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cognition and behavior, and (d) discuss the possibility of the 
involvement of OT and AVP in ASD etiology, as well as the 
prospect of using these peptides as a treatment for ASD pa-
tients.  Copyright © 2010 S. Karger AG, Basel 

 Autism Spectrum Disorder 

 Symptoms 
 Autism is a broadly-defined developmental disorder 

that mainly affects behavior and cognition. It is diag-
nosed by symptoms in 3 categories: impairments in social 
behavior, verbal and nonverbal communication deficits, 
and repetitive movements and stereotyped behavior  [1] . 
Social interaction impairments are the most characteris-
tic deficits in autism spectrum disorder (ASD). These im-
pairments include a failure to use standard nonverbal be-
haviors (eye contact, affective expression) to regulate so-
cial interactions with others, failure to share enjoyment, 
interests and achievements with others, and a lack of so-
cial and emotional reciprocity. Individuals with ASD 
have difficulties in showing empathy, recognizing faces 
and processing the affective states of others. Because the 
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 Abstract 

 Oxytocin (OT) and arginine-vasopressin (AVP) are 2 peptides 
that are produced in the brain and released via the pituitary 
gland to the peripheral blood, where they have diverse phys-
iological functions. In the last 2 decades it has become clear 
that these peptides also play a central role in the modulation 
of mammalian social behavior by their actions within the 
brain. Several lines of evidence suggest their involvement in 
autism spectrum disorder (ASD), which is known to be asso-
ciated with impaired social cognition and behavior. Recent 
clinical trials using OT administration to autistic patients 
have reported promising results. Here, we aim to describe 
the main data that suggest a connection between these 
peptides and ASD. Following a short illustration of several 
major topics in ASD biology we will (a) briefly describe the 
oxytocinergic and vasopressinergic systems in the brain, (b) 
discuss a few compelling cases manifesting the involvement 
of OT and AVP in mammalian social behavior, (c) describe 
data supporting the role of these peptides in human social 
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severity and the age of onset of symptoms can vary great-
ly among different individuals, autism is highly hetero-
genic, hence the term ‘autism spectrum disorder’. 

  In recent decades, there has been a sharp increase in 
the number of children diagnosed with autism. This in-
crease is at least partially due to changes in the diagnosis 
processes and greater public awareness, but it may also 
reflect an actual increase in ASD cases  [2, 3] . Unlike 
many other brain disorders, ASD, which is 3–5 times 
more common in males than in females  [4] , lacks any 
clear unifying pathology at the molecular, cellular or sys-
tem levels  [5] . This fact makes the exploration of the bio-
logical basis of ASD extremely challenging  [6] .

  Etiology 
 Despite the intense research focus on ASD in recent 

years, the underlying etiology remains obscure. Genetic 
research involving twins and family studies strongly sup-
ports a significant contribution of genetic factors to ASD 
etiology  [7, 8] . Nevertheless, no particular model of ge-
netic transmission has been implicated in ASD and no 
single gene has been found to cause the disorder  [9] . 
Moreover, in recent years it has been shown that dozens 
of distinct genetic disorders, ranging from single nucleo-
tide mutations to chromosomal abnormalities, can result 
in ASD symptoms  [10] . However, these genetic disorders 
are only responsible for about 10% of ASD cases  [11] . 
Thus, the genetic basis underlying ASD appears to be 
very complex, and could be attributed either to the com-
binational effects of common genetic variants or to rare 
mutations  [12] , such as chromosomal deletions and du-
plications that lead to the autistic phenotype  [8] .

  In addition to the possible contributions of genetic fac-
tors, environmental elements may also play a role in caus-
ing ASD  [13] . Such environmental factors may include 
certain foods, infectious diseases, environmental toxins, 
prenatal stress and others  [12] . However, no single envi-
ronmental factor has been shown to be a definite cause 
for ASD  [14] .

  Recently, several investigators have suggested that the 
pathogenesis of ASD may involve epigenetic regulatory 
mechanisms  [15, 16] . The term ‘epigenetic’ is defined as 
heritable alterations in gene expression caused by mecha-
nisms other than changes in DNA sequence  [17] . The 2 
main molecular epigenetic mechanisms are posttransla-
tional histone modifications and DNA methylation  [18] . 
Methylation of DNA is a direct chemical modification of 
a cytosine that is immediately followed by a guanine  [19] . 
These  CpG  dinucleotide sequences are highly underrep-
resented in the genome, and often occur in small clusters 

known as CpG islands  [20] . Hypermethylation of CpG 
islands in the vicinity of genes is usually considered to be 
a transcription-suppressing mechanism  [19] , although it 
has been shown in some cases to be associated with tran-
scription activation  [21] .

  In 2 different monogenetic disorders associated with 
ASD, Rett syndrome  [22]  and fragile X syndrome  [23] , an 
epigenetic component was shown to be involved in the 
etiology of the disorder. Rett syndrome is a complex neu-
rological disorder caused by a mutation in the methyl-
CpG-binding protein 2  [24, 25] , one of the key regulators 
of epigenetic processes in the brain  [26] . Fragile X syn-
drome occurs through an expansion of a  CGG  repeat in 
the 5 � -untranslated region of the  FMR1  gene, rendering 
the region susceptible to epigenetic silencing  [27, 28] . Ad-
ditional evidence for the involvement of epigenetic mod-
ifications in ASD arises from studies demonstrating a 
link between genomic imprinting, which is an epigenetic 
process responsible for the parental monoallelic expres-
sion of some genes, and susceptibility to autism  [29, 30] . 
Thus, it seems likely that a complex interaction between 
multiple genetic, environmental and epigenetic factors 
determines the etiology of ASD  [31] .

  Oxytocin and Vasopressin 

 Structure, Function and Location 
 Oxytocin (OT) and arginine-vasopressin (AVP) are 

‘twin’ 9-amino acid peptides (nonapeptides) that in 
mammals are produced mainly in the brain [excellently 
reviewed in  32, 33] . They have variable hormonal actions 
in the periphery and the CNS. Peripheral functions of OT 
include regulation of uterus contractions during labor 
and modulation of milk ejection during suckling. Thus, 
OT is strongly connected to maternal functions. AVP, in 
contrast, is responsible for very different physiological 
functions, including the regulation of water absorption 
in the kidney. As depicted in  figure 1 a, these peptides are 
quite similar, differing from each other in only 2 posi-
tions of their 9-amino acids sequence. They are both pro-
duced by nonoverlapping populations of neurons in the 
same hypothalamic nuclei, the supraoptic nucleus and 
the paraventricular nucleus (PVN). The supraoptic nu-
cleus and PVN contain large magnocellular peptidergic 
neurons that send their axons to the posterior pituitary 
(neurohypophysis) where they release AVP and OT into 
the blood ( fig. 2 )  [34] . 

  The PVN also harbors smaller parvocellular neurons, 
each expressing OT or AVP, which project to certain ar-



 Harony/Wagner Neurosignals 2010;18:82–9784

eas of the CNS. AVP is also produced in a few other brain 
areas, including the suprachiasmatic nucleus, the brain’s 
circadian pacemaker, as well as the medial amygdala 
(MeA) and the bed nucleus of the stria terminalis (BNST) 
 [35] , which both send AVP-containing projections to the 
lateral septum (LS). The expression of AVP in the MeA 
and BNST, and hence its release in the LS, is known to be 
androgen-dependent, with significantly higher levels in 
males  [36] .

  Genes 
 OT and AVP are coded by homologous genes that are 

thought to have emerged from a gene duplication incident 
prior to vertebrate divergence  [37] . Accordingly, almost 

all invertebrates have only 1  OT/AVP  homolog while ver-
tebrates have 2  [38, 39] . As illustrated in  figure 1 b, the 
mammalian  OT  and  AVP  genes are located near each oth-
er in the genome. For example, in the mouse genome they 
are both located on chromosome 2  [40] , separated only by 
an intergenic region of 3.6 kb that contains several regu-
latory elements important to the proper expression of 
both genes  [41, 42] . The mRNAs of both peptides are 
translated into a precursor preprohormone that, besides 
the nonapeptide itself and a signal peptide, contains a 
common polypeptide named neurophysin. This precur-
sor is processed and cleaved in dense-core vesicles during 
its transport to the release sites.
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  Fig. 1.  The OT and AVP peptides and their genes:  a  Schematic 
structure and sequence of the OT (left) and AVP (right) peptides. 
Only 2 amino acids differ between these nonapeptides, both of 
which contain a disulfide bond between Cys residues in positions 
1,6.  b  The genes coding for OT and AVP, which are thought to be 
a product of a gene duplication event, are located near each other 
on the genome with opposite transcription orientations. The rela-

tively short intergenic region (3.6 kb in mouse) harbors enhancer 
elements that are important for the proper expression of both 
genes. The location of a CpG island, which may be involved in 
epigenetic regulation of gene expression, is depicted for each of 
the genes. A composite hormone response element which may 
mediate the effects of estrogen was found upstream to the  OT  
gene. 
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  Release in the CNS 
 Since the blood-brain-barrier is almost impermeable 

to these peptides, their concentration in the CNS is inde-
pendent of the magnocellular nerve terminals located in 
the neurohypophysis. The mechanisms by which OT and 
AVP are released in the CNS are still a matter of debate 
and were excellently reviewed by Landgraf and Neumann 
 [43] . Generally speaking, it is agreed that these neuropep-
tides do not act in a synaptic cleft-dependent manner like 
classical neurotransmitters, such as GABA or glutamate 
 [44] . OT and AVP may be released from neuronal termi-
nals in discrete brain areas and act in a paracrinic fash-
ion, or they may be released into the cerebrospinal fluid 
and act globally in the brain as neurohormones on cells 
that express their receptors  [45] . 

  Paracrinic action of OT and AVP in the CNS may 
emerge from several distinct sources. Axon terminals of 
PVN parvocellular neurons are probably responsible for 
OT and AVP release in the specific brain areas to which 
they project. Additionally, AVP is produced by neurons 
located at a few nuclei besides the supraoptic nucleus and 
PVN, such as the MeA and BNST, and is released by these 
neurons at specific brain areas such as the LS. 

  Recently, another source for paracrinic action of these 
peptides was suggested, one that involves direct axonal 
innervations of certain brain areas by magnocellular 
neurons  [46, 47] . Nevertheless, as discussed below, the 
receptors of these peptides are spread widely throughout 

the CNS, suggesting a much wider presence of the pep-
tides themselves. Thus, OT and AVP are likely to also 
have a neurohormonal action mediated by the release of 
the peptides from dendrites of the PVN magnocellular 
neurons, which are located in close proximity to the 3rd 
ventricle, into the ventricle, which works to change the 
global concentrations of OT and AVP in the CNS in re-
sponse to various stimuli  [43, 48] .

  Receptors 
 The AVP and OT signals are transuded into physio-

logical effects via their respective AVP and OT receptors. 
The 3 major types of the AVP receptor (AVPR) have been 
typified: AVPR1a, AVPR1b and AVPR2  [32, 49] . For OT, 
only a single receptor type (OTR) has been identified  [50] . 
Since the AVPR2 receptor is hardly expressed in the brain 
and was not shown to influence social behavior, it will not 
be referred to in this review.

  All OT and AVP receptors are members of the G pro-
tein-coupled receptor family. Both AVPR1a and AVPR1b 
couple to the same type of G protein. Their ligand-bind-
ing leads to the activation of protein kinase C through the 
effector enzyme phospholipase C (PLC). In contrast to 
the pathway-specific coupling of the AVP receptors, the 
OTR binds various G proteins and can therefore activate 
diverse 2nd messenger machineries in the same cell type 
 [51] .
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  Fig. 2.  The hypothalamo-neurohypophys-
ial system: a schematic illustrating the 2 
hypothalamic nuclei, the PVN and the su-
praoptic nucleus (SON), both of which 
synthesize and release OT and AVP. Also 
depicted is a 3rd nucleus, the suprachias-
matic nucleus (SCN), wherein AVP alone 
is synthesized. The magnocellular neu-
rons of the PVN and SON, which are the 
main source of OT and AVP, release these 
2 peptides into the blood via their projec-
tions to the posterior pituitary (neurohy-
pophysis). The magnocellular neurons of 
the SON are pictured in the inset, stained 
for OT (red) and AVP (green) using immu-
nocytochemical labeling. 
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  In humans, the OTR ( fig.  3 a) is transcribed from a 
single copy gene on chromosome 3p25–3p26.2 and con-
sists of 3 introns and 4 exons  [52] . The  AVPR1a  and 
 AVPR1b  genes, which are each comprised of 2 exons sep-
arated by 1 large intron, are situated on distinct chromo-
somes in the human genome. The  AVPR1a  gene ( fig. 3 b) 
is located on chromosome 12q14–15  [53] , while the 
 AVPR1b  gene has been mapped on chromosome 1q32 
 [54] . All 3 receptors are expressed in different organs in 
the periphery. The OTR is expressed in the uterus, mam-
mary gland, placenta, amnion, ovary, testis, thymus, 
heart and kidney  [55] . The AVPR1a is mainly found in the 
kidney, liver and in the vascular system  [53] . The AVPR1b 

is prominent in the anterior pituitary, but was also de-
tected in various peripheral organs including the kidney, 
thymus, heart, lung, spleen, uterus and breast  [56] . In ad-
dition to their peripheral distribution, OTR and AVPR1a 
are widely expressed in the brain while AVPR1b brain 
expression is much more restricted  [57] .

  Distribution of OT and AVP Receptors in the Brain 
 The OTR and AVPR1a expression profiles in rat and 

hamster brains have been investigated by several research 
groups. Results [reviewed in  33, 55]  have indicated that 
the expression profile of both receptors is not only brain-
region specific, but also sex-specific and influenced by 
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  Fig. 3.  The human  OTR  and  AVPR1a  genes: the locations of exons and introns, as well as CpG islands, are il-
lustrated. Also depicted are locations of the polymorphisms (orange), some of which (green) are suspected to 
be genetically associated with ASD. These elements include intronic SNPs of the  OTR  gene ( a ) and microsatel-
lite elements of the  AVPR1a  gene ( b ). 



 Contribution of OT and AVP to 
Mammalian Social Behavior  

Neurosignals 2010;18:82–97 87

gonadal steroids. Moreover, studies that focused on these 
receptors’ expression patterns in the brain revealed that 
they exhibit highly species-specific distribution profiles. 
For example, in the rat brain, OTR is highly expressed in 
the hippocampal ventral subiculum  [58] . However, no 
such expression has been detected in the hamster, guinea 
pig, rabbit or human brains. These facts suggest a com-
plex regulation of the expression of these receptors. In the 
human brain, OTR was found to be expressed in several 
subcortical areas including the basal nucleus of Meynert, 
areas of the basal nuclei such as the globus pallidus, lim-
bic areas such as the lateral septum, hypothalamic areas 
such as the mammillary nuclei, and in brainstem areas 
such as the substantia nigra pars compacta  [55] .

  Overall, the sharp contrast between the evolutionarily 
conserved, spatially restricted expression of the peptides 
themselves and the widespread, species- and sex-specific 
expression of their receptors lends credence to the notion 
that it is the receptor distribution which governs the OT 
and AVP influence on the highly variable mammalian 
social behavior  [59, 60] .

  Expression Regulation of OT and AVP Receptors 
 As previously mentioned, sex steroids seem to be part 

of the mechanisms regulating the brain’s oxytocinergic 
and vasopressinergic systems  [61] . Estrogen is the most 
well-studied gonadal steroid in respect to its effect on the 
receptors’ expression. For example, OTR levels in the 
uterine and mammary myoepithelium increase marked-
ly in response to estrogen at late pregnancy  [62] . In the rat 
 OTR  promoter region, there is a classical estrogen re-
sponse element that likely mediates the sex-specific ef-
fects of estrogen on the gene transcription  [63] . Moreover, 
the  OTR  promoter includes other regulatory elements 
such as IL-1 � , IL-6, AP-1 and APRE, all of which could 
be vital for the transcriptional regulation of the  OTR  gene 
 [55, 64, 65] .

  Repeated elements or microsatellites within gene pro-
moters could also regulate transcription. Such elements 
exist in the  AVPR1a  promoter region, and were found to 
determine the species-specific expression pattern of the 
AVPR1a in the vole brain  [66] , as will be discussed in de-
tail below.

  In addition to genetic regulatory elements, transcrip-
tion is also regulated by epigenetic mechanisms that may 
mediate tissue and sex-specific gene expression  [18] . So 
far, 3 different studies have supported the hypothesis that 
OTR expression is regulated by DNA methylation. The 
1st study confirmed that hypermethylation of a regula-
tory element within the 3rd intron of the human  OTR  

gene is associated with its low levels of expression in non-
expressing tissues  [67] . The 2nd study demonstrated that 
growing the human hepatocellular carcinoma cells with 
the demethylating agent, 5-azacytidine, dramatically in-
creases OTR mRNA levels. This research pointed to a 
CpG island located between 140 bp upstream and 2,338 
bp downstream of the human  OTR  transcription start 
site where a 400-bp region was found to be highly meth-
ylated in the liver, a tissue in which the  OTR  gene is con-
stitutively silenced  [68] . A 3rd study found that hyper-
methylation of several  CpG  sites within the human  OTR  
promoter was associated with decreased levels of the 
OTR mRNA in the temporal cortex tissue of individuals 
with ASD as compared to age-matched controls  [69] . This 
study strengthens the association between DNA meth-
ylation of the  OTR  promoter and the expression of the 
gene, and suggests a role for  OTR  gene methylation in 
ASD.

  OT, AVP and Animal Social Behavior 

 As mentioned above, OT and AVP are highly con-
served in the animal world, with homologs existing at 
least 700 million years ago  [38, 39] . Studies in widely di-
verse animal species, ranging from worms to humans, 
have shown that the role of OT/AVP homologs in modula-
tion of social and reproductive behavior was also con-
served during evolution  [70] . Overall, AVP seems to play 
a larger role in male behavior, especially those behaviors 
related to reproductive functions, while OT is more fre-
quently associated with female activities  [61] . Both pep-
tides, however, have behavioral roles in males and females. 
Below we will discuss a few of the most compelling studies 
which demonstrate the central role of OT and AVP in the 
social behavior of several distinct mammalian species.

  Maternal Behavior in Rats and Sheep 
 During birth, the female body undergoes a series of 

extreme physiological changes within a short period of 
time. In most mammals, these physiological changes are 
accompanied by a rapid onset of maternal behaviors, 
which are primed by the high level of plasma estrogen 
during late pregnancy. In rats, maternal behavior is initi-
ated only after parturition as virgin females avoid pups. 
Rat maternal behavior includes nest building, lactation 
and maternal aggression towards intruders, as well as pup 
licking, grooming and retrieval  [71] .

  Several brain areas have been implicated in postpar-
tum maternal behavior, including the hypothalamic 
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MPOA, the BNST and the LS. OTR mRNA levels in these 
areas are higher around the time of birth, probably due 
to the high estrogen level  [72–74] , and were found to be 
correlated with the level of maternal behavior displayed 
by female rats  [75] . Peripheral and central levels of OT are 
highest postpartum due to induction of OT release from 
the brain by a combination of vaginocervical stimulation 
during birth and the lactation activity immediately fol-
lowing it  [55] . Thus, OT was suspected of having a role in 
the postpartum induction of mammalian maternal be-
havior  [76] . Indeed, following priming with estrogen, vir-
gin female rats centrally infused with OT display full ma-
ternal behavior  [77] . Accordingly, infusion with an OTR 
antagonist could block the postpartum onset of maternal 
behavior in rats  [78, 79] . Using fMRI imaging Febo et al. 
 [80]  showed that OT administration to postpartum fe-
male rats initiated activity in brain areas which are active 
during pup suckling. In sheep too, central OT adminis-
tration, as well as endogenous OT release induced by vag-
inocervical stimulation, stimulate maternal behavior in 
estrogen-primed nonpregnant females  [81] . Moreover, a 
ewe is able to recognize and selectively feed its own lamb 
from the moment it is born. This olfactory memory of the 
lamb was shown to be facilitated by central OT release in 
the olfactory bulb  [82] . These studies implicate OT in the 
induction of maternal behavior in mammals.

   Pair Bonding in Voles 
  Voles (genus  Microtus ) show a diverse social structure 

amongst their different species. Prairie voles, for exam-
ple, are monogamous, a behavior rarely seen among 
mammals. Male and female prairie voles form long-term 
bonds that typically last until one partner dies. In the lab, 
sexually inexperienced voles exhibit nonselective affilia-
tion behavior. However, following mating, both the male 
and female show behavioral changes indicative of pair 
bonding, such as sharing a nest and displaying extensive 
parental behavior  [83] .

  Most importantly, prairie voles show a strong prefer-
ence for a familiar mate versus a stranger, a preference 
that is used for a quantitative test assessing pair bonding. 
During the test the examined animal is placed in a central 
chamber, which is connected by tubes on both sides to 
lateral chambers. Two stimulus animals, usually a mate 
and a stranger, are placed in the lateral chambers. The 
time spent by the examined animal in each of the cham-
bers serves as an indication of the animal’s preference. 
Several studies demonstrated that following mating, 
prairie voles spent much more time with their mate than 
with a stranger  [84] .

  In contrast, members of nonmonogamous vole spe-
cies, such as meadow and montane voles, do not show any 
preference towards a mate. The fact that these evolution-
arily close species show such divergent social behavior 
provides an excellent opportunity for comparative inves-
tigations into the biological mechanisms underlying pair 
bonding  [83–85] .

  Early studies have shown that CNS infusion with OT 
or AVP enhances mate preference, while infusion of OTR 
and AVPR1a antagonists impairs mate preference  [86] . 
These effects seem to be sex-dependent: AVP is more ef-
fective in males, and OT is more effective in females. In 
addition, neuroanatomical studies have found that while 
monogamous and nonmonogamous species have very 
similar distribution patterns of OT and AVP cells and 
projections, major differences exist in the distribution 
patterns of their receptors in the brain, mainly in limbic 
areas. For example, the monogamous prairie voles ex-
press significantly more OTR in the nucleus accumbens 
and AVPR1a in the ventral pallidum, while the nonmo-
nogamous montane and meadow voles express higher 
levels of both receptors in the LS and ventromedial hypo-
thalamus. These studies [reviewed in  87, 88 ] suggest that 
pair bonding, which differs markedly between vole spe-
cies, is regulated by central OT and AVP.

  Indeed, functional studies have shown that OT and 
AVP actions in specific brain areas are responsible for cer-
tain aspects of the voles’ social behavior. For example, local 
infusion of OTR antagonist into the nucleus accumbens of 
female prairie voles or AVPR1a antagonist into the ventral 
pallidum of male prairie voles inhibited their mate prefer-
ence. Most astonishing, overexpression of the  AVPR1a  in 
the ventral pallidum of meadow vole males induced part-
ner preference behavior in these nonmonogamous ani-
mals  [89] . These results [reviewed in  59, 60, 83, 87, 88, 90, 
91]  suggest that a change in the expression of a single gene 
(the  AVPR1a ) in a specific area of the adult brain may cre-
ate a robust change in the animal’s social behavior.

  One genetic factor that may be responsible for the dif-
ference in the AVPR1a brain expression pattern between 
prairie and meadow voles is a microsatellite DNA element 
located 660 bp upstream to the transcription start site of 
the  AVPR1a  gene. This repetitive DNA is on average 500 
bp long in prairie voles, but only 50 bp long in the non-
monogamous meadow and montane voles  [66, 92] . More-
over, even within prairie voles, interspecies differences in 
the microsatellite length seem to have an impact on the 
animal’s social behavior: it was found that animals with 
a longer microsatellite are more prosocial than those with 
a shorter microsatellite  [83, 93] . These results suggest that 
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diverse alleles of genetic untranscribed elements may in-
fluence the variability in social behavior within a popula-
tion of animals.

  Social Recognition Memory in Rats and Mice 
 The ability of an animal to recognize a familiar indi-

vidual is critical for many aspects of mammalian social 
behavior, especially for establishing family relationships 
and clan organization. In some cases, recognizing only 
general characteristics of the individual – such as strain, 
gender or reproductive state – may be sufficient. In other 
cases, it is advantageous to recognize the specific indi-
vidual by remembering its specific features.

  Most mammals rely primarily on olfactory cues for 
social recognition. A meeting between 2 unfamiliar rats 
or mice usually starts with a period of intensive olfactory 
investigation, mainly at the face and anogenital regions, 
which precedes further social interactions such as mating 
or aggressive interaction.

  Based on the natural tendency of rats and mice to 
closely investigate novel individuals, a simple laboratory 
test to investigate social recognition memory capacities 
was developed  [94] . In this test, an unfamiliar juvenile 
conspecific is introduced into the cage of a resident adult 
rat for a period of 5 min. The time spent by the adult rat 
on olfactory investigation of the juvenile is measured. 

  Fig. 4.  Social recognition memory in mice 
depends on OT activity in the MeA and 
AVP activity in the lateral septum.
       a  Left: Social recognition memory para-
digm with wild-type (empty dots) and  OT -
knockout mice (black dots) show that  OT -
knockout mice are impaired with regard to 
social recognition memory, and therefore 
investigate familiar and novel conspecifics 
for the same duration of time. Right: Fos 
immunostaining shows the lack of activity 
in the MeA of an  OT -knockout mouse 
(lower picture) following an encounter 
with a novel juvenile, as compared to a 
wild-type mouse (upper picture).  b  Left: 
While  AVPR1a -knockout mice (black 
dots) are impaired in their social recogni-
tion memory, overexpression of the gene 
in the lateral septum using a viral vector 
(empty dots) is sufficient to restore social 
memory. Right: Autoradiography shows 
the lack of AVPR1a-binding sites (dark 
staining) in the brain of a knockout mouse 
(upper picture) compared to the strong ex-
pression of binding sites following viral-
mediated gene delivery to the lateral sep-
tum (lower panel). Adapted from Lim and 
Young [60].  
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Then, following an interval (usually 30–120 min) the 
same juvenile is reintroduced into the cage and again, the 
time spent by the adult rat on olfactory investigation of 
the juvenile is measured. If the 2 measured times do not 
differ significantly, it can be deduced that the adult rat did 
not recognize the juvenile. If, however, the adult rat spent 
less time investigating the juvenile on the 2nd meeting, it 
can be deduced that the adult rat had a memory trace of 
the juvenile.

  In a more elaborate version of the test, this procedure 
is repeated several (usually 4) times with the same juve-
nile, until the adult displays a very short investigation 
time. The last (5th) encounter is with an unfamiliar juve-
nile to control for fatigue or stimulus-unspecific habitu-
ation. Following this type of habituation-dishabituation 
paradigm, the adult rat can remember the tested juvenile 
for at least a week (Wagner, unpubl. results).

  Both OT and AVP were found to be crucial for social 
recognition memory in rats and mice (reviewed in  [95–
97] ). As shown in  figure 4 a,  OT -knockout  [98]  (and  OTR -
knockout  [99] ) male and female mice showed a specific 
loss of social recognition memory even though they dis-
played a normal sense of smell  [100] . In the case of  OT -
knockout mice, injection of OT into the MeA prior to the 
first exposure to the juvenile enabled social recognition 
memory in the injected adult  [101] . Thus, OT action in 
the MeA seems to be crucial for social recognition mem-
ory. Indeed, MeA-specific OTR disruption by antisense 
injection caused impairment in social recognition mem-
ory  [102] . OT infusion to other brain areas, such as the 
OB and LS, was also found to enhance social memory 
 [103] . Therefore, it seems that OT may act in several 
brain regions to modulate the effect of social stimuli 
 [104, 105] .

  AVP also plays an important role in social recognition 
memory. For example, Brattleboro rats, which carry a 
spontaneous null mutation in the  AVP  gene, are impaired 
in social recognition memory  [106] , similar to  AVPR1a -
knockout mice  [107] . In the case of AVP, it seems that the 
LS is the most important brain area for social recogni-
tion: infusion of AVP into the LS of Brattleboro rats  [106]  
restores social recognition memory, as does viral-medi-
ated delivery of a functional  AVPR1a  gene into the LS of 
 AVPR1a -knockout mice  [108]  ( fig. 4 b). However, the LS 
may not be the only brain area involved: a recently dis-
covered population of AVP-expressing neurons in the OB 
of rats may also be instrumental for social recognition 
memory  [109] .

  Overall, animal studies that have investigated the role 
of OT and AVP in social behavior point to a concerted 

action of these peptides in specific brain areas that mod-
ulate a neuronal network responsible for certain aspects 
of mammalian social behavior  [59, 70] .

  Oxytocin, Vasopressin and Human Social Behavior 

 When summarizing the data regarding the role of OT 
and AVP in human social behavior, it is important to note 
that most human studies correlate various parameters 
with peptide concentrations in either the blood, saliva or 
urine, fluids that can be collected with no or minimal in-
vasion. However, it is the cerebrospinal fluid concentra-
tion that is the truly relevant measure. In addition, many 
studies that deal with the human response to the peptides 
deliver them via intravenous infusion. In these cases, 
only a small fraction of the peptides penetrates the blood-
brain barrier and arrive at the brain. Recently, more stud-
ies are beginning to use intranasal application of peptides 
to deliver them efficiently to the CNS  [110] . This relative-
ly new method may also be used in the near future for 
therapeutic applications.

  Anxiety 
 In humans, AVP seems to play an anxiogenic role  [33] . 

Elevated expression of AVP in the PVN is associated with 
an increased level of anxiety and arousal. In contrast, OT 
causes relaxation and a decrease in anxiety levels. This 
effect of OT is at least partially caused by the inhibition 
of the hypothalamic-pituitary-adrenal axis. Endogenous 
OT release in lactating women is associated with de-
creased levels of plasma ACTH and cortisol as well as re-
duced stress responses  [111–113] . Similar results were ob-
tained with women receiving positive physical contact 
 [114] . Moreover, exogenous application of OT was shown 
to act synergistically with social support to reduce endo-
crine and psychological stress responses  [115] . Further-
more, intranasal delivery of OT was shown to increase 
positive communication and reduce cortisol levels dur-
ing couple conflict  [116] .

  Another mechanism by which OT may reduce anxiety 
is via modulation of amygdala-mediated autonomic fear 
responses through amygdala OT receptors. fMRI studies 
have shown that exogenous OT infusion reduces fear re-
sponses in the amygdala  [117–120] .

  Trust 
 In humans, trust is necessary for social approach and 

affiliation. In a landmark study, Fehr and his colleagues 
 [121]  used a monetary game to assess the effect of OT on 
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trust in humans. In the experiment, male volunteers were 
given a sum of money and were presented with the op-
portunity to invest a portion of it in the hands of an un-
known partner. Investing in the other partner could lead 
to higher payoffs for both players, but the investor always 
ran the risk of losing the invested money in the hands of 
the trustee. The researchers found that intranasally-de-
livered OT caused a significant increase, as compared to 
the placebo, in the individual’s willingness to accept risks 
that arose through interpersonal interactions. Later, they 
showed that the same treatment prevented people from 
losing trust in others who had breached it  [122] . Using 
fMRI, they found that this effect of OT was associated 
with a reduction of activity in several brain regions linked 
to fear processing, including the amygdala.

  Social Cognition 
 Intranasal OT administration enhanced the ability of 

humans to recognize the affective state of other individu-
als from facial cues  [123] . It also increased the duration of 
their gazes towards the eye region of faces  [124] . Recently, 
it was found that intranasally administered OT increased 
the ratings of facial trustworthiness and attractiveness 
 [125]  and enhanced processing and memory of positively-
expressing faces  [126, 127] . Additionally, several studies 
have shown that OT plays a role in human parenting 
 [128–130] . Altogether, these results suggest that OT plays 
a role in facial processing and human interpersonal com-
munication.

  Interestingly, a study by Shamay-Tsoory et al.  [131]  
demonstrated that OT administration facilitated envy 
(when the subject believed that he/she earned less money 
in a monetary game than the other participant) and en-
hanced gloating over the other’s misfortune (when the 
subject believed that he/she earned more than the other 
participant). These results suggest that OT is not merely 
a prosocial neurohormone, but also plays a complicated 
role in a wide range of social behaviors  [132, 133] . More-
over, De Dreu et al.  [134]  recently used an intergroup 
monetary game (intergroup prisoners’ dilemma-maxi-
mizing differences game) to investigate the role of OT in 
parochial altruism in the context of intergroup conflict 
in humans. Their results clearly show that OT adminis-
tration (compared with placebo) drives a ‘tend and de-
fend’ response which enhances in-group trust and coop-
eration, and at the same time promotes defensive, but
not offensive, aggression toward competing out-groups. 
These results support the hypothesis that the oxytociner-
gic system in the human brain is part of evolutionary ad-
aptation that contributes to individual survival by pro-

moting and maintaining social life, hence enhancing 
group protection against eminent threats, including com-
peting out-groups.

  Human AVPR1a and OTR Genes 
 The human  OTR  and  AVPR1a  genes each contain a 

distinct type of polymorphism in noncoding sequences 
that were shown to be associated with changes in social 
behavior  [135, 136] . In the case of  AVPR1a , the main poly-
morphism is in 4 microsatellite elements that are located 
in the promoter and intronic regions ( fig. 3 b). Of these 
elements, the most well-studied is the  RS3 , whose length 
varies between distinct alleles of the  AVPR1a  gene. Using 
the monetary ‘dictator’ game, Knafo et al.  [137]  demon-
strated a positive correlation between the length of the 
 RS3  element and the level of altruistic behavior displayed 
by males. A genetic association was also found between 
the  RS3  polymorphism and several aspects of male mari-
tal bonding in a sample of 552 Swedish twin pairs  [138] . 
In addition,  RS3  length was associated with the age of 
first sexual intercourse in males and females  [139] . More-
over, an fMRI study revealed a correlation between  RS3  
length and activity in the amygdala of male subjects in 
response to fearful faces  [140] .

  These studies, taken together, suggest an association 
between polymorphism in microsatellite elements in the 
human  AVPR1a  gene promoter and male social behavior 
 [135] . This association is similar to the one found in voles 
between the microsatellite element of the  AVPR1a  gene 
and male social behavior  [66] . However, as long as the 
mechanism by which the polymorphism in the untran-
scribed microsatellite element exerts its action on recep-
tor function remains unknown, the linkage between it 
and social behavior remains tentative. The requested 
mechanism may involve influence of the microsatellite 
element on the regulation of the  AVPR1a  gene transcrip-
tion. Such an effect is supported by a correlation found 
between the receptor mRNA level in human postmortem 
hippocampus and the  RS3  length  [137] .

  The human  OTR  gene spans roughly 19 kb and com-
prises 4 exons and 3 introns, harboring more than 30 
mostly intronic single nucleotide polymorphisms (SNPs; 
 fig. 3 a). In a polymorphic region of the 3rd exon, which 
was found to regulate the gene expression  [67] , a single 
SNP  (rs53576)  was shown to be genetically associated 
with empathy and response to stress in male and female 
college students  [141] . In a different study, the same SNP 
was found to be genetically associated with parental sen-
sitivity  [142, 143] . In both studies the  GG  allele was more 
prosocial than the  AA  and  AG  alleles.
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  A significant association was also observed between 3 
single-tagging SNPs across the  OTR  gene region and hu-
man social behavior  [144] . This behavior was modeled by 
the dictator game and another related paradigm, the so-
cial values orientation task. Both paradigms measure al-
truism and prosocial decisions.

  Overall, genetic studies of the human  OTR  and 
 AVPR1a  genes suggest a strong but complicated associa-
tion of polymorphisms in noncoding sequences of the re-
ceptor genes with various aspects of human social activ-
ity  [135, 136, 145] . Nevertheless, the genetic mechanisms 
by which these polymorphisms exert their effects on be-
havior remain unclear. In vitro studies examining the di-
rect impact of these polymorphisms on gene expression 
might close this gap.

  OT, AVP and ASD 

 Because of their central role in mammalian social be-
havior, it is tempting to suspect that these neuropeptides 
are involved in the etiology of ASD  [146] , a disorder that 
is characterized by impaired social behavior and cogni-
tion. Indeed, several indications do point in that direc-
tion: first, dysfunction of the amygdala has been hypoth-
esized to play a role in the development of ASD  [147, 148] . 
This brain area shows a particularly strong expression of 
OT and AVP receptors  [32, 33] . Moreover, OT adminis-
tration and polymorphisms in the  AVPR1a  gene were 
found to affect amygdala responses in humans  [119, 140, 
149] . Second, individuals with ASD show a specific deficit 
in face recognition  [1] , which may be related to the spe-
cific deficits of  OT -knockout and  OTR -knockout mice in 
social recognition memory  [95, 150] . Third, OT admin-
istration to humans was found to enhance the ability of 
inferring the mental states of others  [123] , an ability 
which is specifically impaired in ASD patients  [1] .

  Fourth, ASD is well known to be sexually biased, with 
a rate of occurrence that is 3–5 times higher in males. The 
influence of OT and AVP on animal behavior is also 
known to be sexually biased, with stronger effects of OT 
on females and of AVP in males  [61] . Furthermore, both 
the oxytocynergic and vasopressinergic systems in the 
mammalian brain are known to be sexually-dimorphic 
 [151, 152] . Specifically, the expression of AVP in the MeA 
and BNST, 2 brain regions that were shown to play a cen-
tral role in social and reproductive mammalian behavior, 
is much higher in males  [36] . Thus, the sex-biased OT and 
AVP activity in the brain may be related to the sex-biased 
occurrence of ASD.

  The connection between OT and ASD is also support-
ed by several lines of direct evidence, which is discussed 
below: (1) plasma OT levels were shown to be lower in 
children with ASD relative to controls, (2) genetic asso-
ciations between polymorphisms in the OT and AVP re-
ceptors and ASD, (3) hypermethylation of the OTR pro-
moter in ASD patients, and (4) OT administration was 
found to improve social cognition and reduce stereotypic 
movements in people with ASD.
  (1) Modahl et al.  [153]  reported a significantly lower level 

of plasma OT in children with low-functioning autism 
relative to age-matched controls. Later, these same re-
searchers  [154]  reported that the low plasma OT levels 
in autistic individuals were correlated with higher lev-
els of unprocessed OT precursor (OT-X) that may be 
explained by impaired processing of OT. Recently, An-
dari et al.  [155]  published similar observations of high-
functioning autistic patients. On the other hand, Jan-
sen et al.  [156]  found higher plasma OT levels than 
controls in adult individuals with ASD. This discrep-
ancy could be explained by the different developmen-
tal stages of the subjects tested in the distinct studies 
(children vs. adults). 

 (2) Two genome-wide studies have identified the genomic 
region of the  OTR  (3p25.3) as a promising linkage site 
for ASD  [157, 158] . Explorations of copy number varia-
tions associated with ASD identified several cases with 
deletions in chromosome 3 which abolished the  OTR  
 [69, 159] . Four independent genetic linkage and link-
age disequilibrium studies in different populations, in-
cluding a family-based study, have shown a genetic as-
sociation between several SNPs of the human  OTR  and 
ASD  [160–163] . One of these SNPs,  rs2254298 , was 
found to be associated with ASD in all 4 studies. A 5th 
study showed an association not only with the  OTR,  
but also with the  OT  gene and ASD  [164] . On the other 
hand, a study using 3 independent Caucasian popula-
tions found no genetic association between ASD with 
18 SNPs of the  OTR   [165] . Nevertheless, this study did 
show a correlation between intronic SNPs in the  OTR  
gene and mRNA levels in peripheral lymphocytes and 
postmortem amygdala tissue, hinting to a possible ef-
fect of these SNPs on the receptor expression. The 
 AVPR1a  gene was also shown to be genetically linked 
with ASD by 3 independent linkage and linkage dis-
equilibrium studies  [166–168]  which found a genetic 
association between ASD and polymorphism in the 
microsatellite elements of the  AVPR1a  promoter. Over-
all, these studies support a weak genetic linkage be-
tween ASD and the  OTR  and  AVPR1a  genes. 
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