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Abstract This paper presents an adaptive neural network
learning-based solution for the inverse kinematics of
humanoid fingers. For the purpose, we specify an effective
finger model by considering the interphalangeal joint
coordination inherent in human fingers. In order to find
a proper joint combination for any fingertip trajectory,
we propose an adaptive learning scheme by using a
multi-layered neural network. It is interesting to use an
adaptive learning rate algorithm that leads the neural
network to get the inverse kinematic solution quickly.
The usefulness of the proposed approach is verified
by exemplary simulations for the general motion of
humanoid fingers.

Keywords Adaptive Neural Network Learning, Inverse
Kinematics, Humanoid Fingers

1. Introduction

In order to manipulate the fingers of a robotic hand, we
need to know the combination of joints of each finger
[1][2]. Actually, the joint configuration of a finger plays an
important role for the dexterous manipulation of an object
grasped by multiple fingers. Thus, a method is necessary
to get a proper joint combination for the given fingertip
trajectory.

In practice, there exists a preferable configuration
depending on the task in using a redundant manipulator
or a finger with a coupling among joints. In fact it is
not easy to obtain an effective joint configuration due to
the redundancy or constraints. To solve this issue, some
approaches have been proposed [3-5]. Yoshikawa [3] and
Chiu [4] suggested a performance index-based algorithm
using a manipulability criterion and a compatibility index,
respectively, from the viewpoint of finding an effective
posture of robot manipulators. These methods have
an advantage with regard to resolving the singularity
posture of a manipulator as well as avoiding obstacles.
However, unbalancing of the joint configuration during
grasp can be obtained by optimizing such a performance
index. Secco, et al. [5] tried to solve the inverse kinematic
problem for a prosthetic finger by adopting a physiological
constraint among joints. Secco’s method gives a simple
closed-form solution, but it has a limitation with regard
to implementing the realistic movement of human
fingers. This is because the third joint of a humanoid
finger should actuate identically with the second joint
through his approach. According to the literature, the
motion range of the joints in human fingers is not
identical [6-8]. Moreover, since the method does not
consider the phalangeal length parameters, this may lead
to difficulties in making a consistent grasp configuration
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in multi-fingered operations. Thus, the inverse kinematic
solution for effective positioning of such a humanoid
finger or a manipulator in manipulation tasks is still an
interesting problem [9].

The objective of this paper is to provide an adaptive
learning-based method to get the inverse kinematic
solution of humanoid fingers with a coupling between
the distal interphalangeal joint and the proximal
interphalangeal joint. For this purpose, we use a
multi-layered neural network learned at an adaptive
learning rate. In Section 2, we specify a model of humanoid
fingers based on the interphalangeal joint coordination of
the human hand and reveal the issue of inverse kinematics
for humanoid fingers. The adaptive neural network
learning scheme for the inverse kinematics is described
in Section 3. In Section 4, exemplary simulation results
for the inverse kinematics of some humanoid fingers are
shown and the usefulness of the proposed approach is
also discussed. The concluding remarks are drawn in
Section 5.

2. Modelling of Humanoid Fingers and Inverse
Kinematics Issue

It is important to study the features of the human
hand in order to develop a dexterous humanoid hand
[10]. For a model of humanoid fingers, we consider the
interphalangeal features of the human hand as shown in
Fig. 1.

(a) The human hand
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Thumb 1
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(b) A model of the human hand

Figure 1. Human hand and its structural model
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In Fig. 1(a), for instance, the index finger is usually
actuated by four joints, but its planar motion can be
implemented by the combination of three revolute joints
as shown in Fig. 1(b) [11]. The mechanism of the index
finger is structurally the same as that of the middle, ring
and little fingers. So, they can be modelled as a finger with
three revolute joints in two-dimensional space. The thumb
however differs from those fingers and it is not taken into
consideration in this paper.

In particular, one of the interesting features inherent in
human fingers is that interphalangeal joint coordination
exists between the DIP (Distal InterPhalangeal) joint and
the PIP(Proximal InterPhalangeal) joint of the human
fingers except the thumb [7][8][12]. Thus, the motion of
the third joint depends on the actuation of the second
joint. Practically, each link [;(i = 1,2,3) in Fig. 1(b)
corresponds to the proximal, middle and distal phalanges
in the index finger, respectively, and the origin of the
MCP(MetaCarpoPhalangeal) joint can be considered as the
pivot connecting to the palm. In the previous research [12],
we tried to find the interphalangeal joint coordination of
the index, middle, ring and little fingers of the author. It
has been confirmed that the joint coordination between the
DIP joint and the PIP joint of those fingers can be modelled
approximately as a linear relation as follows:

O3i = Aiby;, i=1,---,4 1)

where the phalangeal length parameters of the ith
finger used in the experiment and the corresponding
interphalangeal joint coordination parameter A; can be
summarized as in Table 1.

il A Length(m) Remarks
LL]Hh
0.6175(0.050|0.030{0.025 |Index finger
0.4715]0.058|0.035|0.028 |Middle finger
0.4390(0.055|0.032|0.025 |Ring finger

0.4143|0.045|0.025|0.022| Little finger

> W N =

Table 1. Phalangeal length and interphalangeal joint
coordination parameters

By considering the interphalangeal joint coordination, the
forward kinematic relations of the representative index
finger in Fig. 1(b) can be described by

x¢ =1y cos(01) + I cos(01 + 62)
+l3cos(6; + (14 Aq1)62) )

yr= I3 sin(67) + I sin(61 + 62)
+l3sin(6 + (14+A1)02)  (3)
03 = A16; 4
Gf :91-1—(14—}\1)92 (5)

where x¢ and y denote the x- and y-directional fingertip
positions of the index finger, respectively, and A; implies
the coupling between the DIP joint and the PIP joint of
the index finger. The parameter of /; represents the length
parameter of the jth link of the finger and 6 represents its
posture.



From (2) ~ (5), it is natural that the fingertip position
and its posture are definitely determined when the joint
angles of the finger have been given. It is worth noting that
reverse work is usually necessary in the object handling
tasks by multi-fingered hands. That is, it is required to
obtain the joint combination corresponding to the fingertip
trajectory of each finger for the manipulating tasks. This
is actually called the inverse kinematics problem which
is the fundamental issue for general hand operations.
For instance, the assembling performance of a stick
manipulated by multiple fingers is basically dependant
on the accuracy of the inverse kinematic solution of each
finger. If such a finger has a coupling among joints, its
inverse kinematic problem is usually not easily solved in a
closed-form.

On the other hand, it is well-known that a multi-layered
neural network enables us to get an effective solution for
various identification and control tasks using a learning
strategy [13-16].

Thus, this paper aims to provide an adaptive solution
of the inverse kinematics of such a humanoid finger by
utilizing the advantages of the neural network approach.

3. Neural Network Learning Scheme for Inverse
Kinematics

This section describes a multiple neural network learning
scheme for the inverse kinematic solutions of the
humanoid fingers in Fig. 1(b). An adaptive learning
algorithm to initialize and update the learning rate is also
introduced for the neural network learning scheme.

3.1. Multiple Neural Network Scheme

Fig. 2(a) shows the multiple neural network learning
scheme proposed for the inverse kinematics of the
humanoid fingers. The structure of the adaptive neural
network interface ANN;(i = 1,---,4) for the actual
joint combination corresponding to the desired fingertip
trajectory of each finger is shown in Fig. 2(b). In addition,
the multi-layered neural network has been constructed
as in Fig. 3. In fact, the positions, x;’lc and y?, necessary
in the fingertip space of each finger are assigned in the
input port of each interface network. The output signals
of the network are the actual joint angles, 6; and 6;.
Then the third joint 65 is determined by considering the
interphalangeal joint coordination as shown in Fig. 3. The
actual fingertip positions of each finger are determined
by the forward kinematics using the resultant joint angles
obtained by the learning scheme. By using the position
error of each direction, the adaptive learning algorithm
initializes a proper learning rate and updates it for the
fast learning of the neural network. Thus, the neural
network is recursively learned using the conventional
error back propagation method. If the maximum position
error assigned in the fingertip space is satisfied, the
learning process is terminated, and the corresponding
output of the learning scheme is finally accepted as the
inverse kinematic solution of each finger.

The overall signal processing of the neural network in Fig.
3 is described as follows. The input of the neural network

ANN, Learned By n4(t)
for Little Finger Using Ay
ANNj Learned By n3(t)
for Ring Finger Using A3
ANN; Learned By n(t)
for Middle Finger Using A»

T(j] (t A(?a‘ptl\ro Nf:ural Network Interface(ANNy) > 0,(1)
,d Learned By ny(t) ——> 0,(t)
yrt) — . e r Ui ——> 05(1)
for Index Finger Using A\; 3
(a) Neural network interfaces
l',[(t) Multi-Layered Z‘ (It)
U}I(t) Neural Network L@ 4 9221‘3

I

—
Adaptive Learning
Algorithm , 71(t)

N

Forward Kinematics

|

(b) Structure of ANN;

Figure 2. A neural network learning scheme for multiple inverse
kinematic solutions

Output layer

Input layer Hidden layers
Figure 3. A multi-layered neural network

z;(t) is assigned by

1.0, i=0
zi(t) = ¥f(1),i=1 6)

where x;’f(t) and y/df(t) denote the x- and y-directional

positions necessary in the fingertip space, respectively. The
term z(t) represents a bias input that affects the output
function of the first hidden layer. The function of the input
layer is only to pass the input to the first hidden layer.

The output of the first hidden layer /;(t) is determined by

(=1 = 7
hi(t) {M,]—1,2,"',M )
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where
j(H) = ) wii(t)zi(t) ©)

here wj;(t) denotes the weighting factor between the i-th
input layer and the j-th first hidden layer. The parameter
s; implies the slope of the j-th sigmoid function at the
first hidden layer and M indicates the number of neurons
placed at the first hidden layer.

The output of the second hidden layer i (t) is made by

() = ——

1+ e—sc(L(®)” k=1,2,.,N 9

where
M
t) = ) wii(t)hy(t) (10)
j=0

here wy;(t) denotes the weighting factor between the j-th
first hidden layer and the k-th second hidden layer. The
parameter s, implies the slope of the k-th sigmoid function
at the second hidden layer.

The final output of the neural network 6;(t) is determined

by

11
<ZII<\]:1 wlk(t)hk(t)> ,1=2 (D)

where wy(t) denotes the weighting factor between the
second hidden layer and the output layer. In particular,
the second joint angle of each finger has been made to be
at least positive and thus the third joint also has a positive
angle. This is done in order to mimic the structural features
observed in the general motion of the human fingers and
it is easily experienced in real finger motions.

() = {Z;I(\]l w ()i (1), 122 1

3.2. Adaptive Learning Algorithm

For the learning of the neural network in Fig. 3, we define
an error function as follows:

1 & 5
J() =5 X (en(t)) (12)
m=1
where
er(t) = (1) — x4 (1) (13)
ex(t) = y() — v (). (14)

In fact, the error function implies the sum of each position
error at the fingertip space. For effective description of
the learning algorithm, the case of the representative index
finger has been considered in this section.

Through the conventional error back propagation [19], the
error effect according to the change of the weighting factor
between the second hidden layer and the output layer

ai;j,it()t) is expressed by
ox4(t oy (t
(1) _ ¢ P " ay(t)
dwy(t) dwi(t) dwy(t)’

I=1,2andk=1,2---,N (15
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ox%(t) ayE(t) . . .
f f
where o 0] and (1) imply the x- and y-directional

error effects by the change of the weight wy. In order to
compute those terms, it is necessary for each angle term to
be considered separately. When I = 1 in (15), for the first
joint angle of the finger,

ax(t)

30 (D) (Zan> he(t), k=1,2,--- ,N (16)

where
a1 = —lysin6q(t)
ay = —lpsin(6y(t) + 62(t))
az = —l3sin(01(t) + (14 A1)62(1)).
And also
a
;Z‘Zlk( (2 bn> (), k=12 N  (17)
where
by = Iy cos 6 (t)
by = I cos(6;(t) + 02(t))
by = Izcos(61(t) + (14 A1)62(t)).
When | = 2, for the second joint angle of the finger,
x4 ( )
awlk (Z cn> h(t) N (18)
where

= flzsin(Gl( )+92 { (% wlk )}
k=1

2 = —lzsin(61(t) + (14 A1)6:(t))

)}

And

d1:lzcos(61()+92 { (%wlk )}
k=1

dy = I3 cos(01(t) + (14 A1)02(t))

(g}

By defining an output-layer error term 6,;(t) for effective
description, we have

CJa®) T jante(t) 3 by, 1=1
Sal () = {el(t) Zﬁ:i cn +ea(t) Zﬁ:i dy, 1=2, (20)

and the second hidden-layer error term at the k-th neuron
Opok (t) can be represented by

ahk(t)

ok (t) Z wy(t a (D)

,k=1,2,---,N. (1)



In addition, the first hidden-layer error term at the j-th
neuron dy,1;(t) can be expressed by

& oh;(t)
omj(t) = k; wkj(t)fShzk(t)%, j=01,---,M (22

Finally, all of the weighting factors at each layer for the
index finger can be updated using the following rule:

wi(t+1) = wye(t) + 171(£)001 () i (t) (23)
wij(t+1) = wj(t) + 171(£) ook (£)h; (1) (24)
wji(t +1) = wji(t) +n1(t)0p1()zi (t) (25)

where Jy(t), ok (t) and dy1i(t) denote the error terms
propagated back from the fingertip space of the finger to
the output and hidden layers. The learning rate #;(f) is
determined dynamically according to the state of learning
of the neural network, and the details of the procedure
have been described in Section 7.1.

In addition, the same procedure considering the
corresponding finger’s coupling parameter is available for
the middle, ring and little fingers.

4. Simulation Results: Inverse Kinematics

This section shows some representative simulation results
for the inverse kinematics of the humanoid fingers in
Fig. 1(b) by using the proposed neural network learning
scheme. In particular, the simulation results for the index
and middle fingers have been shown.

The specifications of the humanoid fingers for the
simulation study have been specified in Table 1. Some test
positions on the following curve according to the learning
state of the neural network have been assigned for the
desired fingertip trajectories in (6):

Yr :azszz+a1xf+ao (26)

where a3, a; and ap denote the coefficients of a
second-order curve. Those parameters are specified in
Table 2. The assigned trajectory implies that the index and
middle fingers move along such a second-order function
in a free grasp motion [12].

lFinger| ap | aq | ag [
Index |[-13.5273|0.8612(0.0622

Middle| -9.7340 |0.5567{0.0806

Table 2. Parameters for the functions of the index and middle
fingers

The multi-layered neural network used in this simulation
has four layers as shown in Fig. 3. The number of neurons
at the input layer, the first hidden layer, the second hidden
layer, and the output layer has been empirically assigned
by 2, 5, 3 and 2, respectively. All of the weights of
the neural network have been initialized randomly in
the range of -1.0 ~ 1.0. The parameters for the adaptive
learning algorithm, B, ¢, P and Q, are assigned by 0.0015,
0.5, 3 and 5, respectively. The slope parameters of
the sigmoid functions at the hidden layers have been
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0.06/!
0.04
0.02} : o e

Fingertip trajectories (m)

0.02F @) ]

0.04
0 03 06 09 12 15 18 21 24

No. of learning X 1()4

Figure 4. Fingertip trajectories of the index finger: (i) desired
x-directional trajectory(x}), (ii) actual x-directional trajectory

followed by the proposed neural network Iearning(x}), (iii) desired
y-directional trajectory(y“f), and (iv) actual y-directional trajectory
followed by the neural network Iearning(y;). Note that the inverse

kinematics process for each trajectory has been completed at the
moment of each circle.
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0
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-0.06 TPon'()d for initial posturing 1

-0.09 ¢ ‘ ' ‘ 1
<«—¢€1(0) = =0.109
-0.12 1

Fingertip errors (m)

015
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No. of learning % 104

Figure 5. Fingertip error profiles of the index finger according
to the learning process: (i) x-directional error, e;(t), and (ii)
y-directional error, e, (t)

assigned by 1.0. In fact, the desired accuracy of the
given manipulation task is dependent on the range of
the fingertip position error. In this simulation, if the
maximum error of ej(t) and ep(t) in Fig. 2(b) is less
than the desired range of each fingertip error, 0.5 mm,
the inverse kinematic learning process of each trajectory
has been completed and the current joint values have
been determined as the inverse kinematic solution, and
the inverse kinematic process is repeated for the next
trajectory.

Fig. 4 and Fig. 8 show the x- and y-directional fingertip
trajectories of the index and middle fingers, respectively,
in the process of the neural network learning, where
the desired fingertip trajectories have been assigned
successively after getting the solution of the current
inverse kinematics. The actual fingertip trajectories in
Figs. 4 and 8 have been taken by the forward kinematics
using the actual joint angles which are resultantly
obtained by the neural network learning. Figs. 5 and
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Figure 6. Joint angles of the index finger obtained by the
proposed neural network learning-based inverse kinematics. Note
that the joint angles at the moment of each circle have been
accepted as the solution of the corresponding inverse kinematics.

0.314

0.312

0.308

«—n1(0) = 0.307490
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0 03 06 09 12 15 18 21 24

No. of learning < 104

Figure 7. The learning rate adapted for the inverse kinematics
of the index finger

9 show the fingertip trajectory errors according to the
learning process, where we can confirm the satisfactory
convergence of the neural network training algorithm
under variable learning rate. In fact, the process of inverse
kinematics is completed at the moment of each circle
indicated in Figs. 6 and 10, and then the output angles
of the neural network learning scheme have been set
as the actual joint angles. Those actual joint angles for
the desired fingertip positions have been plotted in Fig.
6 and Fig. 10, respectively. As a result, we can find
that the actual fingertip positions have been approached
satisfactorily to the desired positions through the adaptive
learning process.

In particular, it should be noted from Figs. 4, 5, 6, §,
9, and 10 that a rather long time is required for the
learning of the initial position. The period actually means
the initial posturing process of each finger and thus it
is practically not related to the computing load in the
manipulation process. Nevertheless, an effort to reduce
the learning time is very important in the implementation
aspect of neural networks [13-18]. So, it is remarkable that
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Figure 8. Fingertip trajectories of the middle finger: (i) desired
x-directional trajectory(x}), (ii) actual x-directional trajectory
followed by the proposed neural network Iearning(x}), (iii) desired
y-directional trajectory(y?), and (iv) actual y-directional trajectory
followed by the neural network Iearning(y;). Note that the inverse
kinematics process for each trajectory has been completed at the
moment of each circle.
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Figure 9. Fingertip error profiles of the middle finger according
to the learning process: (i) x-directional error, e;(t), and (ii)
y-directional error, e;(t)

the adaptive learning rate used in this paper can contribute
to reducing the learning time. The trace of the learning
rate for the two fingers during the learning process is
shown in Fig. 7 and Fig. 11, respectively. As you can see
in Figs. 7 and 11, the learning rate for each finger has been
initialized differently and the trace of updating is also
different. This is because each learning rate is adjusted by
the state of learning of the corresponding neural network.
Indeed one can see via the results shown in Figs. 4 and 8
that those adaptive learning rates contribute to improving
the speed of learning of the corresponding neural network.

In addition, the singularity issue of the humanoid
fingers with regard to obtaining the inverse kinematic
solution has been analysed in Section 7.2. The inverse
kinematic solutions of the ring and little fingers can also
be obtained from the same procedure considering the
corresponding finger’s coupling parameter.
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Figure 10. Joint angles of the middle finger obtained by the
proposed approach of inverse kinematics. Note that the joint
angles at the moment of each circle have been accepted as the
solution of the corresponding inverse kinematics.
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Figure 11. The learning rate adapted for the middle finger

As a result, it is concluded that the proposed neural
network learning scheme is useful for the inverse
kinematics of the humanoid fingers with a coupling.
Hopefully, it is expected that the proposed approach can
be applied to the effective motion control of humanoid
fingers, prosthetic hands, and manipulators with such an
interphalangeal coupling [20][21].

5. Concluding Remarks

An adaptive neural network learning-based solution for
the inverse kinematics of the humanoid fingers with
a coupling has been presented. In order to verify
the usefulness of the adaptive neural network learning
scheme, we utilized an effective model of the human
fingers and performed exemplary simulations for the
inverse kinematics of the index and middle fingers,
where a four-layered neural network has been employed.
Through the simulation study, it has been shown that the
inverse kinematics of the humanoid fingers can be solved
effectively by using the proposed neural network learning
scheme, and its performance is satisfactory. In addition,
the adaptive learning rate algorithm is practically useful

for improving the learning speed of the neural network.
Finally, it is concluded that the adaptive neural network
learning scheme is applicable for manipulation tasks by
humanoid robotic or prosthetic fingers. In our future work
we intend to compare and improve the computational
efficiency which is desirable for the practical applications
of the proposed approach.
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7. Appendix
7.1. Adaptive Learning Rate

In the field of applying a multi-layered neural network,
a proper learning rate is used to update the weighting
factors of the neural network, but in fact this is not easy to
assign properly. So, a fixed small value has been utilized
in many cases. In this case, the speed of learning of the
neural network can be very slow. On the other hand, if
a big learning rate is assigned in order to facilitate fast
learning, the network’s learning tends to be diverged.
So, an adaptive learning rate is desirable for possible
fast learning. In this sense, we studied an algorithm to
initialize and change the learning rate for multi-layered
neural networks as in the previous research [22].

In this paper, we employed the adaptive learning rate
algorithm for the issue of the inverse kinematics of the
humanoid fingers as shown in Fig. 1. The procedure
to determine the learning rate has been summarized as
follows. The initial learning rate #;(t) for the ANN; in Fig.
2 is firstly assigned by checking the maximum position
error at the initialized state of the neural network:

7;(t) = —max|eg(f)|logy B, k=1,2,and t =0 (27)
where ¢ (t) denotes the k-th error in Fig. 2 given by
er(f) = ex(t)
ex(t) = ey(t).

The role of the parameter B (0 < B < 1) adjusts the
magnitude of the initial learning rate. This technique is
originally based on simulated annealing [19].

Next, the initial learning rate is adjusted by checking the
following steps repeatedly.

Step 1) Compute the sum of the absolute fingertip position
errors:

2

Se(r) = ) lex(t)], (28)
k=1

Ao = Se(r+1)=S,(r), r=1,2,--- ,R  (29)

where the initial error sum, S.(0) = 0, and R denotes the
number of learning.

Step 2) Check if the case of A, < 0 occurs P times
continuously, and if the cases of A, < 0 and/or A, > 0
happen Q times irregularly. In these cases, select a random
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value of ¢ (0 < ¢ < 1) and then, if the following condition
is satisfied

1;(t)

e 8 <, (30)
the learning rate for the next step is increased by
ni(t+1) = (L+a)y;(t) (31)
where
a = cologyo(14A,)
here ¢ also adjusts the learning rate minutely.

Or, check if the case of A, > 0 occurs P times continuously,
and if the cases of A, > 0 and/or A, < 0 take place Q times
irregularly. In these cases, also select a random value of ¢
(0 < ¢ < 1) and then, if the following condition is satisfied

;i (1)

e <G (32)

the next learning rate is decreased by
ni(t+1) = (1= a)y(f). (33)

Step 3) When the conditions in Step 2) do not occur, the
current learning rate is used in the next learning process
without any change.

7.2. Singularity Analysis

When the humanoid index finger shown in Fig. 1(b) is
unfolded or folded maximally, its possible configurations
can be drawn as in Fig. 12.

Y,
B o (xpyp)
Virtual link
Folded O35 = A6
62 mas
Unfolded
Vot
X
A 7 b
o[ T o L o &

Figure 12. Possible configurations of the humanoid index finger

Basically, the posture of the humanoid finger can be
formed within those possible configurations. The finger
mechanism can be considered as a two-link mechanism
with a virtual link because the motion of the third
joint depends on the second joint. Therefore, when
the fingertip trajectory is reasonably planned within the
finger’s workspace, its singular posture can be made
structurally at the second joint angles, 6, = 0 or
02, max- The maximum angle of the second joint of the
i-th humanoid finger can be obtained from the following
auxiliary equation:

l2 Sin(92,mux) =+ l3 sin((l + A,-)Gzlmax) =0.

In this paper, the maximum angles of the second joints
of the index and middle fingers have been approximately
founded as 141.5° and 149.5°, respectively. Since the actual
trajectory of the second joint angle of each finger, as shown
in Figs. 6 and 10, is satisfying the constraint range avoiding
singularity, 0 < 6y < 6,4y, it is finally concluded that
there is no problem in the singularity of the proposed
inverse kinematic solution for the humanoid fingers.
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