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Abstract

This paper presents a novel, robust, adaptive trajectory-
tracking control scheme for the free-floating space robot
system in Cartesian space. The dynamic equation of the
free-floating space robot system in Cartesian space is
derived from the augmented variable method. The pro-
posed basic robust adaptive controller is able to deal with
parametric and non-parametric uncertainties simultane-
ously. Another advantage of the control scheme is that the
known and unknown external disturbance bounds can be
considered using a modification of the parameter-estima-
tion law. In addition, three cases are certified to achieve
robustness for both parametric uncertainties and external
disturbances. The simulation results show that the control
scheme can ensure stable tracking of the desired trajectory
of the end-effector.

Keywords Free-floating Space Robot, Cartesian Space,
Robust Adaptive Control, Parametric Uncertainty, Non-
parametric Uncertainty

1. Introduction

Space has attracted special interest as a new application
field of robotics. The space manipulator system composed
of the satellite as the base and the manipulators attached to

the satellite has wide applications in assembly of the space
station, and in complicated and dangerous space missions
such as the capture and on-orbit services of the space target.
The pose-controlled base has a pose-control system, such
as reaction wheels and jet propellers, which could counter-
act the influence of the manipulator movement on the base
pose. However, the reaction wheels tend to be saturated,
and the jet propellers consume the limited and irreprodu-
cible chemical fuel, which will reduce the lifetime of the
satellite. In order to conserve the precious fuel carried by
the base, neither the position nor the attitude of the base
should be controlled. The base is allowed to translate and
rotate freely in response to manipulator motions. This
system is called a free-floating space robot (FFSR) system.
In an environment with microgravity, it is inevitable that
the unfixed pose of the base leads to a coupling effect
between the manipulator and the base, making the dynam-
ics and control of the FFSR system more challenging than
those of ground manipulators with fixed bases [1-3].

An FFSR system has non-holonomic characteristics due
to the non-integrability of the angular momentum. Many
researchers have focused on kinematics, dynamics and
control problems of the FFSR system. Umetani and
Yoshida derived the general Jacobian matrix (GJM),
which is of great use in the control of space robots; GJM
is used not only successfully in the resolved motion rate
control (RMRC) of space robots, but also in resolved
motion acceleration control (RMAC) and the transposed
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Jacobian matrix control of space robots [4, 5]. However,
the method is essentially part of the inverse kinematics
without adaptation and robustness, and cannot deal with
the uncertainties of dynamic parameters existing in GJM.
Some system parameters cannot be determined accurate-
ly in an actual FFSR system, for example, the compo-
nent mass, the position of the centre of mass and the
moment of inertia cannot be determined due to the
complicated structure of the manipulator system. In
addition, when the target of the space robot is disabled
satellites, maintenance tools, etc., the system parameters
are unknown. Thus, the space robot should possess the
capability whereby the end-effector of the manipulator
can track the desired trajectory stably, despite paramet-
ric uncertainties [6, 7]. Walker and Xu designed the
adaptive control scheme aiming at the uncertainty
existence of mass and inertial parameters of a space
manipulator with a controlled base attitude, which could
ensure the stable tracking of a desired trajectory and a
desired base attitude of a manipulator in joint space [8,
9]. However, the aforementioned controlled research
projects of space robots all aim at the condition of a
controlled base attitude and cannot ensure the control-
ler’s effectiveness in an FFSR system with an uncontrol-
led base attitude and position. These differences confront
the FFSR control with two basic difficulties. One is that
the dynamic coupling causes the Jacobian matrix to be
related not only to geometrical parameters but also to
dynamic parameters such as mass, the moment of inertia,
etc.; thus, the Jacobian matrix cannot be determined due
to the uncertainties of dynamic parameters, which may
lead to a situation in which the reference trajectory in
Cartesian space cannot be realized in joint space. The
other problem is that the system-dynamic equation
cannot be linearly parameterized; thus, most of the
adaptive and non-linear control schemes for the robots
with ground-fixed bases cannot work within the FFSR
system. To overcome the circumstance in which the
dynamic equation cannot be linearly parameterized and
uncertainties exist in the system, Gu et al. put forward
the extended manipulator-model method, formed the
augmented variable by combining the parameters of the
end effector and joints (which linearized the inertial
parameters of the system-dynamic equation) and
obtained the system control law and parameter-estima-
tion law by introducing an intermediate variable and the
constructed Lyapunov function [10]. The method could
ensure stable tracking of the manipulator’s end effector
to the desired trajectory in Cartesian space, but the
controller required that the base position, velocity and
acceleration were measurable. Parlaktuna et al. put
forward an online adaptive control scheme in Cartesian
space, but the controller parameters designed by the
scheme were all obtained via online estimation, hence the
scheme was not suitable for real-time control because the
complexity of the dynamic equation of the FFSR system
led to a large amount of computation [11, 12].

The self-tuning control method, i.e., indirect adaptive
control, can identify system parameters online using a

Int J Adv Robot Syst, 2015, 12:157 | doi: 10.5772/61743

parameter estimator then translating the estimated param-
eters into controller parameters. Thus, it is very effective
when the model parameters are uncertain, but non-
parameterized uncertainties such as external disturbances
may exist in the real system. If the controller does not
consider the non-parameterized uncertainties, the adaptive
controller cannot ensure the stability of the system [13, 14].
The robust control can restrain the uncertain elements
within a limited range, ensure the system’s stability and
maintain a certain performance index [15]. Shin [16]
proposed a robust, adaptive trajectory-tracking control
method aiming at the parametric uncertainty and external
disturbance existing in the FFSR system, and used the
adaptive law to online estimate the upper bounds of the
uncertainty; the method, however, did not analyse the
restraint performance of the control system regarding the
external disturbance.

Aiming at the existence of unmodelled dynamics and
external disturbance of the FFSR system, Feng et al.
designed a robust adaptive controller in Cartesian space
using the Lyapunov law and dissipative theory [17]. Chu
et al. designed a robust control scheme for the FFSR system
based on a disturbance observer [18]. They divided the
dynamic model into an inertial item and a disturbance item,
in such a way that the inertial item could be separated
linearly and the computation efficiency of the method was
high. An indirect adaptive control strategy was proposed
based on the extended manipulator model, but the param-
eters of the controller needed to be obtained via online
calculations, which increased the calculation burden and
could not guarantee the reversibility of the inertial matrix
[19]. Other scholars [20-23] studied the adaptive control
issue of the FFSR system using fuzzy or neural network
theories, but these were approximations of the mathemat-
ical model of the system, which had errors when compared
with the actual model of the system.

A robust, adaptive trajectory-tracking control method in
Cartesian space is proposed in the paper. The dynamic
equations of the FFSR system in Cartesian space are derived
from the augmented variable method. A basic robust,
adaptive trajectory-tracking control method is studied, and
the system’s robust stability is proven. A robust, adaptive
trajectory-tracking control method that considers the
known or unknown factors of bounded disturbances’
forms was designed just by modifying the parameter-
estimation law. The simulation results show that the
control scheme can ensure stable tracking of the end-
effector’s desired trajectory.

2. Dynamic model in Cartesian space

2.1 Model assumption

The FFSR system in the inertial coordinates is set up as in
Fig.1. The meanings of the symbols in Fig.1 are as follows:
O,,, represents the mass centre of the system; O, represents



Figure 1. The FFSR system

the mass centre of the base; O, represents the mass centre
of the link 7; r; represents the position vector of the mass
centre of the base in the inertial coordinates; r; represents
the position vector of the mass centre of the system in the
inertial coordinates; r; represents the position vector of the
mass centre of link i in the inertial coordinates; a; represents
the distance between joint i and the mass centre O, of link
i; b, represents the distance between the mass centre O, of
link 7 and joint i+1; a, B, y represents the attitude angles of
the base (yaw, pitch, roll) and 6, represents the rotation

angle of the jointi (i=0, 1, 2, -, n).

2.2 Dynamic model with external disturbances in Cartesian space

Because of the non-linearity of the dynamic equation,
which is caused by the dynamic coupling effect between
the manipulator and the base in the FFSR system, the
extended manipulator method is adopted. The base of the
FFSR is treated as a virtual manipulator with six degrees of
freedom (DOF), including three rotational DOFs and three
translational DOFs, and the virtual manipulator (together
with the real manipulator with 7 joints) can compose a new
manipulator with m=n+6 DOFs — namely, the extended
manipulator [10]. Thus, the system-dynamic equation in
joint space can be obtained using the methods similar to
those used for the fixed-base robots. If the influence of
gravity isignored, then the Lagrange equation based on the
extended manipulator model is:

d oL oL

56 58 =" M

at 0@ 06
where L is the Lagrange function; L=T-P, T is the kinetic
energy; P is the potential energy; 7, is the general torque of
the extended manipulator; 7,=(0 7)' , 7 is the torque
exerted on the real manipulator joint; T€R" ; O is the

general translation vector of the joint; ©=(0," O,)", @, is
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> I: Inertial Coordinate
>"B: Base Coordinate
T E: End-effector Coordinate

Centre of Mass

the general translation vector of the base (pseudo manipu-
lator) jointand @, € R®, @, is the general translation vector

of the real manipulator with # joints, ©,,€ R" .

From (1), the dynamic equation of the FESR system in joint
space can be obtained and linearized as:

0Q(0)0 +K(0,0)0 = [g] =7,=W(0,0,0)a, @)

where Q(@)€R™™ is the system inertial matrix that is
symmetrically positive definite; K(@, ®)€R™" is the
system force and  Coriolis  force;
w, (0, 0, ®)cR™" is the regression matrix, which is

centrifugal

composed of non-linear functions related to geometrical
parameters and kinematics data and & € R" is the vector of
separated, unknown inertial parameters or their combina-
tion.

Besides the parametric uncertainties, non-parametric
uncertainties may also exist in the actual system, such as
the uncertainty caused by friction due to the manipulator’s
slow movement and the contact caused by the manipulator
grasping the load, the effect of which equals the external-
disturbance torque exerted on the system. This paper
considers the external disturbances exerted on the manip-
ulator and the base simultaneously, and treats them as the
external-disturbance torques exerted on the system.
Therefore, the dynamic model in the joint space of the FFSR
system is:

.. .. D
Q(0)0 + K(0,0)0 = [T . ij, 3)

where D, € R® is the external disturbance exerted on the
base and D,, € R" is the external disturbance exerted on the

manipulator.
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Taking the time derivative of the system output augmen-

x
tation to be X = e

S

o x _ ]s ]m @5 _ >
I TR

where x=h (0) €R" is the pose of the end-effector of the
manipulator in Cartesian space; ] is the Jacobian matrix of

€R"™, we have:

thebase; J,, is the Jacobian matrix of the actual manipulator;
I is anidentity matrix; O isa 6 xn zero matrixand J,,, € R"™"

is the augmented Jacobian matrix of the system.

If J,, is non-singular, then from (4) we have:

6=J,(X-J,0). ®)

Substituting (5) and @=J;'X into the system-dynamic
equation in joint space (3) and multiplying both sides of the
equation by ]S;nT , the dynamic equation in Cartesian space
of the FFSR system can be obtained:

} - D
M (©)X+B (0,0)X =] [T D j 6)

where M, =] 1Q] ", B,=] . K] =]

T 17 -1
sm sm ’ sm m 'Q]sm]sm sm *

To eliminate the base acceleration item, (6) can be written
as the following two equations according to the partitioned
matrix form:

anlx + Mms@s + Bmmjc + BYﬂS@'S = ];YIT (r + DYH ), (7)
MSI‘le + MSS@S + BSI’Vl'x.' + BSS@.S = DS - ]’;r];ﬂT (T + Dm )’ (8)
where Mmm = T1T2 ’ Mms =Ms£1 = T1T3 ’ Mss = T3TQT3 ;

Bmm = T4T2_MmmT5 ’
Bsm=T3TKT2_MsmT5 4

o Osn|" O, Lo
T1=]m 1 Q ’ T2= 1 ]m ’ T3= ’

-1
mxm mxm _]m ]s

Bms = T4T3 _Mmmj T3 4
Bss = TSTK T3 _Msmj T3 ;

O6x T s
T4=I,;F(1 m) K, Ts=],J, ;M ,M,, and M, are symmet-

mxm
rical position matrices.
Resolving (7) and (8) simultaneously and removing (:)S ,we

have the system-dynamic equation of the velocity and the
acceleration of the end-effector in Cartesian space consid-
ering the external disturbances:
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M(©)i+B(0,0)i+G(€,0)=r+D,-[IM M D=t+D,  (9)

ms

where M =H(Mmm_MmsMs;1Msm) ’ B=H(Bmm_MmsMs;1Bsm) ’
G=II(B,, _MmsMs;lBss)@s ’ H:]rz(l + MmsMs_ljsT)_l ’
D=D,-IIM, M'D, .

mxm S

3. Design of the robust adaptive controller

3.1 Basic robust adaptive controller

Define the position vector of the tracking error and the
velocity vector of the tracking error as follows:

e=x-xg,
{ (10)

e=x-%,,

where x and x represent the position and the velocity of the
actual trajectory of the end-effector trajectory in Cartesian
space, respectively and x, and %4 represent the position and

the velocity of the desired trajectory of the end-effector in
Cartesian space, respectively.

Define the reference velocity and the reference-acceleration
vectors as follows:

X, =x,—ke,
(11)

X =X, ke,

where x  represents the acceleration of the desired trajec-

tory of the end-effector in Cartesian space and k represents
a positive constant.

Define the reference-tracking error and its velocity vector
as follows:

n=x-x =é+ke, "
n=%-X =é+ke, (12)

where 7 and 7] represent the reference-tracking error and
its velocity vector, respectively.

Take one group of parameter initial values g, as the

system’s real parameter values. According to (9), the
system’s initial dynamic model is:

M,(,,8,)i +B(a,,8,,0,)i+G (,,0,,0,) =1,  (13)

where M, Byand G are coefficient matrices. M, varies only

with the variation of a joint’s angle and velocity, and does
not vary with the variation of the parameters to be identi-
fied. Thus, by selecting suitable initial parameters, M, can

be ensured so that it is easily and constantly invertible.



Inducing v into (13), the nominal controller can be obtained:
T,=Mv+Bx+G,. (14)

Combining (9) and (14), we have M,(x-v)=0. If M, is
reversible, then x=v. If v=x, -k, , then the expression of

the nominal controller can be obtained as:
T, =My (%X, —kn)+Bx+G,, (15)
Design a robust adaptive controller as follows:
T=M,X -kn+Bx+G,+71,, (16)

where 7, is the dynamic compensation part to be designed.

Select the compensation controller to be designed as:
7,=-WAa, (17)

where Aa=a,-a , a is the estimate vector of a .

The torque prediction error is:
o=WdAda —-Wda =Wa. (18)

The parameter-estimation law employs the torque-predic-
tion error and the tracking error simultaneously to drive
the parameter estimator; the compound parameter-
estimation law is selected as follows:

a=-I'"'W'o-I"W'M;n. (19)

where I' represents the adaptive update rate that is a
positive, definite diagonal-constant matrix.

3.2 Robustness analysis
WTW is non-singular, and the boundary form of the

external disturbance to the system is given, which can be
described as:

Ip||= HDW - IIM, M_'D, H <D, +D, ||, 20)

where D ; and D , are the known positive constants.

Combining (9) and (16), the closed-loop system with
external disturbance is:
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where Aa=ay-a is the difference vector between the

parameter’s initial values and the true values.

The following theorem, Theorem 1, is established consid-
ering the robust stability of the closed-loop system (21).

Theorem 1: Assuming that the external disturbance of the
system is bounded, (19) is satisfied and WTW is non-
singular, then the control system shown in (19) and (21) is
stable; that is, the parameters in the closed-loop system are
bounded, and the reference-tracing error || n|| and the
parameter-estimation error || &| are located in the ellipse
as defined by the following inequation:

C.D,

_GD, _GCD’
2(C,-CD,)

4(Co - ClDl) ' (22)

2
oI | ~eef <

where C, is a constant defined as A, (M) ; C, is defined
AnWTW) 5 ¢, is defined as A, (k) and A (°)

represents the minimum singular value of e .

as A

Proof: the Lyapunov function is defined as:
V= %(rfr} +a'Ta). 23)

The time derivative of V is:

V=n"n+&"Ta=n"(M,' (WAa-WAa + D)k n)+&'T'a
=n'M,'Wa +n"M;'D-n"kn-a"(W'oc+ WM, ")
=n"M,'D-n"kn-a'W'Wa

<CnllIp] - ¢, | - .| (24)
<G, lnl @, + D ) - €, | - €. e
2
CD 2 C’D,?
<—~(C,-C,D % | _cla 12
-G I)EH"H 2(c0—cp,)J ZHaH +4(C0—C1D1)

According to the formula above, if C, (i.e., k, ) is large
enough to satisfy C,—C,D,>0, , then the right-hand side of
the inequality (24) defines an ellipse in the two-dimensional
space whose axes are || 17| and || &| , and i, 6!V >0} is
satisfied in the ellipse. Thus, if (n, &) is outside the ellipse,
i.e., the reference-tracking error or parameter-estimation
error exceed the limit defined by the ellipse, then V<0,
which means that 7 and & are bounded. Therefore, the
reference-tracking error and the parameter-estimation
error will locate in the ellipse as defined by (22).

To illustrate that the tracking error is bounded, Lemma 1 is
introduced.

Lemma 1: If || n|| <C(C<<) is satisfied for t €[t,, =), and t,

is a positive real number, then

1 e <exp(-k(t—t)l el ~5)+ &, 160 <C ok et

[24].
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According to Lemma 1, the tracking error e and the velocity
of the tracking error é are limited as t — oo .

4. Modification of the parameter-estimation law for
robustness

4.1 The case of a known external-disturbance boundary form

The method proposed above needs WTW to be non-
singular, which is a strict condition. In this section, the
modification of the parameter-estimation law is adopted to
address the robustness issue when W TW is singular. First,
a convex compact set Q(N) is defined as

Q(N)={0z:\| af SN] , where the positive constant N is a
design parameter. In fact, the set defines a sphere whose
radius is N, then N needs to be large enough to derive the
truth values of the parameters to be estimated, which are
located within the sphere, i.e., || af| <N .

The controller is the same as that denoted by (16), and the
modified parameter-estimation law is: [25]

a=-I""W'o-I"W'M,"n-I"4, (25)
of1- 1], o

A= N’ ' (26)
o s

The following theorem, Theorem 2, is established, consid-
ering the stability of the closed-loop system (21).

Theorem 2:If k_ is big enough and the parameter C, satisfies
C,-C,D,>0, then the control system constructed by (21)
and (25) is stable. That is, the variables in the loop are
bounded, and the reference-tracking error | n|| and the
torque-prediction error | ¢|| are located in the ellipse
defined by the following inequation:

<qqa{n @)

e R L

where C is defined as A
ApinM 1) and A
value of o .

min(kI) , C, is a constant defined as

min( @) represents the minimum singular

Proof: The Lyapunov function is defined as:
1 1 ~T v~
:E(n n+a I'a). (28)

The time derivative of V is:
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V=n'n+a'Ta=n"M,'Wa+n"M,'D-n"kn-&" (W'e+W'M,'n+A)
=n'M;'D-n'kn-&WWa-a'A
=n'M;'D-n'kp-o'oc-d'A
<Clllp] - ¢, nf ~Jol ~a"a (29)
<C, ||, + D~ C, | ~|o -a7a

~T

s—(co—chJ[HﬂH m} [+ 4(c cm e

When || @|| >N, the last item of (29) is:

a ] N R

dTA(&a)Td[lN N
el -1l

far
- (-l - v

I\

O<N<Hé

a'aszafla)) (30

Thus, V is negative due to -&"A .
Due to the projection effect, the parameter-estimation value

a is bounded. If | &|| <N, then A=0. According to (29), if
C, (i.e., k, ) is big enough and satisfies C,~C,D,>0, then the
first three items on the right-hand side of the inequality (29)
define an ellipse whose axes are | || and | o] , and
{n, 61V >0} is satisfied in the eclipse. Thus, if (17, &) is notin
the ellipse, the reference-tracking error or the torque-
prediction error will finally be in the ellipse defined by (27).

According to Lemma 1, the tracking error e and the velocity
of the tracking error ¢ are bounded as t — e .

4.2 The case of an unknown external-disturbance boundary form

Although the singularity problem of WTW is solved in
Section 4.1, the external-disturbance boundary form should
be known. In this section, the o, modification method is
adopted to modify the parameter-estimation law, which
does not require the non-singularity of WTW and the
known external-disturbance boundary form; only the
condition of the external disturbance being bounded is
necessary.

The external disturbances to the base and the manipulator
are considered in turn, and it is assumed that the external
disturbances have upper bounds:

{D; <D, <o,
! i (31)

Ip,| <D, <,
m m

where D, and D,, are the upper bounds of the external

disturbances to the base and the manipulator respectively.



The controller is the same as that denoted by (16). Amend
the parameter-estimation law as: [26]

a=-I'Wo-I"'W'M,"n-cI""'a (32)
o lala,
ol ey )
el 2 B
|l + 2

where 1 is a positive constant and a is a positive constant
that represents the upper bound of the parameter’s truth
value. We have the following theorem for the stability of
the closed-loop system (21).

Theorem 3: If the control parameter C, (i.e., k, ) is large

enough, then the control system composed of (21) and (32)
is stable; that is, the variables in the loop are bounded. If

| | <& , then the reference-tracking error | 5| and the
torque-prediction error || o|| locate in an ellipse as defined
by the following inequation:

C C - =
al +lel < 2¢ (D.+D,)" (34)

If | «|| >a, then the reference-tracking error || || and the
torque-prediction error || o|| locate in the following ellipse:

C C =~ =, 1
Sl +lel < 36-@.+D, "+ go,(@) (35)

where C, and C, are the same as those in Theorem 1.

Proof: the Lyapunov function is chosen as:
1 ST
V= E(rfn +a'Ta). (36)

The time derivative of V is:

V=n'n+a'la
=n"M;'Wa+n"M,'D,-n"kn-a" (W'oc+W'M,"n+0ca)-n"M,'ITM, M_'D,
=1'M;'D,-n'kn-o'o-oa'a—n"M'IM, MD,
<Gl -Gl et -0 &', 37)
2 2 . — = 2
<=l -lel -o.a'a+C,[n|D, + C.la|D. = n

]
Ci e .. C S c _
< -Jol -oa'a-S{ -S040, | + £(0,4D.).

If|| a| <a, 0,=0, then:

Robust Adaptive Control of a Free-floating Space Robot System in Cartesian Space

. C c - _
VS‘?‘JH"W—HGH2+7CO<DS+D,”)2~ (38)

If | @] >a, we have:

G ey C(p+b
VSl ol o (@+a)+ o (DD, )

<=Sofaff ~Jof - o.Jaf +o.Ja aH+2£CO(Es+ﬁm)z
39)
C 1) 1 C /-~ = (
Sl ~lef o 3lel) + ol (DD}
C C (= = 1
<= S ol + 5 (D.+D.f + o, (&

where C,=| M;IM, M'| and C=max(C,, C;).

The design of g, should ensure that ¢, is constantly non-
negative, which can make the reference-tracking error
converge to zero without disturbances. Meanwhile, since
o, is designed to be a convergence function, it can curb the
parameter-drift phenomenon, and adjust the convergence
value by changing the value of i . According to the above
inequations, if C, (i.e., k, ) is large enough, the right-hand
side of the inequality (37) defines an ellipse in a two-
dimensional space whose axes are || 77| and || ¢] , and in
the ellipse we have {5, o | V >0} . Thus, if (5, 0) is not in the
ellipse — that is, if the norm of the reference-tracking error
or the torque-prediction error exceeds the limit of the
ellipse — we have V <0, which means that n and ¢ are
bounded. Thus, the reference-tracking error and the
torque-prediction error will finally locate within the ellipse
defined by (34) or (35).

Further, according to Lemma 1, the tracking error e and its
rate of change é are bounded as t — o .

5. Simulations

5.1 The simulation examples of the modified, robust adaptive
control

A 2-DOF FFSR model shown in Fig.2 is taken as the
simulation object, and « is the separated parameter vector
of the dynamic equation for the FFSR system and is chosen
asa=(my m my Iy 1 1 Lomb myb,)" . The truth values
of the actual parameters are shown in Table I, and the initial
values of the parameters to be estimated are chosen as
a,=(32 4 1.8 53 033 015 2 09)" The

trajectory of the end-effector in Cartesian space is an
anticlockwise circle trajectory. The simulation time is 6s
and the adaptive update rate is
I=diag(0.1 0.1 0.1 4 02 0.1 02 02) . The feedback
gains are k=20, k =20.

desired
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Manipulator

Mass centre of
system

% Base (Link0)
d, m, lo

Figure 2. A 2-DOF FFSR model

link a,(m) by(m) my(kg) Li(kg-m?)
0 0.5 0.5 80 40/3
1 0.5 0.5 8 2/3
2 0.5 0.5 6 1/2

Table 1. Parameters of 2-DOF FFSR system

To verify the robustness of the modified, robust adaptive
controller, the simulation cases are divided into two types.
One is the case of a known external-disturbance boundary
form designed in Section 4.1 and the external disturbance
is assumed to be D=(D, D,)"= (0.3sin15¢ 0.2cos10t
0.5sin10¢ 0.4sin20¢ +0.36; 0.2c0s20t +0.30,)7 , and N =80 .
The simulation results are shown in Fig. 3. The other case
is that of an unknown external-disturbance boundary form
designed in Section 4.2, where ©=0.1 and the external

disturbance is assumed to be D=(D, D,)"=
(0.3sin3t 0.2cos2t 0.5sin6t 0.4sin5t 0.2cos4t)” . The
simulation results are shown in Fig. 4. Fig. 3(a) shows the
error of an end-effector tracking-reference trajectory in
Cartesian space with a known external-disturbance
boundary form. Fig. 3(b) shows the actuation torques of
Joint 1 and Joint 2 of the actual manipulator. Fig. 4(a) shows
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0.01 i oo |
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8002 —-—-x2 direction
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o
£
0,03 oo 4
g
=

0,04 4
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0 1 2 3 4 5 6
Time/s

(a) Tracking errors

Figure 3. The simulation case of a known external-disturbance boundary form

Int J Adv Robot Syst, 2015, 12:157 | doi: 10.5772/61743

the error of the end-effector tracking reference trajectory in
Cartesian space with an unknown external-disturbance
boundary form. Fig. 4(b) shows the actuation torques of
Joint 1 and Joint 2 of the actual manipulator. The simulation
results show that under both conditions, the robust
adaptive controller based on the modification of adaptive
law can achieve robust stability and that the joint torques
are realizable.

5.2 The simulation examples of the modified, robust adaptive
control with practical disturbances

Take the FFSR system model above as the simulation object
and examine the modified, robust adaptive controller with
practical disturbances. The simulation time is 6s. In order
to test the robustness of the controller further, the desired
trajectory in the simulation is a line plus a semicircle. The
manipulator is assumed to encounter an obstacle suddenly.
At t=2s, the trajectory changes from the line to the semicir-
cle, and the trajectory changes back to the original line from
the semicircle at t=4s. The simulation cases are also divided
into two types, and the external disturbances and parame-
ter settings are the same as those of the two simulation cases
discussed in Section 5.1. We also consider the non-lineari-
ties under practical conditions in the simulation [27], which
include the measurement noise of the sensors and actuator
saturation. The Gaussian noises have been introduced to
the joint velocities, of which the mean is 0 rad/s and the
variance is 7.6x107. Gaussian noises have also been
introduced to joint accelerations, of which the mean is 0
rad/s? and the variance is 7.6x107. The saturation condition
for the actuator torque is added. The lower limit is -50 Nm
and the upper limit is 50 Nm.

The simulation results are shown in Fig. 5 and Fig. 6.
Compared with the simulation results in Section 5.1, the
error of trajectory tracking fluctuates more obversely in Fig.
5(a) and Fig. 6(a), due to the amplification of the noise
present in the measurements of joint velocities and accel-
erations. However, the robust adaptive controller designed
in the paper can still track the desired trajectory stably, in
spite of the practical disturbances affecting the overall
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(b) Joint torques of manipulator
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Figure 4. The simulation case of an unknown external-disturbance boundary form
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Figure 5. The simulation case of a known external-disturbance boundary form, with noise and actuator saturation
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Figure 6. The simulation case of an unknown external-disturbance boundary form, with noise and actuator saturation

closed-loop system. In Fig. 5(b) and Fig. 6(b), the input
torques change suddenly at the inflexion points (=2s and
t=4s) of the desired trajectory, which leads to the condition
of saturation. The saturation condition limits the actuator
response to a reasonable extent, and the torques soon fall
to the normal range under the control of the controller
designed in the paper.

Robust Adaptive Control of a Free-floating Space Robot System in Cartesian Space

6. Conclusion

In the paper, a robust, adaptive trajectory-tracking strategy
for the FFSR in Cartesian space is shown. By the modifica-
tion of the parameter-estimation law, the control scheme
can achieve robustness under conditions of known or
unknown bounded-disturbance forms. The simulation

Fuhai Zhang, Yili Fu, Jiadi Qu and Shuguo Wang:
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results demonstrate that the control scheme can ensure
stable tracking of the desired trajectory of the end-effector
of the FFSR in Cartesian space. Some practical conditions
are also introduced, in which the system is affected by
different types of disturbances, such as noise and actuator
saturation. A good convergence is still presented in spite of
the practical disturbances that affect the overall closed-loop
system.
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