytoplasmic FLNA
also plays a role in the metastasis of HCCLM9 cells.
Cytoplasmic FLNA also serves as an actin-binding pro-
tein that further promotes cell motility [21]. Our data in-
dicate that actin was indeed markedly upregulated in
HCCLM9 cells compared with MHCC97L cells (Fig. 5).

Another potential biomarker for metastasis of HCC
identified in this study is PGK1. PGK1 had been identi-
fied as a potential marker for peritoneal dissemination in
gastric cancer [27] and is known to be involved in the

Fig. 6. Confirmation of the differential
expression of FLNA and PGK1 in
SMMC-7721 and HepG2 cells. (A) The
real-time images of migration status of
SMMC-7721 cells, from 0 to 48 h. (B)
The real-time images of migration sta-
tus of HepG2 cells, from 0 to 48h, these
cells showed a stronger ability of mi-
gration than SMMC-7721 cells. (C) The
differential expression of FLNA and
PGK1 were further examined by RT-PCR
at the levels of mRNA. Both of the pro-
teins identified previously were over-
expressed in HepG2 cells, which have
higher ability of migration. (D) The
quantification and statistical analysis
of the electrophoresis bands presented
in (C), *p < 0.05; **p < 0.01; ***p <
0.001.
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