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Abstract Simultaneous Location and Mapping (SLAM) is a 
key problem to solve in order to build truly autonomous 
mobile robots. SLAM with a unique camera, or monocular 
SLAM, is probably one of the most complex SLAM variants, 
based entirely on a bearing-only sensor working over six 
DOF. The monocular SLAM method developed in this work 
is based on the Delayed Inverse-Depth (DI-D) Feature 
Initialization, with the contribution of a new data association 
batch validation technique, the Highest Order Hypothesis 
Compatibility Test, HOHCT. The Delayed Inverse-Depth 
technique is used to initialize new features in the system and 
defines a single hypothesis for the initial depth of features 
with the use of a stochastic technique of triangulation. The 
introduced HOHCT method is based on the evaluation of 
statistically compatible hypotheses and a search algorithm 
designed to exploit the strengths of the Delayed Inverse-
Depth technique to achieve good performance results. This 
work presents the HOHCT with a detailed formulation of 
the monocular DI-D SLAM problem. The performance of 
the proposed HOHCT is validated with experimental 
results, in both indoor and outdoor environments, while its 
costs are compared with other popular approaches.  
 
Keywords Monocular SLAM, Robotics, Only-bearing 
Sensor 

1. Introduction  
 
Simultaneous Localization and Mapping (SLAM), or 
Concurrent Mapping and Localization (CML), is a well-
known and well-studied problem among the members of 
the robotics community, being one of the most active 
fields of research over the last years. The SLAM problem 
concerns how a mobile robot can operate in an a priori 
unknown environment by means of only on-board 
sensors to simultaneously build a map of its 
surroundings using this to track its position. Thus, SLAM 
is one of the most important problems to solve in robotics 
in order to build truly autonomous mobile robots. 
 
There are many techniques and algorithms that have been 
developed in order to address this problem, many of 
them aiming to be run on-line on a robotic device. Most 
of these solutions focus on the estimation of self-mapped 
features located through assorted types of sensors. The 
most frequently used sensors for SLAM techniques 
include odometers, radar, GPS and several kinds of range 
finders such as laser, sonar and infrared-based ones [1][2]. 
All these sensors have their own advantages, but also 
several drawbacks have to be considered, such as: the 
increasing difficultly regarding correspondence or data 
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association, the limitation to 2D mapping, excessive 
computational requirements, or being too expensive to be 
deployed on certain commercial platforms. At the same 
time, consumer demand has pushed the industry to the 
mass production of cheap and reliable camera devices at 
relatively low prices. All these factors have contributed to 
the appearance of recent works concerning the use of 
cameras as main sensors. The requirements regarding the 
accessibility and easiness of the use of the cameras, and 
the amount and diversity of the data provided by them as 
sensors, make computer vision an obvious choice for 
streamlining autonomous robotics. This will lead to 
robotic platforms with less high-end sensors with 
complex requirements and being hard to integrate, 
substituted by off-the-shelf cameras, maintaining their 
levels of performance and accuracy. The use of a camera 
as a main sensor for SLAM is of interest given the 
information that it provides, can serve as the information 
required for solving the data association problem and do 
so easily. Research into computer vision is constantly 
developing techniques to obtain information from images 
that can be used in visual SLAM. In any case, Monocular 
SLAM with six degrees of freedom (as presented in this 
work) remains one of the hardest SLAM variants, as only 
bearing data is provided by the camera, thus special 
techniques are needed to obtain information about the 
depth of a given point in an image. 
 
This problem has several solutions stemming from the 
structure-from-motion field of research [3][4], being 
closely related to monocular SLAM. But a great deal of 
these solutions is based on methods of global nonlinear 
optimization, best performed offline, making them 
unsuitable for SLAM necessities. 
 
Some relevant works on monocular SLAM rely on 
additional sensors, such as Strelow [5], who proposes 
mixing inertial sensors with a camera into an Iterated 
Extended Kalman Filter (IEKF). Other works try to 
employ different estimation techniques, such as Particle 
Filters (PF), in Kwok and Dissanayake [6][7]. Still, some of 
the most notable works are based on the well-known 
EKF: Davison [8] proved the feasibility of real-time 
monocular SLAM using an EKF; and Montiel [9] 
developed the Inverse-Depth parameterization, which 
allows initializing features to be seen by the robot with a 
heuristically chosen value for depth. 
 
With regards to the monocular SLAM problem, the batch 
validation problem has been considered only in recent 
years. A good survey of the techniques for dealing with 
this can be found in the works of Durrant-Whyte and 
Bailey [10][11]. The early implementation of SLAM 
techniques dealt with each data association individually, 
but this validation strategy frequently leads to unreliable 
results, as it is easy to have a wrong match due to the 

texture and geometry of the environment. Eventually 
batch validation was introduced, considering multiple 
data associations to be validated at the same time. 
Currently, several tests and methodologies exist for 
dealing with the batch validation of data association. One 
of the most usual validation methods is the Joint 
Compatibility Branch and Bound technique, JCBB [12]. 
The JCBB method is considered as a strong batch 
validation technique, but the algorithm has a worst-case 
exponential cost, partly mitigated by several 
optimizations. This method gives great results within the 
context of undelayed depth feature initialization, as it 
allows for those matches deemed incompatible to be 
ignored with the rest of the data association pairs. 
Another widely known batch validation technique is the 
Combined Constraint Data Association (CCDA) 
developed by Bailey [13], based upon graphs instead of 
trees. The strengths of these techniques reside in the 
ability to test batch validation without knowing the 
device pose robustly in a cluttered environment. 
 
Developments within the field of monocular SLAM are 
having a growing impact on applied robotics, as seen 
over the last years. Examples of visual SLAM-navigated 
applications are to be found deployed on land, at sea and 
in the air, creating new ways of and techniques for 
autonomous navigation. Though based on stereo vision, 
in [14] a high density map is reconstructed from a stereo 
video, leading to a dense cloud map allowing for accurate 
navigation. For sea depths, a monocular SLAM-based 
mosaicing technique [15] allows ROVs to reconstruct visual 
maps of the seabed. Recent developments in Micro Aerial 
Vehicles (MAV), as presented in [16], introduce monocular 
SLAM as a way to stabilize and navigate MAVs without 
external tracking or prior knowledge of the environment. 
Although this last work is based on a new parallel tracking 
batch optimization technique [17], it shows the potential of 
monocular SLAM for autonomous robotics applications. 
Further developments in filtering SLAM techniques will 
expand the possibilities of the limited autonomous 
robotics systems, where filtering monocular SLAM 
techniques still have an edge over more complex but also 
computationally expensive approaches [18]. 
 
This paper significantly expands on the authors’ previous 
works proposed in [19] and [20]. Those works presented 
and dealt with several aspects of DI-D initialization, such 
as parameter adjustment and a comparison with similar 
approaches, without dealing with the data association 
validation problem. The aim of this work is to explicitly 
address the batch validation problem with the proposal 
of a novel algorithm, the HOHCT, which evaluates the 
compatibility of a given set of matches, and tries to obtain 
the largest subset of compatible matches efficiently. These 
improvements allow developers to start testing the 
technique deployed in a robotic system in order to 
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determine its feasibility as an enabling technology with 
which to decrease the sensory requirements of robotics 
systems. The following sections deal with the accurate 
description of the system in terms of its formulation, with 
emphasis on the novel HOHCT proposed algorithm; after 
the description of the method, several experimental cases 
are presented which test the proposal with real data, 
discussing the results and their implications on the 
performance of this novel contribution. 
 
2. Monocular SLAM with DI-D initialization 
 
The procedure and formulation of DI-D Monocular 
SLAM is described in this section. For the sake of 
simplicity, at each step subscript k represents the initially 
given estimation or covariance, while k+1 designates 
those same magnitudes from the current step prediction. 
In terms of coordinates frames the superscripts W and WC 

will denote magnitudes expressed in the world reference 
and the camera reference respectively. This notation is the 
same as that in the authors’ previous works, where 
further details of the DI-D initialization are provided [19]. 
 
2.1 State and system specification 
 
The EKF SLAM methodology requires that data 
regarding localization and mapping are maintained 
within the so-called augmented state vector, x ̂(Eq. 1). The 
first part of this column vector contains a vector xv̂ which 
represents a robotic camera device, describing both its 
pose and movement speeds (Eq. 2): 
 

 [ ]1 2ˆ ˆ ˆ ˆ ˆ, , ,...v nx x y y y Τ=  (1)

  (2)
 
The vector xv̂ can be broken down in the description of the 
pose and the movements. The position of the camera’s 
optical centre is represented by rWC, while its orientation 
with respect to the navigation frame is represented by a 
unit quaternion qWC. Linear and angular velocities are 
described by νW and ωW respectively: 
 

                 (3)

  (4)

 (5)  

 (6)  
 
The map to be found and estimated is composed of a set 
of features, ŷi, each of which are represented by a vector 
which models the localization of the point where the 
feature is expected to be: 
 

  (7)

The obtained values form the following model for feature 
localization: 
 

 

 

(8)

 

In the model represented in (Eq. 7), xi, yi, zi are the 
coordinates of the optical centre of the camera where the 
feature was seen for the first time; and θi,φi, represent 
azimuth and elevation (in relation to the world reference 
W) for the directional unitary vector m(θi,φi). The point 
depth ri is coded by its inverse: ρi=1/ri as quoted in 
reference [9]. Figure 1 illustrates the camera and features 
parameterization.  
 

 
Figure 1. Camera, scene point feature and scale initialization 
reference in DI-D model. 
 
2.1 Scale and System Initialization  
 
The initialization of a metric scale with previous 
knowledge is analogous to a well-known and previously 
solved problem in computer vision, the PnP (perspective 
of n-points) problem, [21]. This problem tries to find the 
orientation of a camera with respect to an object from a 
set of points. If the points are coplanar, with four points 
with spatial coordinates (xi, yi, 0) as seen in Fig. 1, the PnP 
problem can be solved with a linear system to find a 
unique solution [22].  
 
At the beginning of the iterative process, the system state xîni 
(Eq. 9) is formed by the camera-state xv̂ and the four initial 
features used for estimating the extrinsic camera parameters, 
forming the first augmented state vector x ̂(Eq. 1): 
 

 (9)
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     (10)  
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where t is a translation vector for the position of the 
camera centre and RCW is the world to camera rotation 
matrix for the camera orientation as described in [23]. 
Each initial feature ŷi, for i = (1,..,4), corresponds to each 
reference point (xi, yi, 0), but parameterized as Eq. 7. 
 
2.2 State prediction 
 
An unconstrained constant-acceleration camera motion 
prediction model can be defined by the following 
equation (Eq. 3), from [24]: 
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 (11)  

 
being q((ωWk+ΩW)∆t) the quaternion defined by the 
rotation vector (ωWk+ΩW)∆t. At every step it is assumed 
that there is an unknown linear and angular velocity with 
acceleration zero-mean and known covariance Gaussian 
processes, aW and αW, producing an impulse of linear and 
angular velocity: VW= aWΔt and ΩW= αWΔt.  
 
This model, (Eq. 11), updates the robotic camera part of 
the state, while the features are assumed to remain 
static, thus the complete state prediction model is 
defined as: 
 

 (12)  

 
The prediction step is completed by propagating the 
estimation uncertainty through the covariance matrix, Eq. 
13, where ∇Fx is the Jacobian of the prediction model and 
∇Fu the Jacobian of the process noise. 
 

(13)  
 
2.3 Measurement prediction 
 
The different locations of the camera, along with the 
location of the already mapped features, are used to 
predict the feature position hi. The model observation of a 
point ŷi from a camera location defines a ray expressed in 
the camera frame as: 
 

 (14)  

 

hC is observed by the camera through its projection in the 
image. RCW is the transformation matrix from the global 
reference frame to the camera reference frame. The 
projection is modelled by using a full perspective wide 
angle camera.  
 
A description of this process is found in Algorithm 1, 
where ∇Hi denotes the Jacobian derived from the 
measurement model hi for each feature predicted (Eq. 14), 
to be used in the active search technique used for the 
matching process. 
 
2.4 Features Matching Process 
 
When a feature ŷi is added to the map, a unique image 
patch of n-by-n pixel is stored and linked to the feature. 
To match a feature in the current image frame a patch 
cross-correlation technique [25] is applied over all the 
image locations (ud, vd) within an elliptical search region 
(Eq. 15) derived from the innovation matrix Eq. 16: 
 

 (15)  

 
(16)  

 
If the score of a pixel location (ud,vd), determined by the 
best cross-correlation between the feature patch and the 
patches defined by the region of the search, is higher than 
a given threshold then this pixel location (ud,vd) is 
considered as the current feature measurement zi.  
 
2.5 Batch Validation of Data Association 
 
In SLAM, the injurious effect of incorrect or incompatible 
matches is well known. In monocular SLAM systems 
delayed initialization techniques implicitly prune some 
weak image features prior to their addition to the 
stochastic map, e.g., image features produced by fast 
lighting changes, shining on highly reflective surfaces, or 
even caused by some dynamic elements in the scene. 
Nevertheless, the risk of incorrect or incompatible 
matches could remain due to several factors: 
 
· Incompatibility due to a repeated design. 
· Fake composite landmark. 
· Incompatibilities produced by reflections on curved 

surfaces and materials. 
· Detection of landmarks running along edges. 
 
The main contribution of this article is to present a novel 
validation technique that the authors call the Highest 
Order Hypothesis Compatibility Test, (HOHCT). The 
HOHCT is intended to detect incorrect or incompatible 
matches, and is explained in detail in section 3. 
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2.6 Filter Update  
 
With the information obtained from the data association 
pairs found by the matching process and validated by the 
HOHCT the filter state and covariance are updated 
according to Eqs. 17 and 18 respectively: 

  
        (17)  
        (18)  
 
where the innovation g is: 
 
  (19)  
 
And the Kalman gain W is (Eq. 20): 

  (20)  
 
2.7 Delayed Inverse Depth Initialization of Features 
 
Depth information cannot be obtained in a single 
measurement when bearing sensors (e.g., a single camera) 
are used. In this case, in order to incorporate new features 
into the map, special techniques for feature initialization 
are needed to enable the use of bearing sensors in SLAM 
systems. 
 
In this work the Delayed Inverse-Depth (DI-D) Feature 
Initialization is used to incorporate new features ŷnew into 
the stochastic map. This method implements a stochastic 
triangulation technique in order to define a hypothesis of 
an initial depth for the features using a delay (Fig. 2). 
When cameras are used in real cluttered environments, 
the delay can be used to efficiently reject weak features, 
thus initializing only the best features as new landmarks 
to the map.  

 

 
Figure 2. Diagram of parallax α estimation. 

The initialization process can be summarized in a few 
steps, with further details in [19]: 
· When a feature is detected for the first time k, feature 

information, current state xk̂ and covariance Pk are 
stored. This data is called candidate point λ. 

· In subsequent instants k+dt, the parallax α is 
estimated using: i) the base-line, ii) the associated 
data λ, iii) the current state x.̂ 

· If a minimum parallax threshold αmin is reached, the 
candidate point is initialized as a new feature ŷnew. 
The new covariance matrix P is fully estimated by 
the initialization process. 

 
3. Highest Order Hypothesis Compatibility Test, HOHCT 
 
The matching methodology described in the previous 
section uses an active search technique to address the 
problem of data association. This problem is usually a 
critical part of any EKF-based SLAM system, as errors 
could dampen the convergence of the filter. These data 
association errors may even not be incorrect matching: a 
moving object can be correctly matched, but can give 
landmark information which disrupts the map, as this 
‘fake’ landmark is not static. Other errors may arise when 
dealing with ambiguous textures and features on the 
mapped environment. 
 

 
Figure 3. Fake composite landmark (marked by a star) at the 
intersection of the display border and the blinds. 
 
It is worth noting that previous works based on DI-D did 
not feature data association validation, but could achieve 
good results [19][20] due to the resilience to both ‘fake’ 
(formed by the superposition of different elements seen 
from a given perspective) and ‘weak’ (due to texture, 
lightning or any other factors that are hard to track in 
consecutive frames) features. Figure 3 and 4 illustrate 
examples of both a ‘fake’ composite feature and ‘weak’ 
features, respectively. The fake landmark appears at the 
intersection of the display edge and the blinds, and as the 
camera moves, it would slide along the blinds and the 
display border so as to always be found at the 
intersection point. The example of weak features (Fig. 4) 
shows two features (on the desktop PC case) that could 
be correctly initialized, but later on they proved to be 
weak due to reflections on the surface.  
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Figure 4. Incompatibilities produced by reflections on materials 
and curved surfaces, leading to weak features. 
 
DI-D SLAM without data validation could reject many of 
these errors because candidate features must satisfy a 
series of tests and conditions before being considered as 
suitable landmarks to be initialized. In the implemented 
technique, a feature must be tracked correctly within a 
minimal number of frames (normally 10 frames) and 
achieve a parallax value greater than a minimum αmin to 
guarantee an accurate enough depth estimation, as 
detailed below. However, errors could be interpreted as 
features producing wrong data associations, dampening 
the filter performance. The most common association 
errors to be initialized are those produced by fake (or 
composite) features over relatively long distances which 
are used most frequently, as they tend to be easy to track 
(thus robust) and observable over long periods.  
 
Thus, accounting for DI-D initialization features, a new 
technique for batch validation of the data association has 
been developed, the Highest Order Hypothesis Compatibility 
Test, HOHCT. This new algorithm exploits the fact that 
delayed initialization implementations for monocular SLAM 
are generally robust to data association errors, but they still 
may arise sparsely. Because of this relatively low chance of 
data association errors, the technique works on the 
optimistic approach that most of the time the number of 
incorrect data association pairings will be low. To know if a 
given data pairing is valid, a batch validation test based on a 
comparison of a quality metric against a statistical threshold 
of acceptance is performed. In this test, the data association 
pairings obtained from the matching process are tested and 
deemed valid or invalid as part of a set of pairings, being the 
whole set jointly consistent or ‘compatible’.  
 
So, this ‘compatibility test’ evaluates sets of data parings, 
known as ‘hypotheses’. Each hypothesis is a subset of the 
data association pairings obtained from the matching 
process. To determine if a hypothesis is compatible or 
not, its innovation Mahalanobis distance is estimated (Eq. 
21). This distance is used as a quality metric tested 
against a threshold given by the Chi-squared distribution: 
 

 2
,

12
τχdi

T gSgD ≤= Η
−
ΗΗΗ (21)  

where χ2d,τ is the Chi-squared distribution with a default 
confidence level of τ, and d is the number of data 
association pairs accepted into the hypothesis. The 
distance itself is estimated from gH and SiH, which are the 
innovation and innovation covariance for the hypothesis 
respectively, computed as in the update and matching 
steps of EKF, in Eq. 16 and Eq. 19. As not all the data 
association pairings are taken into account in each 
hypothesis, gH and SiH will not be taken completely to 
obtain the Mahalanobis distance, only those rows related 
to the considered pairing, without the necessity of fully 
computing gH and SiH again. 
 

 
Figure 5. Example of a pair elimination and hypothesis. 
 
As the proposed monocular SLAM performs data 
association based on an active search strategy, each 
mapped landmark is associated to an unique feature on 
the image, so the mentioned ‘hypothesis’ can be 
represented as an array of Boolean values the size of the 
total set of data pairing, N, where each of the pairings is 
marked as having been considered by the hypothesis 
(true, 1) or ignored (false, 0). Then, a complete search 
considering all the possible hypotheses (binary arrays of 
size N), would be a time consuming effort of exponential 
cost. Thus, the proposed HOHCT algorithm performs a 
search ordered in an ascending number of rejected data 
association pairings. 
 
An example of pair rejection after the HOHCT 
application can be seen in Fig. 5. Initially an optimistic 
hypothesis taking all the pairings found during the 
matching step is tested. If this hypothesis fails to pass the 
compatibility test, a search for a satisfactory hypothesis is 
performed. In Fig. 5, the third feature matching is 
incompatible, thus both the prediction and the match 
found are rejected and ignored. 
 
The proposed search algorithm combines iteration and 
recursion, as shown in Algorithm 1. The HOHCT will 
look for a compatible hypothesis, formed as a subset of an 
initial group of 'm' pairings. If the initial hypothesis of 
taking all 'm' pairing fails the test, a series of searches will 
be performed, each one trying to find and evaluate all 
hypotheses with 'm-i' pairings. Each successive search 
will establish a compatible hypothesis, or increase 'i' 
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before the subsequent search, so the number of pairs 
ignored in the hypotheses grows. Should a search looking 
for hypotheses with a given number of pairings find more 
than one compatible hypothesis, the hypothesis with the 
lowest Mahalanobis distance will be considered the best 
hypothesis and will be kept in the system. 
 
So, each of the successive searches explores an n-ary tree: 
iteration steps add accepted pairs into the hypothesis 
(indicated as ‘1’); and recursive calls introduce rejected 
pairs (indicated as ‘0’). This allows for each search to be 
made into a pseudo-binary tree where only the 
interesting nodes (those having exactly ‘m-i’ accepted 
pairs) are visited. An example of all the trees for a search 
with 'm=4' is shown on Fig. 6. 
 

  
Figure 6. Example of search increasing number of pairs rejected 
 
Given the sparse error conditions found in the DI-D 
initialization SLAM, this ordered search will normally 
have a linear cost with the number of landmarks 
matched, with exceptional cases achieving a cubic cost 
over some frames, still very far from the exponential cost 
that binary tree recursion could suppose over the whole 
number of matched landmarks. In this work, the rejected 
landmarks are eliminated as they are deemed 
incompatible. 

Algorithm 1. HOHCT test and algorithm.  
 

Function (hi, zi, Si, ∇Hi) := HOHCT-test (hi, zi,∇Hi, Si) 
Input: 
zi matching observations found 

hi features observation prediction  
Si innovation covariance matrix 

∇Hi observation Jacobian 
Output: 
zi matching observations found 

hi features observation prediction  
Si innovation covariance matrix 

∇Hi observation Jacobian 

begin 
m: = Number of Matches in zi 
hyp := [1] m    // Grab all matches 
  if  ~JointCompatible( hyp, hi, zi , ∇Hi, Si) then 
     i := 1 
     while i < m do                   // Hypothesis reducer loop 

  (hyp,d2) := HOHCT-Rec(m,0,[],i, hi, zi,∇Hi, Si) 
  if JointCompatible( hyp, hi, zi,∇Hi, Si) then 
 i := m 
  else 
 i := i + 1 

         end if 
     end while 
    remove incompatible pairings from hi and zi 

    update jacobian ∇Hi and matrix Si 
  end if 
return (hi, zi, Si, ∇Hi) 

 
Function (hypb, d2b ) := HOHCT-Rec  
(m, mhyp, hyps, rm, hi, zi,∇Hi, Si) 
Input: 
m size of full hypothesis 
mhyp size previously formed hypothesis 
hyps hypothesis built through recursion 
rm matches yet to remove 
Output: 
hypb best hypothesis found from hyps 
d2b best Mahalanobis distance 

begin 
if (rm = 0) or (m = mhyp) then 

hypb := [mhyp [1]m-mhyp] 
d2b := Mahalanobis (hi, zi,∇Hi , Si) 

else 
hypb := [hyps  [1]m-mhyp] 
d2b := Mahalanobis(hi, zi, ∇Hi,  Si) 
for r:= (mhyp+1) : (m-rm+1) do 

 (h,d):= HOHCT-Rec (m, mhyp+1,  
           [hyps 0],rm-1, hi, zi, ∇Hi, Si) 

 If (d < d2b) then 
 d2b := d 
 hypb := h 

end if 
hyps := [hyps 1] 
mhyp := mhyp +1 

end for 
end if 
return (hypb, d2b) 
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Figure 7. Map and trajectory estimation results obtained from two sequences of video: (1) 845 frames and (2) 615 frames. The left column 
displays results using HOHCT, while the right column displays results for the same sequences without using HOHCT batch validation.  
 
In Fig. 5 the different trees that could be considered are 
represented. Tree 1 represents the first set of hypotheses 
that will be used to calculate the distance between the 
pairs. If any hypothesis is not compatible (if the statistical 
test fails) then Tree 2 is built and the compatibility is 
checked again, this process of tree creation is iteratively 
repeated until a compatible hypothesis is found.  
 
4. Experimental Results and Discussion 
 
In order to test the performance of the proposed method, 
several video sequences were acquired using a low cost 
camera, in two different environments. Later, a MATLAB© 
implementation of the algorithm was executed off-line 
using those video sequences as input signals.  
 
4.1 Indoor and Outdoor Experiments 
 
In experiments, the following parameter values were 
used: variances for linear and angular velocity 
respectively σV=4(m/s)2, σΩ=4(m/s)2, noise variances σu= 
σv= 1 pixel, minimum base-line bmin=15cm and minimum 

parallax angle αmin=5º. The default confidence level for the 
Chi-squared distribution was set to τ = 0.95. 
 
A Logitech C920 HD camera was used in the 
experiments. This low cost camera has an USB interface 
and a wide angle lens. It is capable of acquiring HD 
colour video. However, in experiments, grey level video 
sequences, with a resolution of 424 × 240 pixels captured 
at 15 frames per second, were used. It is important to note 
that all the sequences of the video were captured at a 
relatively low frame rate of 15 frames per second (fps). 
While this frame rate would increase the difficulty of the 
SLAM process itself, and make it more prone to error, it 
would also give a bigger window of time in which to 
process each frame in an implementation aiming for real-
time. So, although satisfactory results would be easier to 
achieve assuming 30 fps streams of image (in the 
literature, most of the experiments are reported to be 
captured at least at 25 frames per second), it has been 
considered a better option to evaluate SLAM results at 15 
fps, to eventually allow for an easier implementation into 
systems with limited power, such as autonomous robots. 
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All the indoor video sequences were captured inside the 
Vision and Intelligent Systems laboratory at the authors’ 
university. A rail guide was assembled in order to 
provide an approximate ground truth reference. Every 
video sequence in this scenario was captured by sliding 
the camera (manually), at different speeds, over the rail 
guide. The duration of the different sequences for both 
scenarios ran from 35 seconds to 1 minute (525 to 900 
frames) for the same trajectory.  
 
Figure 7 illustrates the estimated map and trajectory for 
two different video sequences for the first scenario. The left 
and right columns show the results, for each sequence, 
respectively with and without HOHCT validation. As we 
would expect, the estimations obtained with the HOHCT 
validation were consistently better. In this case the 
experimental results show that the HOHCT validation test 
significantly improves the algorithm robustness, by 
rejecting harmful matches, clearly noted in the 
improvement of orientation estimation, as seen in sequence 
2. Another observed improvement was the enhanced 
preservation of the metric scale on estimations. The 
sequences taken with slower camera movements showed 
generally better results, although this can be easily 
attributed to the low frame rate deliberately employed.  
 

 
Figure 8. Outdoor environment setup used for tests. 
 
The outdoor sequences were captured with the help of a 
robotic platform Pioneer 3-AT to provide accurate 
navigation. This robotic platform repeatedly traversed a 
known trajectory in a nearby courtyard with columns, 
benches and multiple reflective surfaces among other 
elements (Fig. 8). This trajectory constituted an ‘L’ shaped 
course running for 12m, with a 90° curve. While going 
along this trajectory, a camera installed on top of the 
platform captured the sequences, looking sideways. The 
courtyard allowed us to perform outdoor tests, with an open 
space and longer trajectories, while keeping disturbances 
from uncontrolled lightning to a minimum and other 
difficulties usually associated with this kind of test. 
 
The sequences were taken with the platform moving at 
different speeds, ranging from 0.25 m/s to 1m/s. Thus, the 
duration of the sequences went approximately from 20 
seconds to 90 seconds (600 to 1300 frames) for different 

tours in the same trajectory. Figure 9 shows the results of 
the off-line application of the DI-D SLAM technique, with 
and without the application of the HOHCT, with the 
robotic platform moving at 0.65 m/s. The most notable 
difference with the indoor handheld experiments is the 
capability to move at greater speeds while maintaining 
filter convergence in the SLAM process. This was due 
mainly to two facts: the robotic platform described a 
much cleaner trajectory, with a constant speed along the 
straight parts, and smoother turns; and the presence of 
objects at a wider range, which allowed it to keep a better 
estimation of the orientation. The impact of the HOHCT 
can be clearly seen in the different trajectory estimations: 
while both SLAM with and without HOHCT are able to 
estimate quite accurately the length of the trajectory, the 
estimation drifts greatly without data association 
validation, especially in terms of orientation. 
 

 
 

Figure 9. Outdoor experiment results navigating with a Pioneer 
3-AT platform at 0.65m/s. 

 
4.2 Discussion 
 
The benefits of the application of the HOHCT validation 
come together with the addition of the computational cost hn: 
 

 


=
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i
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n nh
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where n is the number of landmarks observed and r the 
quantity of these observations deemed incompatible. 
Thus the number of hypothesis to explore defines the 
order of the cost (each hypothesis’ Mahalanobis distance 
is efficiently computed according to Eq. 21). As can be 
seen in Eq. 22, the theoretical computational cost for the 
HOHCT test could be quite high. However, the 
experimental data shows that the HOHCT algorithm 
tends to present linear cost when used along with the 
Delayed feature initialization technique.  
 
Table 1 shows the results obtained in the indoor tests. For 
a sample of 7350 frames (accumulated over different 
sequences of video) in only 22 (0.3%) of the cases did the 
computational cost of the test become quadratic. For the 
indoor sample a case of r = 3 never occurred. 
 

Pairing Rejected Incidences Relative Frequency 

r = 2 22 0.3% 
r = 1 234 3.18% 

Compatible 7094 96.52% 
Total 7350 100% 

Table 1. Results of HOHCT failed tests and number of matching 
deemed incompatible for indoor test. 
 
On the other hand, the outdoor test revealed a greater 
ratio of pairing rejection. Though being a relatively 
controlled outdoor space (inside a courtyard), a not much 
bigger sample (of 12750 frames) produced a greater ratio 
of rejection of data association pairings, and also 
produced cases with a cubic cost for the search. Note how 
the ratio of the rejection of single pairings almost doubles. 
This means that the cost will grow in less structured 
and/or less controlled environments. 
 
The cost of the HOHCT can be optimized still when 
trying to reach real time performance. As the HOHCT 
already tries to search and test the minimal number of 
hypotheses, the most time consuming part of the 
algorithm is during the estimation of Mahalanobis 
distance. At this step, which is repeated for each 
hypothesis, a matrix inversion takes place. A strategy to 
compute the Mahalanobis distances in an incremental 
way could be developed, allowing for the exploitation of 
techniques to optimally compute the inversion of 
iteratively growing matrices, as demonstrated in [26]. 
 

Pairing Rejected Incidences Relative Frequency 

r = 3 6 0.05% 
r = 2 72 0.5% 
r = 1 663 5.2% 

Compatible 12009 94.18% 
Total 12750 100% 

Table 2. Results of HOHCT failed tests and number of matching 
deemed incompatible for outdoor sample. 

5. Conclusions 
 
A method to address the problem of batch validation 
within the context of the monocular SLAM technique [20] 
has been presented in this paper, within the context of the 
DI-D, although the proposed technique, the HOHCT, 
could in fact be used in any feature based SLAM 
approach. The considered monocular SLAM technique, 
the inverse depth delayed initialization, presents a series 
of particular features and characteristics due to its 
estimation methodology.  
 
Landmarks are only introduced into the Kalman filter 
once the available depth estimation is accurate enough 
and fewer landmarks are introduced than in the un-
delayed approaches. Despite these particularities, a data 
association gating technique is needed, mainly when the 
estimation process fails to converge to a good solution. 
Thus a batch validation technique based on statistical 
thresholding is introduced. This batch validation 
technique, the Highest Order Hypothesis Compatibility 
Test, has been shown to greatly improve the monocular 
SLAM results under certain circumstances. These 
circumstances include the emergence of ‘false’ landmarks, 
difficult illumination conditions and irregular trajectories 
with non-smooth changes to linear or angular velocities. 
Additionally, tests show that the algorithm responsible 
for finding the best hypothesis will rarely go beyond the 
quadratic cost with respect to the set of observed features, 
in fact being more prone to linear cost. This occurs when 
the batch validation test fails despite having a worst case 
scenario cost which is almost exponential. 
 
Future works are expected to progress along two main 
lines of research. First, a method to deal with bigger maps 
is to be introduced, exploiting the characteristics of the 
inverse depth delayed initialization as the SLAM 
technique. A view was presented in [19], though new 
approaches are being studied in order to determine 
which would better fit the technique. The second line will 
work towards the production of a real-time 
implementation of the techniques proposed. This shall 
help evaluate the perspectives for the introduction of 
monocular SLAM as a reliable replacement of high end 
sensors, such as laser range finders. 
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