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An improved real-time object proposals
generation method based on local
binary pattern

Yanting Jiang, Jia Yan, Ci’en Fan, Wenxuan Shi and Dexiang Deng

Abstract
Generating a group of category-independent proposals of objects in an image within a very short time is an effective
approach to accelerate traditional sliding window search, which has been widely used in preprocessing step of object
recognition. In this article, we propose a novel object proposals generation method to produce an order set of candidate
windows covering most of object instances. With combination of gradient and local binary pattern, our approach achieves
better performance than BING in finding occluded objects and objects in dim lighting conditions. In experiments on the
challenging PASCAL VOC 2007 data set, we show that our approach is significantly more accurate than BING. In par-
ticular, using 2000 proposals, we achieve 97.6% object detection rate and 69.3% mean average best overlap. Moreover,
our proposed method is very efficient and takes only about 0.006 s per image on a laptop central processing unit. The
detection speed and high accuracy of proposed method mean that it can be applied to recognizing specific objects in robot
visions.
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Introduction

In recent years, object detection has made great strides and

has been widely used in computer vision and robotic vision.

Many vision tasks, such as pointing gestures for human–

robot interaction, face recognition for robot vision, and

route recognition for mobile robot, are closely tied to object

recognition algorithm. There are already some effective

methods improving the object detection performance

through a variety of complex features1,2 or classifiers.3

However, most state-of-the-art detectors still determine the

most possible object positions over the image by sliding

windows,4–6 which are computationally expensive to eval-

uate all locations. For a successful detection system, it is

quite an important problem to increase the computational

efficiency without losing the detection accuracy. In order to

accelerate object detection, objectness proposals genera-

tion has recently attracted much attention.7–9

Objectness proposals generation, which produces some

category-independent candidate windows of objects in an

image within a very short time, has been widely used in the

preprocessing step of object recognition. We hope to gen-

erate a small number of bounding boxes, such that each

object is well located by at least one box. Thereby, object
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recognition algorithms would be able to evaluate a complex

classifier only at a small group of plausible regions rather

than at all possible positions and scales in the whole image.

Most state-of-the-art object detection frameworks3,9–12

proposed recently are composed of proposal generation

procedure and object recognition procedure. Being differ-

ent with time-consuming exhausted search, the proposal

generation phase remarkably reduces computation cost by

generating a group of candidate proposals that may contain

objects. Thus, sophisticated classifiers can be used for win-

dow assessment in object recognition. Although there exist

a variety of proposal generation approaches, they can be

put into two categories roughly grouping methods and win-

dow scoring methods.13

Grouping proposals methods normally employ super-

pixels grouping strategy to generate multiple (possibly

overlapping) segmentations that are likely corresponding

to complete objects. A typical approach is a selective

search proposed by Uijlings et al.1 It uses many ran-

domly initialized seeds to start hierarchical superpixels

merging based on diversified criteria to generate high-

quality proposals.

In contrast, window scoring methods score to generate

candidate windows with high ranks, such as objectness—

first introduced by Alexe et al.8 Objectness methods judge

how likely it is for an image window to contain an entire

object of any class and select windows which are scored

based on multiple cues including color, boundary, and

superpixel shape. BING14 is a very fast objectness measure,

which selects bounding boxes by training a simple linear

classifier with gradient feature (a short review is given in

“Overview of BING” section). EdgeBoxes15 has no learned

parameters (similar with selective search) and scores each

window according to the number of complete contours in

its edge map (obtained via structured forests16,17). Zhang

et al.18 proposed a cascade ranking SVMs to generate pro-

posals for object detection. The first stage learns several

classifiers for each scale and aspect ratio in a sliding win-

dow manner; and the second stage ranks all proposals from

the previous stage. Endres and Hoiem19 coarsely extracted

regions following multiple cues and proposed structure

learning algorithm to produce object proposals.

Generally speaking, objectness tends to be faster than

grouping proposal methods because objectness only returns

bounding boxes. Therefore, objectness has been recently

applied to various computer vision tasks for improving

accuracy or speed, such as pedestrian detection,20 visual

object detection,21,22 salient region segmentation23 robot

vision, and so on.

Keeping the computational cost feasible is very impor-

tant24,25 for efficient object detection. In this article, we

propose a new approach to locate objects by producing a

small bag of objectness proposals which cover almost all

object instances. According to experiment results, our

method reaches surprising detection performance using

standard metrics while being very fast to compute.

The article’s main contributions are as follows: (a)

Firstly, we study how BING method works to obtain sug-

gested windows and analyze its problem in locating

occluded instances. (b) Secondly, we improve BING by

adding local binary pattern (LBP) as a new feature into our

model. On VOC 200726 data set, the detection rate (DR) of

our method is increased from 96% to 97.5%, and the mean

average best overlap (MABO) is increased from 65% to

69.3% for 2000 proposals. Moreover, our method would

achieve over 99% DR when using 4000 proposals. By this

way, we preserve the speed advantage of BING while

reaching more accurate detection results, so that we could

be able to provide higher quality windows for various

detection tasks.

Overview of BING

BING method, an acceleration framework of generic

objectness measure, has made significant breakthroughs

on calculation efficiency (300 fps on VOC 2007) compared

with the current state of the art. The outputs of BING is a

small set of proposals covering most of objects rather than

their precise locations. Based on the fact that objects are

stand-alone things with well-defined closed boundaries and

centers27,28 (different from amorphous background stuff

like grass, sky), Cheng et al.14 observed that when resizing

their corresponding windows to a small fixed size, their

norm of gradients becomes a discriminative feature (named

NG feature), regardless of objects with different shapes and

colors. It is because that little variation of closed bound-

aries could be presented in such an abstract view.14 In order

to realize the acceleration of proposals generation, BING

firstly defines 36 different sizes for windows quantification

and employs simple norm of gradients to train a two-stage

cascaded model with linear SVM. The advantage of gradi-

ent maps is that they preserve boundaries information com-

pletely with efficient data representation. In the test stage,

each window is scored with a linear model w 2 R64. Win-

dow scoring formula is represented as

sl ¼ hw; gli (1)

where sl and gl are the filter score and NG feature, respec-

tively. In order to avoid heavy computing when scoring

windows, BING realizes speeding up by translating equa-

tion (1) into fast bitwise and POPCNT SSE operators.

Such a two-stage cascaded model provides a framework

for fast proposals generation. However, we observe that the

behavior of BING is not satisfactory in some cases. An

apparent drawback of BING is that boundaries are not

always closed for occluded or truncated objects. Actually,

results of BING show that considerable undetected objects

are partially or totally occluded by obstacles around them.

Besides, we observe that BING is also poor at finding

objects in dim lighting conditions because it’s hard to

captain complete contour in such illumination conditions.

Figure 1 gives several instances to testify drawbacks of
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BING in detecting incomplete objects and objects in poor

lighting conditions. The main reason is that the success of

BING depends largely on simple gradient feature while

boundaries are not always closed for all kinds of object

instances. It’s difficult to captain complete contour when

objects are partially or totally occluded by obstacles around

them. Similarly, the gradient feature of objects under dark

situation usually cannot be distinguished from amorphous

backgrounds stuff.

Motivated by this work, we could be able to improve

detection performance by incorporating different kinds of

features and classifiers into model training. We choose

adding texture feature to increase robustness of new model

for hard instances because that objects with incomplete

boundaries would usually have distinguished texture from

their backgrounds. Considering the balance of detection

quality and computation efficiency, we employ LBP to

describe image local texture.

Local binary patterns

Local binary pattern, a powerful description for image local

texture, was first proposed by Harwoodet al.29 The original

LBP operator works with a 3 � 3 neighborhood by thresh-

olding each pixel with the center value to obtain eight thre-

sholded binary values (such as 00100011), which are saved

as a BYTE value (0–255) to express the LBP code of center

pixel. An instance of the LBP operator is shown in Figure 2.

According to Harwood et al.,29 the LBP code for a center

pixel with coordinate (x, y) can be computed by

LBPðx; yÞ ¼
X7

p¼0

sðgc � gpÞ2p (2)

where s(z) is the threshold function: sðzÞ ¼
1; z � 0

0; z < 0

�
and

gc and gp denote the value of center pixel and pixel in its

eight-neighborhood, respectively.

Apparently, the result is a LBP map after calculating

LBP code during the whole image. In applications of LBP

such as texture classification30 and face recognition,31 peo-

ple usually use the statistical histogram of LBP code rather

than LBP map as feature vectors. However, we are going to

use LBP map as a 64-D feature in our proposed model

because of the usage of INT64 similar to BING. Since the

original LBP was introduced, several improved LBP opera-

tors are proposed, such as an extension of LBP using cir-

cular neighborhoods of different sizes,32 rotation-invariant

LBP, and uniform patterns LBP. LBP operator and its

extensions have been applied in different areas because

of their good rotation invariance, robustness to illumina-

tion, and calculating efficiency. People usually combine

LBP with HOG as features for human recognition,33,34

which remarkably increases detection rate.

In this article, we use a modified LBP operator, called

MLBP, to compose a 64-D feature of our model in consid-

eration of effectiveness. MLBP code of a center pixel is

calculated by comparing the value of each pixel in its

neighborhood with the mean value of them represented by

MLBPP;R ¼
XP�1

p¼0

sðgp � gmÞ2p (3)

where sðxÞ ¼
1; x � 0

0; x < 0

�
and gm ¼ 1

Pþ1

PP
p¼0

gp. In

equation (3), P is the number of pixels in neighborhood, gp

Figure 1. Instances of BING’s detection result (pink proposals) on VOC 2007 test images. Proposals in yellow represent objects
undetected with BING. Most of them are occluded or in dark lighting.

Figure 2. An instance of the LBP operator. The value of center
pixel (x, y) is 54. LBP: local binary pattern.
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is the value of a pixel in neighborhood, and gm is the mean value

of center pixel and all pixel in neighborhood. Figure 3 gives an

instance of MLBP operator. We choose MLBP because it is

powerful in texture description and is easy to compute.

Proposed approach

In this article, we propose an improved approach based on

BING for efficient objectness estimation, which outputs an

order set of windows containing object instances. A real-

time object proposals generation method is very helpful in

preprocessing step of object recognition, which can be

widely applied in pattern recognition, artificial intelligence,

and robot vision. Motivated by the observation that most

undetected instances of BING method are occluded or in

dim lighting, we learn a new model by combining NG

feature and LBP feature, which enables to improve the

robustness of model. By following clues of texture and

contour, we can improve the detection rate as well as pro-

posals quality. As shown in Figure 4, the framework of our

approach consists of two analogous submodels: (1) the

original model as in BING and (2) a model training with

MLBP feature. Both of the two submodels are two-stage

cascaded models sharing similar structure, and they are

special for different types of object features. In the testing

stage, each image window is scored with two learned mod-

els, respectively, and after a size-weighted step, our system

would outputs a set of windows with top-ranking scores.

Since the training process of submodel 1 (same as model

of original BING) is already introduced in “Overview of

BING” section, next we will flesh out the training paradigm

of submodel 2. As illustrated in Figure 5, four components

are needed for submodel 2, including window quantization,

feature extraction, learning a linear filter w, and learning a

learnt coefficient vi and a bias term ti for each quantized

size i. Besides, speeding up step is also indispensable for

our model.

Window quantization

Quantization is an important step in our method. In order to

collect more positive samples with diversity and get a more

robust linear model, we quantize a ground truth window to

several (normally two or three) windows of base-2 sizes (For

example, a 196 � 174 window will be quantized to a 256 �
128 window and a 256 � 256 window, and a 214 � 113

window will be quantized to a 256 � 64 window, a 128 �
128 window, and a 256 � 128 window.), guaranteeing no

less than 50% overlap with the original ground truth. By this

way, all training samples are divided into 36 kinds based on

their sizes, and samples in size i will be discarded if their

amount is less than 50. Two instances of window quantiza-

tion are illustrated in Figure 6. If the quantized window is

partly out of range of image, the outranged part will be cut to

adjust to image. These quantized windows will then replace

the original ground truth window becoming positive samples

of linear SVM after resizing and feature extraction.

Window quantization step not only reduces variation

of sizes of samples but also largely simplifies the pro-

cedure of estimating windows in the sliding window

manner over the image. Our model aims to generate a

set of suggested windows in less than 36 kinds of sizes

(our model generates suggested windows of ðWi; HiÞ,
where Wi; Hi 2 f24; 25; 26; 27; 28; 29g). When scoring

windows of size i ðwi; hiÞ, the original image ðimgW ; imgHÞ
is first resized to a smaller image of size ðW 0; H0Þ ¼

8�imgW

wi
; 8�imgH

hi

� �
, so that a 8 � 8 window in the smaller

image corresponds to a wi� hi window in the original

image. Therefore, we can slide the learnt 8 � 8 filter W

across the shrunken image to get a filter score of wi� hi

window in each location.

Feature extraction

In training stage, we resize all quantized windows of each size

i and randomly sampled windows to a uniform 8� 8 size and

then extract MLBP feature over them to form 64-D features,

which are used as inputted samples of linear SVM. MLBP is

an extension of original LBP operator introduced in “Local

binary patterns” section. Figure 7 shows two examples of

extracting 64-D MLBP feature from quantized window.

Learning a linear filter w

We train a linear filter w using linear SVM in the first

learning stage. MLBP features of the ground truth object

windows (after quantization) and randomly sampled back-

ground windows are used as positive and negative training

samples, respectively. The learnt filter w is added to the

first stage of cascaded model after normalization.

Figure 3. An instance of MLBP operator. The value of center
pixel is 54. MLBP: modified local binary pattern.

Image set Combination
Objectness 

score

Model 1

Model 2

NG feature

MLBP feature

Figure 4. The framework of our method. It consists of two
submodels training with NG feature and MLBP feature, respec-
tively. The input of it is image data set and the output is a set of
proposals with objectness score. MLBP: modified LBP.
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Learning vi and ti

Since some sizes are more likely to contain an object

instance than others, the second stage of model is

designed to obtain learnt coefficient vi and bias term ti

for each quantized size i. Firstly, we estimate sliding

windows (for each quantized size i) with learnt filter

w and then perform non-maximum suppression to select

a set of windows with high-filter scores. These selected

windows are divided into positive and negative samples

according to their overlap scores with the ground truth.

Actually, given the selected window bounding box (rt)

and the ground truth bounding box (rg), the overlap

score s ¼ areaðrt \ rgÞ
areaðrt [ rgÞ is used to determine sample labels.

The filter scores of samples are used as 1-D feature.

Therefore, we can obtain learnt coefficient vi and bias

term ti for each quantized size i.

Speeding up

As we hope to generate proposals by scoring windows

according to MLBP feature in a sliding window manner,

we are following equation (1) to calculate filter score of a

window. The convolution operation in equation (1) can be

replaced with several bit operation after approximation, as

Extract MLBP 

Resize to 8*8

Feature matrix

…
…

Positive

Negative

W

Quantized windows

…

......

Linear SVM

Sliding window with W

Pick high scores

… …

Positive Negative

>0.5 <0.5

MLBP map – size i

vi      ti
Linear SVM

Figure 5. Illustration of submodel 2 in training stage, including window quantization, feature extraction, learning a linear filter w, and
learning a learnt coefficient vi and a bias term ti for each quantized size i.

Figure 6. Two instances of window quantization on the PASCAL VOC 2007 training set. The ground truth windows are in red. (a) A
toy car with two quantized windows (yellow and blue) and (b) a cat with three quantized windows (yellow, green, and pink).

Figure 7. Two examples of extracting 64-D MLBP feature from
quantized window. Extracted features are used as positive
samples in linear SVM. MLBP: modified LBP.
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much as possible reducing computation cost. Speeding up

procedure includes approximation representation and

INT64 data storage. The 64-D linear filter w is approxi-

mately represented as a linear combination of nw binary

vectors aþj and their complements aþj weighted by corre-

sponding coefficient �j, where aþj ; aþj 2 f0; 1g
64

and

aj ¼ aþj � aþj . Accordingly, scoring formula can be

expressed as

hw; bki �
Xnw

j¼1

�jaj; bk

* +

�
Xnw

j¼1

�j aþj �aþj ; bk

D E

�
Xnw

j¼1

�jð2haþj ; bki � jbk jÞ (4)

The approximation of extracted MLBP feature is repre-

sented by replacing each MLBP code using its top nf binary

bits, which can be expressed as

fk ¼
Xnf

i¼1

28�ibk;i (5)

where bk;i denotes the binary value of MLBP code at the i th

bit. nf ¼ 4 means replacing MLBP feature using its top

four binary bits, within accepting error range while

reducing following computation to 50%. Two examples

of MLBP feature approximation are illustrated in Figure 8.

According to above algorithms, the filter score of an

image window can be efficiently evaluated using

sl �
Xnw

j¼1

�j

Xnf

i¼1

Cj;i (6)

where Cj;i ¼ 28�ið2haþj ; bki � jbk jÞ. In addition, we

translate data access for sliding window into bit shift

procedure (expounded in Figure 9) using INT64 vari-

ables, which should further increase computing effi-

ciency of our system.

Experimental evaluation

In order to facilitate comparing our algorithm with previous

approaches, we train our model and perform quantitative

evaluation on PASCAL VOC 200726 data set. PASCAL

VOC 200726 is a standard data set of image and annotation,

in which each image is annotated with ground truth bound-

ing boxes of objects from 20 categories (bird, aeroplane,

cow, etc.). Since we want to find all objects in the image

irrespective of their categories, we train our model on offi-

cial training set with 6 object categories and evaluate it on

testing set with other 14 unseen categories. The results of

experiment show that our method reaches a higher perfor-

mance than original BING.

Figure 8. Two examples of MLBP feature approximation using its top four binary bits. (a) The situation of maximum error is 15-pixel
difference and (b) the minimum error is 0-pixel difference.

Figure 9. Illustration of translating data access into bit shift procedure when scoring window in a sliding window manner. Variable
explanation: a MLBP window bx; y , its last row rx; y , and last element bx; y . MLBP: modified LBP.
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We follow the protocol in the studies by Uijlings et al.,

Desai et al., and Alexe et al.1,6,10 for evaluation. One metric

is the detection rate (DR) based on the overlapping area

between predicted bounding box (rt) and the ground truth

annotation (rg). An object is considered to be found out

successfully if the overlap score s ¼ areaðrt \ rgÞ
areaðrt [ rgÞ is higher

than the threshold 0.5. Another widely used metric is

MABO, defined as the mean ABO over all classes. We

choose MLBP in several extensions of LBPs mentioned

in “Local binary patterns” section because it shows better

behavior than others. Table 1 reflects performance compar-

ison of different extensions of LBP. The success of our

method indicates that combining gradient feature and tex-

ture feature is feasible for improving performance of

objectness detection. Since the purpose of our system is

to produce reliable proposals discriminating objects from

amorphous backgrounds stuff, we mainly focus on perfor-

mance evaluation when generating more than 500 propos-

als or reaching higher than 90% DR. According to the

results of the experiment, our method shows more advan-

tage when producing more than 500 proposals because that

proposals quality (from combined outputs of two submo-

dels) becomes more stable gradually. As shown in Figure

10, our method achieves a 97.6% DR and a 69.3% MABO

using 2000 proposals, with 0.5% and 2% increase, respec-

tively, compared with BING, which fully demonstrates the

efficiency of our improved method. Table 2 gives the spe-

cific detection rate.

Figure 11 gives several examples to explicitly illus-

trate that our proposed method is better than the original

BING at detecting difficult instances, especially objects

with partial truncation or occlusion and objects in poor

lighting conditions. BING has difficulties in finding

these kinds of objects because BING relies on simple

gradient feature while it is uneasy to find complete con-

tours in occlusion situations or poor lighting conditions.

Instead, our proposed method combines gradient feature

and texture feature complementally to learn our model,

which therefore enhances the detection rate of these hard

object instances.

In addition, LBP is excellent in discriminating an

object from its surroundings especially when their tex-

tures are entirely different. Thus, it is easier for our

method to get accurate location of an object. Figure 12

illustrates comparison results of proposals quality

between BING and our method. We can produce higher

quality proposals than BING, locating objects with more

compact coordinates and reaching a higher average score.

Different with BING, proposals generated by our method

cover most objects more accurately and thus can provide

more reliable input for subsequent detectors. Besides eva-

luation metrics mentioned above, computation efficiency

Table 1. Performance comparison of different extensions of LBP combined with BING.a

#WIN 1000 2000 3000 5000

Original LBP þ BING (%) (95.8, 68.2) (97, 68.5) (98.3, 70.1) (98.4, 70.1)
Max LBP þ BING (%) (96, 68) (97.3, 68.7) (98.5, 70.3) (98.6, 70.3)
MLBP þ BING (%) (96.1, 68.2) (97.5, 69.3) (98.7, 70.5) (99, 70.7)

DR: detection rate; MABO: mean average best overlap.
aThe values within parenthesis means (DR � 100, MABO � 100).

Figure 10. Comparison of our proposed method (curves in red) with the original BING (curves in blue) in DR metric and MABO
metric. DR and MABO of proposed method achieve higher values than those of BING when more than 2000 windows are generated.
DR: detection rate; MABO: mean average best overlap.

Jiang et al. 7



is also indispensable for an outstanding detection system.

Our proposed method is very efficient and takes only

about 0.006 s per image using a laptop with an Intel Core

i7-3940XM CPU@4.00GHZ. Figure 13 shows more

instances of our method’s detection result compared with

BING on VOC 200726 data set.

Figure 11. Examples of comparing proposal quality between BING and proposed method on VOC 200726 test images. The first row
shows objects covered by BING’s proposals (pink boxes), and the second row shows objects covered by proposed method’s proposals
(green and red boxes). Clearly, our method is better at detecting incomplete objects and objects in poor lighting conditions (red boxes).

Figure 12. Comparison of proposals generated by BING and our proposed method. The first row shows objects covered by BING’s
proposals (pink boxes), and the second row shows objects covered by proposed method’s proposals (green boxes). Proposals in the
second row cover objects more compactly and more accurately.

Table 2. DR and MABO results for our method compared with the original BING.a

#WIN 1000 2000 3000 4000 5000

BING14 (%) (95.9, 67) (97, 67.4) (97, 67.4) (97, 67.4) (97, 67.4)
Our method (%) (96.1, 68.2) (97.6, 69.3) (98.7, 70.5) (98.9, 70.6) (99, 70.7)

DR: detection rate; MABO: mean average best overlap.
aThe values within parenthesis means (DR � 100, MABO � 100).
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Conclusion and future work

In this article, we have proposed an effective objectness

estimation framework, which outputs an order set of win-

dows covering almost all object instances. The framework

we presented is mainly based on the observation that

incorporating texture feature into model training would

be helpful for detecting incomplete objects and objects in

dim lighting. Our framework consists of two analogous

cascaded submodels—one original model as in BING and

another training with MLBP feature. Each submodel gen-

erates a set of proposals separately, and then they are

Figure 13. Detection results of some testing images on VOC 200726 data set. The results of BING14 are shown in odd rows (pink
boxes), and the corresponding ones of proposed method are displayed in its next row (green boxes).

Jiang et al. 9



combined to produce final output—a series high-ranking

windows. We evaluate our proposed method on official

PASCAL VOC 2007 data set, and the results of experiment

indicate that we achieve more accurate detection results

while preserving the speed advantage of BING in the mean-

time. By this way, we could be able to provide input of

higher quality in the following object recognition stage.
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