
ARTICLE

International Journal of Advanced Robotic Systems

A Modular
Control Scheme
for Hyper-redundant Robots
Regular Paper

Chang Nho Cho1, Hyunchul Jung1, Jaebum Son1 and Kwang Gi Kim1*

1 National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
*Corresponding author(s) E-mail: kimkg@ncc.re.kr

Received 12 February 2014; Accepted 26 March 2015

DOI: 10.5772/60602

© 2015 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

Hyper-redundant robots, robots with many degrees of
freedom, are considered to be advantageous in many
tasks, such as minimally invasive surgery, surveillance
and inspection. However, due to their hyper degrees of
freedom, the control of hyper-redundant robots is always
challenging. Several fitting algorithms, which iteratively
fit a hyper-redundant robot into a continuous curve, have
been proposed to control the configuration of hyper-
redundant robots. However, these algorithms require
heavy computation, preventing them from being used in
practice. In this study, we propose a novel modular
control scheme for a hyper-redundant robot to reduce the
computational load by dividing the robot into smaller
modules and fitting each module separately. A Jacobian-
based position control algorithm is also used to utilize
the redundancy of each module to ensure that the overall
configuration of the robot resembles the given desired
curve. Simulation results show that the proposed scheme
can be used to control hyper-redundant robots effectively.

Keywords Fitting Algorithm, Hyper-Redundant Robot,
Redundancy Resolution, Weight Least Norm

1. Introduction

There has been much study devoted to the hyper-redun‐
dant robot, which is a robot with lots of redundant joints.
Redundancy improves the dexterity and the robustness of
a robot [1] and thus, it is expected that hyper-redundant
robots would show better performance than conventional
robots, especially in an unstructured environment. For this
reason, many hyper-redundant robots have been devel‐
oped for tasks such as minimally invasive surgery [2-4],
surveillance [5] and inspections [6]. However, the practical
application of hyper-redundant robots has been limited
because the control of a hyper-redundant robot requires all
active joints to be controlled in a systematic way to create
a well-defined task motion. Often, the pseudo-inverse of
Jacobian is used to control a redundant robot, which allows
the robot to utilize the redundancy to achieve a secondary
goal, such as avoiding an obstacle [7], joint limits [8, 9] and
kinematic singularity [10]. However, these Jacobian-based
methods are intended for a robot with one or two additional
degrees of freedom (DOF) and they cannot be used to
control a hyper-redundant robot. Furthermore, these
methods cannot effectively control the overall configura‐
tion of a hyper-redundant robot, which is often desired.

1Int J Adv Robot Syst, 2015, 12:91 | doi: 10.5772/60602

http://crossmark.crossref.org/dialog/?doi=10.5772%2F60602&domain=pdf&date_stamp=2015-07-15

There has been much research done on the control of hyper-
redundant robots. These algorithms focus on expressing
the desired posture of the robot as a backbone curve, and
controlling the robot to resemble the created curve. A
modal-based approach was introduced to control a hyper-
redundant robot effectively [11], but that method is limited
to a planar robot. A solution based on the shape Jacobian
was also proposed to control the shape of a robot [12].
However, the solution is limited to a robot with two DOF
revolute joints. A shape estimation method using an
extended Kalman filter and an electromagnetic sensor was
proposed [13], which is applicable if and only if the robot
is controlled by a follow-the-leader algorithm.

On the other hand, fitting algorithms, which iteratively fit
the configuration of a hyper-redundant robot into a
continuous backbone curve, are also widely studied in
order to control hyper-redundant robots. Fitting algo‐
rithms are often preferred as they can better reflect the
discrete structure of hyper-redundant robots. A fitting
algorithm, which approximates the backbone curve by
piecewise line segments, was introduced [14], but the
algorithm is only applicable to a robot with universal joints.
Another algorithm, which can be used on a hyper-redun‐
dant robot of any joint configuration, was introduced [15].
A fitting algorithm with reduced computational load was
also introduced in [16], which is also limited to robots with
universal joints.

However, while these algorithms can be used to control a
hyper-redundant robot, the required computational load is
still too heavy for practical uses, especially if the robot has
many redundant DOF. It was found that to improve the
performance of the fitting algorithms, the required compu‐
tational load must increase exponentially [15]. Another
concern with fitting algorithms is that they focus on
controlling the configuration of hyper-redundant robots
and they cannot be used to place the end-effector of the
robots at the desired position. However, since many hyper-
redundant robots perform tasks using tools at their end-
effectors, its end-effector positioning accuracy must be
guaranteed.

In this study, in order to reduce the computational burden
of fitting algorithms, we propose a novel control scheme to
distribute the computational load among multiple control‐
lers. The scheme divides the robot into modules and applies
a fitting algorithm and a Jacobian-based position control
algorithm. The fitting algorithm ensures that the configu‐
ration of the robot resembles the desired curve while the
position control algorithm utilizes the redundancy of each
module to enable parallel computation. The advantages of
the proposed scheme are as follows. First, the scheme is
computationally efficient, as each controller only has to fit
the assigned module. Second, the scheme is not restricted
to a robot with a certain joint configuration. Lastly, by using
the position control algorithm, the end-effector accuracy
can be guaranteed. A similar concept for a hyper-redun‐
dant robot was proposed in [17], but the study aimed to

remove the redundancy of each module. In contrast, the
proposed scheme focuses on utilizing the redundancy to
enable parallel computation.

2. Modular Control Scheme

2.1 Controller Configuration

To enable modular control, a given desired backbone curve
must be divided into smaller segments for each module.
Two types of controllers are involved in this scheme: the
main controller and the module controllers. The main
controller is in charge of dividing the curve and assigning
it to each module. Then, each module is fitted to the
assigned segment by its module controller. Following the
fitting, a Jacobian-based position control algorithm is used
to adjust each module so that the resulting configuration of
the robot resembles the given backbone curve. The overall
flow of the proposed scheme is illustrated in Figure 1 and
a detailed explanation of each step will be given in the
following sections.

approximates the backbone curve by piecewise line segments, was introduced [14], but the algorithm is only applicable

to a robot with universal joints. Another algorithm, which can be used on a hyper-redundant robot of any joint

configuration, was introduced [15]. A fitting algorithm with reduced computational load was also introduced in [16],

which is also limited to robots with universal joints.

However, while these algorithms can be used to control a hyper-redundant robot, the required computational load is still

too heavy for practical uses, especially if the robot has many redundant DOF. It was found that to improve the

performance of the fitting algorithms, the required computational load must increase exponentially [15]. Another

concern with fitting algorithms is that they focus on controlling the configuration of hyper-redundant robots and they

cannot be used to place the end-effector of the robots at the desired position. However, since many hyper-redundant

robots perform tasks using tools at their end-effectors, its end-effector positioning accuracy must be guaranteed.

In this study, in order to reduce the computational burden of fitting algorithms, we propose a novel control scheme to

distribute the computational load among multiple controllers. The scheme divides the robot into modules and applies a

fitting algorithm and a Jacobian-based position control algorithm. The fitting algorithm ensures that the configuration of

the robot resembles the desired curve while the position control algorithm utilizes the redundancy of each module to

enable parallel computation. The advantages of the proposed scheme are as follows. First, the scheme is computationally

efficient, as each controller only has to fit the assigned module. Second, the scheme is not restricted to a robot with a

certain joint configuration. Lastly, by using the position control algorithm, the end-effector accuracy can be guaranteed.

A similar concept for a hyper-redundant robot was proposed in [17], but the study aimed to remove the redundancy of

each module. In contrast, the proposed scheme focuses on utilizing the redundancy to enable parallel computation.

2. Modular Control Scheme

2.1. Controller Configuration

To enable modular control, a given desired backbone curve must be divided into smaller segments for each module. Two

types of controllers are involved in this scheme: the main controller and the module controllers. The main controller is in

charge of dividing the curve and assigning it to each module. Then, each module is fitted to the assigned segment by its

module controller. Following the fitting, a Jacobian-based position control algorithm is used to adjust each module so

that the resulting configuration of the robot resembles the given backbone curve. The overall flow of the proposed

scheme is illustrated in Figure 1 and a detailed explanation of each step will be given in the following sections.

Backbone

curve
Segmentation

Fitting
Position

control

Main controller

Module controller 1

Fitting
Position

control

Module controller 2

Fitting
Position

control

Module controller m

...

...

Figure 1. Proposed control scheme and role of each controller

2.2. Segmentation of Backbone curve

We first assume that a desired backbone curve is given as a point set)(dp . Many studies have been devoted to how to

create a backbone curve for a hyper-redundant robot, such as [18-20], and we will not discuss them here as they are

beyond the scope of this study.

Figure 1. Proposed control scheme and role of each controller

2.2 Segmentation of Backbone curve

We first assume that a desired backbone curve is given as
a point set pd (⋅). Many studies have been devoted to how
to create a backbone curve for a hyper-redundant robot,
such as [18-20], and we will not discuss them here as they
are beyond the scope of this study.

Assuming the robot consists of m modules, m segments are
required. Thus, the main controller divides the given point
set pd (⋅) into m segments. Note that each module is
connected in a series and thus, for parallel computation,
each module must be able to completely cover the assigned
segment. This cannot be done if the given segment is longer
than the length of the module. Therefore, the following
condition is used to divide the given backbone curve:

2 Int J Adv Robot Syst, 2015, 12:91 | doi: 10.5772/60602

(1) () 1...m d dl p i p i i pe- + - £ =å (1)

where lm is the length of the module, p is the total number
of points in the given backbone curve and ε is the pre-
defined threshold. This ensures that the total length of the
segment is shorter than the length of a module. A special
case for the segmentation would be the case when the
length of the given backbone curve is shorter than the
length of the hyper-redundant robot. In such a case, only
parts of the robot will be controlled to resemble the
backbone curve while other parts remain uncontrolled.

Assuming the robot consists of m modules, m segments are required. Thus, the main controller divides the given point

set)(dp into m segments. Note that each module is connected in a series and thus, for parallel computation, each

module must be able to completely cover the assigned segment. This cannot be done if the given segment is longer than

the length of the module. Therefore, the following condition is used to divide the given backbone curve:

piipipl ddm ...1)()1( 
 (1)

where lm is the length of the module, p is the total number of points in the given backbone curve and ε is the pre-defined

threshold. This ensures that the total length of the segment is shorter than the length of a module. A special case for the

segmentation would be the case when the length of the given backbone curve is shorter than the length of the hyper-

redundant robot. In such a case, only parts of the robot will be controlled to resemble the backbone curve while other

parts remain uncontrolled.

Segment 1

S
egm

ent 2
x

z

y
[x1, y1, z1]

x
z

y

[x2, y2, z2]

[x0, y0, z0]

x

z

y

(a) (b)

pd(M)

pd(1)
pd(0)

pd(i)

Figure 2. Segmentation of the backbone curve: (a) given backbone curve, and (b) segmentation and attached frames

To enable parallel computation, the start and end position and orientation of each segment must be specified. This is due

to the fact that all the modules are fitted at the same time, and the end position and orientation of module j serves as the

starting position and orientation of module j+1. Therefore, each segment must include six constraints: three in position

and three in orientation. This can be done by attaching a frame coordinate at each end of the segment, as shown in

Figure 2. Each segment and its constraints must also be expressed in the base coordinate of the module to allow

independent computation. Thus, once segment j is found using Eq. (1), we must represent it with respect to frame j-1, as

it is currently expressed in frame 0. It can be done by multiplying the computed segment by 1
0
j

R , where R is a rotation

matrix. Then, we compute the normalized tangent vector at the end of the segment. The controller will create frame j at

the end of the segment j, with the x-axis of the created frame aligned with the computed tangent vector. This alignment

is employed to have the approach direction of the module pointing at the tangent of the curve. To obtain such a frame,

we rotate the base frame of the segment, frame j-1, so that its x-axis is parallel to the tangent vector. The rotational

relationship between frame j and j-1 defines j
jR 1 . The position constraint would be the end position of the segment and

the desired orientation is expressed in j
jR 1 . Once the constraints are obtained, the algorithm proceeds to the next

segment. Note that 0
0R would be a 3-by-3 identity matrix.

Once the segmentation is completed, the main controller will send the rotated segment and the six constraints to each

module controller, and this completes the task of the main controller. The module controller will actually control each

module so that the robot can follow the desired curve.

2.3. Fitting Algorithm

The data about the segment and its six constraints are provided to each module controller, so that the module controller

can perform actual fitting. It was found that fitting multiple joints at the same time yields a better result, but at the cost of

a much higher computational load. This coincides with the result presented in [15]. Once the number of joints to be fitted

simultaneously is set, we perform bracketing, which coarsely finds the set of backbone curve points to be used to

optimize the set of joints. This is done so that the controller does not have to perform the optimization over the entire

segment. Bracketing is similar to the algorithm for dividing the curve into segments:

   1 , 1...d d k sp i p i l i p    (2)

Figure 2. Segmentation of the backbone curve: (a) given backbone curve,
and (b) segmentation and attached frames

To enable parallel computation, the start and end position
and orientation of each segment must be specified. This is
due to the fact that all the modules are fitted at the same
time, and the end position and orientation of module j
serves as the starting position and orientation of module j
+1. Therefore, each segment must include six constraints:
three in position and three in orientation. This can be done
by attaching a frame coordinate at each end of the segment,
as shown in Figure 2. Each segment and its constraints must
also be expressed in the base coordinate of the module to
allow independent computation. Thus, once segment j is
found using Eq. (1), we must represent it with respect to
frame j-1, as it is currently expressed in frame 0. It can be
done by multiplying the computed segment by R0

j−1, where
R is a rotation matrix. Then, we compute the normalized
tangent vector at the end of the segment. The controller will
create frame j at the end of the segment j, with the x-axis of
the created frame aligned with the computed tangent
vector. This alignment is employed to have the approach
direction of the module pointing at the tangent of the curve.
To obtain such a frame, we rotate the base frame of the
segment, frame j-1, so that its x-axis is parallel to the tangent
vector. The rotational relationship between frame j and j-1
defines R j−1

j . The position constraint would be the end
position of the segment and the desired orientation is
expressed in R j−1

j . Once the constraints are obtained, the
algorithm proceeds to the next segment. Note that R0

0

would be a 3-by-3 identity matrix.

Once the segmentation is completed, the main controller
will send the rotated segment and the six constraints to each

module controller, and this completes the task of the main
controller. The module controller will actually control each
module so that the robot can follow the desired curve.

2.3 Fitting Algorithm

The data about the segment and its six constraints are
provided to each module controller, so that the module
controller can perform actual fitting. It was found that
fitting multiple joints at the same time yields a better result,
but at the cost of a much higher computational load. This
coincides with the result presented in [15]. Once the
number of joints to be fitted simultaneously is set, we
perform bracketing, which coarsely finds the set of back‐
bone curve points to be used to optimize the set of joints.
This is done so that the controller does not have to perform
the optimization over the entire segment. Bracketing is
similar to the algorithm for dividing the curve into seg‐
ments:

() ()1 , 1...d d k sp i p i l i p+ - ³ =å (2)

where lk is the length of the part of the module to be fitted
at the same time and ps is the number of points in a segment.
Then, the following optimization rule is used:

() ()2

0
, , aargmin (() (n ,)) d

k

min ma
c

x i ec d q q q i p pX q P i
=

æ ö
-ç Î Î÷

è ø
å (3)

where X is the distal-end position of the module, qmin and
qmax are the minimum and maximum joint angles, respec‐
tively, and pi and pe are the starting and end points of the
bracketed segment. Note that the sum of the squared
distance is used as the objective function. This optimization
minimizes the distance between the given backbone curve
and the distal end of each link of the module, so that the
module resembles the given segment. In addition, as can
be seen from Eq. (3), the algorithm is computationally
demanding, and the computational load increases as the
number of joints to be fitted increases.

It is important to note that using the fitting algorithm
described above, the final position and orientation of the
end-effector of each module cannot be controlled. Thus, to
satisfy the imposed six constraints, an additional position
control algorithm is required.

2.4 Position Control Algorithm

After running the fitting algorithm, we obtain a set of joint
angles that allows the configuration of the module to best
resemble the shape of the segment. However, the position
and orientation constraints are not yet satisfied. To deal
with this, we added position control to the control scheme.
A Jacobian-based position control is used, as a Jacobian can
be easily found in a systematic way, whereas an inverse
kinematics solution is configuration-dependent and often

3Chang Nho Cho, Hyunchul Jung, Jaebum Son and Kwang Gi Kim:
A Modular Control Scheme for Hyper-redundant Robots

hard to obtain. In addition, by using a Jacobian, we can
easily utilize redundancy, which is crucial in the proposed
control scheme. Redundancy provides an infinite number
of inverse kinematic solutions. Thus, among the infinite
solutions that satisfy the six constraints, we search for the
one that is the closest to the set of joint angles given by the
fitting algorithm. In other words, we use the result from the
fitting algorithm as the starting point and adjust it to meet
the six constraints while minimizing the change at each
joint, so that the overall posture of the robot can be pre‐
served. This implies that each module must consist of more
than six joints, and that each module is treated like a
redundant robot.

A pseudo-inverse Jacobian has been widely used to control
redundant robots. In order to utilize the redundancy to
achieve a secondary goal, the gradient projection method
and weighted least-norm have also usually been adopted.
In this study, we used weighted least-norm, as it does not
require gain tuning which has to be found by trial and error,
and it minimizes the self-motion [9]. Assuming a hyper-
redundant robot of n-DOF, which consists of modules of
nm-DOF, the weighted least-norm solution can be repre‐
sented as:

() 11 1T T
dq W J JW J X

-- -= && (4)

where q̇ is the joint velocity, Ẋ d is the desired workspace
velocity, W is the weighting matrix and J is the module
Jacobian. This relationship can also be expressed as:

() 11 1T Tq W J JW J X
-- -D = D (5)

where ∆X would be the error between the current position
of the distal end of the module and the constraints in
position and orientation. As stated in previous sections,
each module controller is given the six constraints. The
position part of ∆X would simply be the position error
between the distal end of the module and the end position
of the segment. As for the orientation, unit quaternion is
used in this study to avoid any representation singularities
[21]. This allows hyper-redundant robots to move towards
any arbitrary direction. Rotation matrix Ri−1

i will be the
desired rotation matrix, and one can compute ∆X accord‐
ingly.

The weighting matrix W can be expressed as:

1 0 0
0 0
0 0 n

w
W

w

é ù
ê ú= ê ú
ê úë û

O (6)

where wi, the i-th element of the diagonal matrix W, is
defined as

() ()1 0

()1 0

i i
i

i

H q H qif
q q

w
H qif

q

ì ¶ ¶
+ D ³ï

¶ ¶ï
= í

¶ï D <ï ¶î

(7)

where H(q) is the desired performance criterion. The user
can set up appropriate ∂H (q) / ∂qi to achieve the desired
secondary goal and it can be seen from Eq. (7) that if
∂H (q) / ∂qi decreases, wi will become 1 and there will be no
null space motion. In this study, the goal is to minimize the
deviation of the fitted angles from the fitting algorithm, and
thus, the objective function is set to:

() ()2,i i fit
i

H q
q q

q
¶

= -
¶

(8)

where qi,fit is the result from the fitting algorithm. As can be
seen from Eq. (8), the function is equal to zero when the
angle is at the fitted position, and it increases rapidly as the
joint moves away from the fitted position. Thus, as a joint
angle qi deviates from the qi,fit, this function will cause a
reduction in the motion. With this redundancy utilization,
we can satisfy the constraints in the position and the
orientation while keeping the configuration of the module
as close as possible to the fitted result.

As we use the fitted solution as the starting point, it is
important to obtain a good starting point. As mentioned
above, to obtain a good fitting result, one must fit several
joints at the same time (increase k in Eq. (2)). This would
increase the computational load. However, with the
modular control scheme, the burden of each controller is
lessened and thus, the controllers can fit multiple joints at
the same time, which would not have been possible using
a single controller.

As stated in previous sections, if a hyper-redundant robot
is to perform a task it must be able to place its end-effector
accurately at the desired location. This can be easily
accomplished using the proposed position control method
shown in Eq. (5). It would allow the user to control the last
module to move the end-effector while minimizing the
change in the overall configuration of the robot. Thus, the
proposed control scheme not only reduces the computa‐
tional load, but it also increases the efficiency of the robot.

It should be noted that the proposed algorithm is not
limited to a certain joint configuration, and the correspond‐
ing Jacobian for any hyper-redundant robot can be easily
solved to apply the proposed control scheme. Thus, the
proposed algorithm is highly flexible and can be applied to
any hyper-redundant robot.

4 Int J Adv Robot Syst, 2015, 12:91 | doi: 10.5772/60602

3. Simulation

3.1 Robot

A 24-DOF robot with alternating yaw and pitch joints was
simulated using MATLAB (MathWorks, Inc., Natick, MA).
We chose the configuration with the alternating joints since
this configuration is widely used in many hyper-redundant
robots, such as [22,23]. To enable the proposed modular
control, the robot was divided into three modules of 8-DOF
each, and a module is shown in Figure 3. The length of each
link is set to 1.5 unit length, and ε in Eq. (1) is set to 0.05.
qmin and qmax are set to -70 and 70 degrees, respectively, and
(for optimization) the angle increments by 5 degrees. For a
better result, we fitted two joints at the same time.

l

x

z

y

Figure 3. Joint configuration of a module

3.2. Simulation Conditions

Two Bezier curves were used as the desired backbone curve for the simulation. Bezier curves are often used to simulate a

backbone curve for a hyper-redundant robot, and they can be described as [14]:

 
 

 
6

0

6!
1

! 6 !

M rr
d dk

r

p t p t t
r r





 


 (9)

with seven control points, Pdk and M is equal to 6.

The simulation was conducted using a single PC, although the proposed scheme involves the use of multiple controllers.

This was due to the technical difficulties in performing simulations using multiple PCs. The simulation first plays the

role of the main controller to process the given backbone curve. Then, the simulation simulates the module controllers to

control each module. This cannot be done in parallel, and the module controllers are simulated one by one. However,

throughout the simulation, all the controllers were treated independently. By using this method, it can be shown that if

all the outcomes from the module controllers are put together, the robot will resemble the given backbone curve. The

reduction of the computational load will be discussed in a later section.

3.3. Result 1: 2-Dimensional Curve

The first curvature is given in the 2-dimensional plane, and the control points for the Bezier curve are given in Eq. (10).

The resulting curve is illustrated in Figure 4 (a), and the corresponding robot is shown in Figure 4 (b). Note that the end

point of each segment is marked with a large circle, while yaw and pitch joints of the robot are illustrated by solid

squares and hollow circles, respectively.

 

0 8 12 12 4 4 12

0 , 6 , 0 , 6 , 12 , 18 , 24

0 0 0 0 0 0 0

dkP r

             
             

    
             
                          

 (10)

-25-20-15-10-505
0

2

4

6

8

10

12

x

y

(a) (b)

0

2

4

6

8

10

12

-25-20-15-10-505
y

Segment end point Yaw joint Pitch joint

x

Figure 4. Results of 2-dimensional curve: (a) given desired curve, and (b) resulting robot configuration

3.4. Result 2: 3-Dimensional Curve

The second curvature is given in 3-dimensional space as can be noted from Eq. (11). The results are illustrated in Figure

5.

 

0 12 16 8 8 12 22

0 , 6 , 12 , 18 , 24 , 18 , 12

0 0 0 2 2 4 6

dkP r

             
             

      
             
                          

(11)

Figure 3. Joint configuration of a module

3.2 Simulation Conditions

Two Bezier curves were used as the desired backbone curve
for the simulation. Bezier curves are often used to simulate
a backbone curve for a hyper-redundant robot, and they
can be described as [14]:

() () ()
6

0

6! 1
! 6 !

M rr
d dk

r
p t p t t

r r
-

=

= -
-å (9)

with seven control points, Pdk and M is equal to 6.

The simulation was conducted using a single PC, although
the proposed scheme involves the use of multiple control‐
lers. This was due to the technical difficulties in performing
simulations using multiple PCs. The simulation first plays
the role of the main controller to process the given back‐
bone curve. Then, the simulation simulates the module
controllers to control each module. This cannot be done in
parallel, and the module controllers are simulated one by
one. However, throughout the simulation, all the control‐
lers were treated independently. By using this method, it
can be shown that if all the outcomes from the module
controllers are put together, the robot will resemble the
given backbone curve. The reduction of the computational
load will be discussed in a later section.

3.3 Result 1: 2-Dimensional Curve

The first curvature is given in the 2-dimensional plane, and
the control points for the Bezier curve are given in Eq. (10).
The resulting curve is illustrated in Figure 4 (a), and the
corresponding robot is shown in Figure 4 (b). Note that the
end point of each segment is marked with a large circle,

while yaw and pitch joints of the robot are illustrated by
solid squares and hollow circles, respectively.

()
0 8 12 12 4 4 12
0 , 6 , 0 , 6 , 12 , 18 , 24
0 0 0 0 0 0 0

dkP r
é ù é ù é ù é ù é ù é ù é ù
ê ú ê ú ê ú ê ú ê ú ê ú ê ú= - - - -ê ú ê ú ê ú ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û

(10)

l

x

z

y

Figure 3. Joint configuration of a module

3.2. Simulation Conditions

Two Bezier curves were used as the desired backbone curve for the simulation. Bezier curves are often used to simulate a

backbone curve for a hyper-redundant robot, and they can be described as [14]:

 
 

 
6

0

6!
1

! 6 !

M rr
d dk

r

p t p t t
r r





 


 (9)

with seven control points, Pdk and M is equal to 6.

The simulation was conducted using a single PC, although the proposed scheme involves the use of multiple controllers.

This was due to the technical difficulties in performing simulations using multiple PCs. The simulation first plays the

role of the main controller to process the given backbone curve. Then, the simulation simulates the module controllers to

control each module. This cannot be done in parallel, and the module controllers are simulated one by one. However,

throughout the simulation, all the controllers were treated independently. By using this method, it can be shown that if

all the outcomes from the module controllers are put together, the robot will resemble the given backbone curve. The

reduction of the computational load will be discussed in a later section.

3.3. Result 1: 2-Dimensional Curve

The first curvature is given in the 2-dimensional plane, and the control points for the Bezier curve are given in Eq. (10).

The resulting curve is illustrated in Figure 4 (a), and the corresponding robot is shown in Figure 4 (b). Note that the end

point of each segment is marked with a large circle, while yaw and pitch joints of the robot are illustrated by solid

squares and hollow circles, respectively.

 

0 8 12 12 4 4 12

0 , 6 , 0 , 6 , 12 , 18 , 24

0 0 0 0 0 0 0

dkP r

             
             

    
             
                          

 (10)

-25-20-15-10-505
0

2

4

6

8

10

12

x

y

(a) (b)

0

2

4

6

8

10

12

-25-20-15-10-505
y

Segment end point Yaw joint Pitch joint

x

Figure 4. Results of 2-dimensional curve: (a) given desired curve, and (b) resulting robot configuration

3.4. Result 2: 3-Dimensional Curve

The second curvature is given in 3-dimensional space as can be noted from Eq. (11). The results are illustrated in Figure

5.

 

0 12 16 8 8 12 22

0 , 6 , 12 , 18 , 24 , 18 , 12

0 0 0 2 2 4 6

dkP r

             
             

      
             
                          

(11)

Figure 4. Results of 2-dimensional curve: (a) given desired curve, and (b)
resulting robot configuration

3.4 Result 2: 3-Dimensional Curve

The second curvature is given in 3-dimensional space as
can be noted from Eq. (11). The results are illustrated in
Figure 5.

()
0 12 16 8 8 12 22
0 , 6 , 12 , 18 , 24 , 18 , 12
0 0 0 2 2 4 6

dkP r
é ù é ù é ù é ù é ù é ù é ù
ê ú ê ú ê ú ê ú ê ú ê ú ê ú= - - - - - -ê ú ê ú ê ú ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û

(11)

(a)

(b)

Segment end point Yaw joint Pitch joint

0
5

10
15

20 -25
-20

-15
-10-

5

0

5

yx

z

0 5 10 15 20 25

-30
-20

-10
0

0

6

0 5 10 15 20 25

-30
-20

-10
0
0

6

0
5

10
15

20 -25
-20

-15
-10

-5

0

5

z

yx

z

z

x

x

y

y

View 1

View 1

View 2

View 2

Figure 5. Results of 3-dimensional curve: (a) given desired curve, and (b) resulting robot configuration

The given desired curve is shown in Figure 4 (a) and 5 (a), and the resulting robot configurations are shown in Figure 4

(b) and 5 (b). As can be seen from the results, the control scheme was able to pick up most of the geometric features of

the given curve. It should be noted that the result is limited by the dexterity of the robot. Although the configuration

used in this study is widely used for hyper-redundant robots, it does not offer high dexterity compared to other

configurations, such as robots with universal joints. Thus, although the resulting configuration resembles the given curve,

it may show a “zigzag” pattern due to the joint configuration of the robot. This pattern was also reported in other studies,

such as [14]. Reducing the link length, l, or increasing the dexterity of the robot would further improve the outcome of

the control scheme.

The proposed control scheme treats each module as an independent redundant robot and, thus, many issues in

controlling robots can be resolved using the solutions proposed for redundant robots. For example, joint limits and

kinematic singularities often limit the operation of a robot. However, using the proposed control scheme, the operator

may impose additional Jacobian-based redundancy resolutions on the robot to effectively avoid joint limits and

singularities at the cost of a heavier computational load, as the use of multiple redundancy resolutions may require an

increase in the number of redundant joints.

3.5. Analysis of Computational Load Reduction

The fitting algorithm can be regarded as the iterative computation of the end position of a link. Given the DH notation of

a module, the end position of link i can be easily found using the forward kinematics computation as shown in Eq. (12):

10
1

0 
 i

iii AAA
 (12)

Dummy Text where 1i
iA is a 4-by-4 transformation matrix between frame i and i-1. Note that this multiplication

requires 64 operations. To fit a single joint, this multiplication must be done for all possible joint angles. By denoting nq

as the number of possible joint angles between qmin and qmax, the total number of operations required to fit a single joint is

64nq. By denoting k as the number of joints to be fitted at the same time and generalizing the result given above, it can be

concluded that the required number of operation to fit a module is:

 64
k

qc n

k
 (13)

Normally, c is the total number of DOF of a hyper-redundant robot. However, using the proposed modular control

scheme, c can be reduced to the 1/m of the value without the modular scheme, thus reducing the computational load to

1/m. The reduction may seem less apparent in a hyper-redundant robot with a small number of DOF. However, the

proposed scheme would be particularly helpful for a hyper-redundant robot with a large number of DOF, for which a

single controller cannot handle the fitting algorithm in real-time. Note that this analysis focused on the computation of

the end position of links as it requires the heaviest computation. Other necessary computations, such as the Jacobian, can

be easily computed without much computational burden.

Figure 5. Results of 3-dimensional curve: (a) given desired curve, and (b)
resulting robot configuration

The given desired curve is shown in Figure 4 (a) and 5 (a),
and the resulting robot configurations are shown in Figure
4 (b) and 5 (b). As can be seen from the results, the control
scheme was able to pick up most of the geometric features
of the given curve. It should be noted that the result is
limited by the dexterity of the robot. Although the config‐

5Chang Nho Cho, Hyunchul Jung, Jaebum Son and Kwang Gi Kim:
A Modular Control Scheme for Hyper-redundant Robots

uration used in this study is widely used for hyper-
redundant robots, it does not offer high dexterity compared
to other configurations, such as robots with universal joints.
Thus, although the resulting configuration resembles the
given curve, it may show a “zigzag” pattern due to the joint
configuration of the robot. This pattern was also reported
in other studies, such as [14]. Reducing the link length, l, or
increasing the dexterity of the robot would further improve
the outcome of the control scheme.

The proposed control scheme treats each module as an
independent redundant robot and, thus, many issues in
controlling robots can be resolved using the solutions
proposed for redundant robots. For example, joint limits
and kinematic singularities often limit the operation of a
robot. However, using the proposed control scheme, the
operator may impose additional Jacobian-based redundan‐
cy resolutions on the robot to effectively avoid joint limits
and singularities at the cost of a heavier computational
load, as the use of multiple redundancy resolutions may
require an increase in the number of redundant joints.

3.5 Analysis of Computational Load Reduction

The fitting algorithm can be regarded as the iterative
computation of the end position of a link. Given the DH
notation of a module, the end position of link i can be easily
found using the forward kinematics computation as shown
in Eq. (12):

0 0 1
1

i
i i iA A A -

-= (12)

where Ai
i−1 is a 4-by-4 transformation matrix between frame

i and i-1. Note that this multiplication requires 64 opera‐
tions. To fit a single joint, this multiplication must be done
for all possible joint angles. By denoting nq as the number
of possible joint angles between qmin and qmax, the total
number of operations required to fit a single joint is 64nq.
By denoting k as the number of joints to be fitted at the same
time and generalizing the result given above, it can be
concluded that the required number of operation to fit a
module is:

()64
k

qc n
k

(13)

Normally, c is the total number of DOF of a hyper-redun‐
dant robot. However, using the proposed modular control
scheme, c can be reduced to the 1/m of the value without
the modular scheme, thus reducing the computational load
to 1/m. The reduction may seem less apparent in a hyper-
redundant robot with a small number of DOF. However,
the proposed scheme would be particularly helpful for a
hyper-redundant robot with a large number of DOF, for
which a single controller cannot handle the fitting algo‐

rithm in real-time. Note that this analysis focused on the
computation of the end position of links as it requires the
heaviest computation. Other necessary computations, such
as the Jacobian, can be easily computed without much
computational burden.

4. Conclusion

In this study, we proposed a novel modular control scheme
for hyper-redundant robots. Through the use of modulari‐
zation, redundancy resolution and a fitting algorithm, the
control of a hyper-redundant robot in three-dimensional
space was achieved. The performance of the scheme is
verified through simulations. From this study, the follow‐
ing conclusions were drawn:

1. The proposed scheme reduces the computational load
of hyper-redundant robots by enabling parallel
computation. The robot is divided into modules, and
each module can be fitted separately.

2. The proposed scheme is applicable to any hyper-
redundant robot. The algorithm is not restricted to a
joint configuration and is applicable for the curve
given in both two- and three-dimensional spaces.

3. A weight least-norm solution that preserves the
configuration of the robot is proposed. This can be
used to enable parallel computation. Furthermore, it
can be used to control the end-effector position of a
hyper-redundant robot to perform various tasks.

5. Acknowledgements

The authors disclosed receipt of the following financial
support for the research, authorship and/or publication of
this article: This study was supported by grants from the
National Research Foundation of Korea (NRF-2014024875)
and the National Cancer Center of Korea (NCC-1210170).

6. References

[1] Siciliano B, Khatib O. Handbook of Robotics. Berlin:
Springer; 2008. 246 p.

[2] Degani A, Choset H, Wolf A, Zenati MA. Highly
articulated robotic probe for minimally invasive
surgery. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA);
15-19 May 2006; Orlando, Florida; 2006. p. 4167-72

[3] Slatkin AB, Burdick J, Grundfest W. The develop‐
ment of a robotic endoscope. In: Proceedings of the
IEEE/RSJ Int. Conference on Intelligent Robotics
and Systems (IROS). 5-9 August 1995; Pittsburgh,
PA; 1995. p. 162-71

[4] Huang X, Abdalbari A, Ren J, 3D surface recon‐
struction of stereo endoscopic images for minimally
invasive surgery. Biomedical Engineering Letters.
2013;3:149-157.

6 Int J Adv Robot Syst, 2015, 12:91 | doi: 10.5772/60602

[5] Low KH. Industrial Robotics: Programming,
Simulation and Applications, Mammendorf: Pro
Literatur Verlag; 2006. 633-662 p.

[6] Wakimoto S, Nakajima J, Takata M, Kanda T,
Suzumori K. A micro snake-like robot for small pipe
inspection. In: Proceedings of the International
Symposium on Micromechatronics and Human
Science. 19-22 October 2003; Nagoya, Japan; 2003. p.
303-308

[7] Maciejewski AA, Klein CA. Obstacle avoidance for
kinematically redundant manipulators in dynami‐
cally varying environments. International Journal
of Robotics Research. 1985;4:109-17.

[8] Liegeois A. Automatic supervisory control of the
configuration and behaviour of multibody mecha‐
nisms. IEEE Transactions on Systems, Man and
Cybernetics. 1977;7:868-71.

[9] Chan TF, Dubey RV. A weighted least-norm
solution based scheme for avoiding joint limits for
redundant joint manipulators. IEEE Transactions
on Robotics and Automation. 1995;11:286-92.

[10] Buss SR Introduction to inverse kinematics with
Jacobian transpose, pseudoinverse and damped
least square methods. IEEE Journal of Robotics and
Automation. 2004;17:1-19.

[11] Chirikjian GS, Burdick JW. Modal approach to
hyper-redundant manipulator kinematics. IEEE
Transactions on robotics and automation.
1994;10:343-54.

[12] Mochiyama H, Kobayashi H. The shape Jacobian of
a manipulator with hyper degree of freedom. In:
Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). 10-15 May
1999; Detroit, MI; 1999. p. 2837-42.

[13] Tully S, Kantor G, Zenati MA, Choset H. Shape
estimation for image guided surgery with a highly
articulated snake robot. In: Proceedings of the IEEE/
RSJ International Conference on Intelligent Robots
and Systems (IROS). 25-30 September 2011; San
Francisco, CA; 2011. p. 1353-8.

[14] Andersson SB. Discrete approximations to continu‐
ous curves. In: Proceedings of the IEEE Internation‐

al Conference on Robotics and Automation (ICRA).
15-19 May 2006; Orlando, FL; 2006. p. 2546-51.

[15] Hatton RL and Choset H. Generating gaits for snake
robots by annealed chain fitting and keyframe wave
extraction. Autonomous Robots. 2010;28:271-81.

[16] Fahimi F, Ashrafiuon H, Nataraj C. Inverse kine‐
matic solution for universal-jointed hyper-redun‐
dant robots. IEEE Transactions of Robotics and
Automation. 2002;18:103-7.

[17] Chirikjian GS, Burdick JW. Parallel formulation of
the inverse kinematics of modular hyper-redun‐
dant manipulators. In: Proceedings of the IEEE
International Conference on Robotics and Automa‐
tion (ICRA). 9-11 April 1991; Sacramento, CA; 1991.
p. 708-13.

[18] Lipkin K, Brown I, Peck A, Choset H, Rembisz J,
Gianfortoni P, Naaktgeboren A. Differentiable and
piecewise differentiable gaits for snake robots. In:
Proceedings of the IEEE/RSJ International Confer‐
ence on Intelligent Robots and Systems (IROS). Oct
29-Nov 2 2007; San Diego, CA; 2007. p. 1864-9.

[19] Tesch M, Lipkin K, Brown I, Hatton R, Peck A,
Rembisz J, Choset H. Parameterized and scripted
gaits for modular snake robots. Advanced Robotics.
2009;23:1131-58.

[20] Chen IM, Yeo SH, Gao Y. Locomotive gait genera‐
tion for inchworm-like robots using finite state
approach. Robotica. 2001;19:535-42.

[21] Sciavicco L, Siciliano B. Modelling and control of
robot manipulators. Berlin: Springer;2000. 35-37 p.

[22] Wright C, Buchan A, Brown B, Geist J, Schwerin M,
Rollinson D, Tesch M, Choset H. Design and
architecture of the unified modular snake robot. In:
Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). 14-18 May
2012; Saint Paul, MN; 2012. p. 4347-54.

[23] Hirose S, Mori M. Biologically inspired snake-like
robots. In: Proceedings of the IEEE International
Conference on Robotics and Biomimetics. 22-26
August 2004; Shenyang; 2004. p. 1-7.

7Chang Nho Cho, Hyunchul Jung, Jaebum Son and Kwang Gi Kim:
A Modular Control Scheme for Hyper-redundant Robots

