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EmSBot: A modular framework
supporting the development
of swarm robotics applications
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Abstract
Component-based approaches are prevalent in software development for robotic applications due to their reusability and
productivity. In this article, we present an Embedded modular Software framework for a networked roBoTic system
(EmSBoT) targeting resource-constrained devices such as microcontroller-based robots. EmSBoT is primarily built upon
�COS-III with real-time support. However, its operating system abstraction layer makes it available for various operating
systems. It employs a unified port-based communication mechanism to achieve message passing while hiding the het-
erogeneous distributed environment from applications, which also endows the framework with fault-tolerant capabilities.
We describe the design and core features of the EmSBoT framework in this article. The implementation and experimental
evaluation show its availability with small footprint size, effectiveness, and OS independence.
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Introduction

Currently, advances in sensors, actuators, and computer

technologies have led to the increasing complexity of

robotic systems. It is a challenging and tedious task to

develop new robotic applications for such platforms, espe-

cially when the robotic system is equipped with several

heterogeneous embedded processors, considered as a

networked system (e.g. the ATHLETE robot,1 Triskar2,2

and s-bot3). Engineers have to deal with diverse functional

modules of the applications, from low-level device drivers

to high-level functions such as planning and navigation. On

the other hand, it has long been recognized that the use of a

multi-robot system can outperform an individual versatile

robot, such as space exploration, object transport, and dis-

tributed manipulation. Writing software for a multi-robot

system further complicates the situation when considering

coordination and communication problems. Overall, we

can view an advanced robot with several processors and

multi-robot system with communication capability as dis-

tributed computing systems connected via physical or wire-

less network, a special case of a networked robotic system

(NRS).4

Due to the inherent difficulty in developing complex

robotic applications from scratch, a number of robotic soft-

ware frameworks (RSFs) or middlewares have been specif-

ically designed and widely used to alleviate the process,

such as Player,5 ROS,6 ASEBA,7 RSCA,8 MIRA,9 Orocos,10

Miro,11 OpenRDK,12 OPRoS,13 and OpenRTM-aist.14
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Nearly all these frameworks share the same paradigm—a

component-based approach—an idea naturally originating

from component-based software engineering (CBSE). By

applying the principles of CBSE, the robotic application is

divided into different software ‘‘agents’’, which are loosely

coupled. Depending on the framework, an ‘‘agent’’ is also

called a ‘‘component,’’ ‘‘module,’’ ‘‘node,’’ or ‘‘resource.’’

In the rest of the article, the term agent is used. These

loosely coupled agents only export data or control inter-

faces to others, while the RSF is responsible for the mes-

sage passing and event notification between agents.

Besides the communication mechanism, some RSFs also

specify the agent model for applications, such as

OpenRTM-aist,14 GenoM3,15 and FINROC.16 Using

RSF in the development process of robotic applications

introduces better software quality, code reusability, and

collaborative development. However, without deliber-

ately designing the interactions between agents, achieve-

ment of the quality-of-service requirements of some

applications, such as the real-time constraints, is an

intractable problem.

This article focuses on the problem of applying RSF in the

domain of NRS. We extend the concept of NRS to a more

general idea as illustrated in Figure 1, including not only a

group of connected robots, such as swarm robots and modular

robots with communication feature,17,18 but also a complex

self-contained robot with distributed processing units. We

claim that every node in Figure 1 is equipped with a process-

ing unit, some memory, and some peripheral interfaces that

can be used to connect sensors or control actuators, as well as

some communication channels. The processing unit could be

a microprocessor, microcontroller, or digital signal processor.

Using RSF to develop applications for such a heterogeneous

system presents some challenges and requirements.

� Support for heterogeneous hardware platforms and

operating systems. The framework should support

diverse hardware platforms, the memory of which

could be limited to dozens of kilobytes. Therefore,

the framework must be configurable and scalable to

support the diversity. On the other hand, the hard-

ware varieties also result in different operating sys-

tems on top. Due to the resource constraints in

embedded systems, real-time operating systems

(RTOSs) are widely used. The programming inter-

faces and procedures are very different from those in

desktop operating systems. The framework should

abstract the underlying operating system in order

to be ported to other operating systems without too

much effort.

� Communication network and transport protocol

independence. The framework should not depend

on the communication network adopted. The com-

munication between computing nodes on a complex

robot may be based on a physical network bus, such

as an Ethernet or CAN bus. In swarm and modular

robotics, the communication may rely on a wireless

network, such as ZigBee, Bluetooth, and WLAN.

The framework should have the flexibility to switch

to different communication networks.

� Real-time support. The real-time requirement is ubi-

quitous in robotic systems, especially in the automo-

tive and avionic domains. Deploying the framework

above or on top of the RTOS is the preliminary step

in guaranteeing the real-time requirement. In addi-

tion, the framework should support the real-time

requirement inherently or not jeopardize it. The dis-

tribution of the whole system further complicates the

situation. It may need real-time communication,

whereas we claim that the framework should be net-

work transparent. Therefore, the framework should

employ a mechanism to coordinate the real-time

communication with the network layer.

� Fault-tolerant support. NRS provides reliability and

fault tolerance inherently by adding redundant fea-

tures and distributing task responsibilities to differ-

ent nodes. An abnormal hardware node or software

agent will not disable the system because of auto-

matic reconfiguration.19 The software framework

should have such an advantage and should further

simplify the reconfiguration process.

� Simplicity and ease of use. The framework should be

simple and easy to learn. The programming model of

the framework is intuitive and existing code can be

adapted to the programming model with little or

no change.

This article presents EmSBoT, an Embedded modular

Software framework for a networked roBoTic system,

which considers the aforementioned requirements. The rest

of the article is organized as follows: Section ‘‘Related

work’’ gives an overview of related work and highlights

the distinguished features of EmSBoT. Section ‘‘The

 

c

c

MM

M

M

M

M

M

M

M

Figure 1. The extended networked robotic system. A robot
could be composed of a single microcontroller, a central pro-
cessor with several microcontrollers, or just several homoge-
neous microcontrollers. C: central processor; M: microcontroller;�: robot;______: linked via physical bus; . . . . . . : wirelessly
connected.
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EmSBoT framework’’ describes the internals of EmSBoT

design as well as its core features. Section ‘‘Implementa-

tion and experimental evaluation’’ presents its implemen-

tation details, some benchmarking results, and a multi-

robot leader–follower case study to demonstrate its effi-

cacy. Finally, we give some conclusion remarks and future

work in section ‘‘Conclusion and future work.’’

Related work

Many RSFs with various characteristics are available.

However, none of them is the de facto standard tool for

building robotic applications in the educational and indus-

trial communities, due to the diverse functional and non-

functional requirements in different robotic projects. A

comprehensive survey and comparison of existing frame-

works are given in the literarure.20–22 Here, we just analyze

the attributes that EmSBoT is supposed to include.

After reviewing existing RSFs, we found that none are

designed to support heterogeneous hardware platforms and

operating systems. Most of them only support the desktop-

level environment without taking into account resource-

constrained platforms, such as microcontroller-based

robots. On the other hand, there are also some RSFs that

support embedded hardware, such as R2P,2 ASEBA,7 and

�ORB.23 However, they do not consider the cross-platform

problem. For programming a networked robotic system that

includes heterogeneous nodes, an existing solution is to use

an RSF in desktop-level or powerful embedded computers

with or without an embedded RSF on other nodes. The

communication between different RSFs is via a specific

wrapper. For instance, in R2P, an �ROSnode is developed

for integration with the ROS system. In the study by

Mellinger et al.,24 a desktop with the ROS system is used

to control multiple quadrotors without an RSF on board.

The onboard processor is only used to read and transmit

sensor data to the desktop, to receive control commands,

and to set actuators. However, with advances in processor

power and sensors, it is capable of deploying a (real-time)

operating system with a lightweight RSF in the quadrotor,

as it did in the study by Meier et al.23 Instead of building a

bridge between different RFSs, we propose the idea that a

unified framework supporting various platforms can further

alleviate the development of applications for NRSs.

Most of the existing frameworks build upon the TCP/IP

or UDP/IP network, such as MIRA, ROS, OpenRDK, and

Player; some frameworks are also based on general com-

munication middlewares, such as OpenRTM-aist and

MIRO adhering to CORBA. FINROC, R2P, and Orocos

support communication over CAN bus. ASEBA supports

both CAN bus7 and Bluetooth networks.25 A communica-

tion system based on a ZigBee network was evaluated for

self-reconfiguring modular robots in the study by Fitch and

Lal.26 None of these frameworks are versatile enough to

support all the networks, or to be network transparent.

The capability to seamlessly switch to another network

should be integrated into the framework. This feature is

profitable for robots with multiprocessors, as well as

multi-robot systems.

ROS, Player, and OpenRDK, from their original design

goals, have not been dealing with a robotic system with the

real-time requirement but are aimed at service robots and

assistive robots. ASEBA employs the event-based pro-

gramming paradigm to support the real-time requirement.

RT-CORBA is used in RSCA to support real-time commu-

nication. Orocos, built on top of RTAI and RTLinux,

supports real-time components. OpenRTM-aist supports

real-time capability through its RT-component model.

MIRA, by avoiding unnecessary copying of data when

handling communication between agents, outperforms

other frameworks in terms of communication latency and

memory usage. ChibiOS/RT, an RTOS, is chosen in R2P to

meet the real-time requirement. R2P also integrates a real-

time CAN bus protocol to transmit messages between net-

worked nodes.

Fault tolerance includes fault detection and recovery at

runtime. As stated in the study by Cui et al.,19 faults include

two aspects: functional and nonfunctional. Detection of the

functional and nonfunctional faults is rarely supported in

existing frameworks except OPRoS. Fault recovery can be

supported if the framework supports agent reconfiguration

at runtime. This is strongly related to the programming

mode and communication style of the framework. ROS,

MIRA, OpenRDK, R2P, and �ORB all adopt a similar

topic-based communication style. They can achieve fault

recovery by replacing the failure agent when finding fault

artificially. Another favorable communication style is the

port-based mechanism, which is adopted in OPRoS,

OpenRTM-aist, FINROC, and COP frameworks.27 This

mechanism makes agents loosely coupled, and the commu-

nication between agents can be created and destroyed dyna-

mically, which is highly suitable for failure recovery through

agent reconfiguration. OPRoS is endowed with fault toler-

ance through a specific fault-manager module.28,29

What most distinguishes EmSBoT from existing fra-

meworks is that it provides a lightweight unified program-

ming and communication interface for heterogeneous

distributed environments, ranging from resource-

constrained embedded microcontrollers to desktop-level

computers. In EmSboT, the communication networks are

isolated as special agents, making the framework network

transparent and adaptable to diverse communication pro-

tocols. This feature is highly beneficial for the devices that

inhabit more than one network. Apart from being built on

top of RTOSs intentionally as other RSFs do to support

the real-time requirement, EmSBoT also employs a

priority-based message passing approach to increase its

soft real-time capability. Furthermore, the framework

integrates an affordable distributed fault-tolerant mechan-

ism that is based on the port-based communication style.

All these features will be introduced in detail in the fol-

lowing section.
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The EmSBoT framework

The EmSBoT framework was initially proposed to address

the problem of communication transparency between

swarm robots in our laboratory. These robots are resource

constrained, being equipped with ARM Cortex-M MCUs,

but capable of embedding an RTOS inside. Also, a more

powerful robot equipped with the Cortex-A processor

could be used as the mother ship. The communication

between them is achieved via a Digi XBee RF module

considering the cost and power consumption. The frame-

work must be able to support such a circumstance. If we

abstract the underlying network layer, the framework is

highly suitable for complex robots with multiprocessors.

With this vision, the EmSBoT framework is developed to

address the requirements and challenges mentioned earlier.

Overall architecture

The overall architecture of EmSBoT is deliberately divided

into three layers (see Figure 2): the operating system

abstraction layer, the core of the framework, and the appli-

cation layer composed of software agents.

In order to achieve portability, we argue that EmSBoT

should only utilize the generic system calls that operating

systems provide, such as calls to thread (or task), sema-

phore, mutex, and message queue. This principle guides

us to abstract these services to a separate layer, leading to

the uniform wrapper structures and functions for the upper

layer. Our previous experience in evaluating (real-time)

operating systems using our benchmark suite proves its

feasibility.30,31

Based on the OS abstraction layer, we implemented the

core framework of EmSBoT with the aim of minimizing its

memory footprint and dependencies on other libraries. This

layer defines the programming model for applications, pro-

vides core services to the upper application layer, and routes

messages between agents. The real-time requirement and

fault-tolerant mechanism are also supported in this layer.

The modularity of the framework is implemented by divid-

ing the application into software agents, which are managed

by the EmSBoT core. These agents are functionally inde-

pendent in principle and interact via message passing.

System and programming model

The construction of a distributed EmSBoT system stems

from the notion of a computation ‘‘node,’’ which is addres-

sable. Formally, the system can be expressed as a tuple

< N ;C >, where N is the set of computation nodes and

C is the set of communication channels. Normally, the

system contains only one communication channel, whereas

a more sophisticated system may have several communi-

cation channels connected via gateway nodes. For example,

in the literature,2 the CAN network and IP network are

mixed by a special gateway node.

Node. Each node ni in N is composed of a set of software

agents and communication ports. We argue that all the

elements of ni share the same memory space. For example,

a microcontroller with RTOS and a communication

medium inside can be viewed as a node (see Figure 2); a

process in the desktop OS such as Linux can also be a node,

which could be addressed by a TCP or UDP port number.

Every node in the system has a unique ID, NodeID, which

can be set to its network address. Then, ni can be general-

ized as a tuple< NodeID;A; IP;OP;NC >. A stands for the

set of agents. IP and OP denote the set of input ports and

the set of output ports, respectively. We will introduce

these notions later. NC � C is the communication channels

owned by the node. Except for the gateway nodes, the

cardinality of NC is equal to one in most cases, implying

that this node is only connected to one communication

network. In a few situations, in order to increase the robust-

ness of the node, it could double the same communication

link for redundancy, which is beyond the scope of this

article. But we could regard them as two different links.

Agent. Each agent in the node also has a unique ID, AgentID

so in the whole system an agent can be identified and

addressed by < NodeID;AgentID >. An agent is associ-

ated with four hook functions: Init, Exec, Destroy, and

Faulthandling, which denote the major phases of the

agent’s life cycle. Each agent also comprises a group of

coupled threads: some optional worker threads and one

mandatory main thread (MT) that controls the life cycle

of the agent. In MT, the agent starts by executing the Init

hook function to do some initialization work, such as allo-

cating ports, binding ports, and creating worker threads;

then, the Exec function is called periodically according to

a specified period T . If an agent is designed with only the

MT thread, the Exec can be used to carry out the main logic

of the agent. When an agent has multiple worker threads, it

is recommended to monitor and inspect the running of

worker threads in Exec. If some faults are detected, the

Hardware

sensors actuators

processor

battery

(Real-time) Operating System

EmSBoT core layer

network

memory

Software 

agent (SA1)

Software 

agent (SA2)

Software 

agent (SA3)
…

(
queue

) p
semaphore

g y
thread ……

input port output port

ayer
…

Operating System Abstract Layer (OSAL)

Communication 

agent (CA1)

y
port binding

EBRouting

Service

Figure 2. The architecture of the EmSBoT framework in one
microcontroller-based robot. EmSBoT: Embedded modular Soft-
ware framework for a networked roBoTic system.
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agent enters into the fault-handling procedure and execute

the Faulthandling function. If the agent cannot recover

from faults after Faulthandling, finally MT will invoke the

Destroy function that can be used to release resources.

Figure 3 shows the life cycle of an agent. The fault-

tolerant mechanism will be presented in detail in section

‘‘Fault-tolerant support.’’ An agent also has a priority win-

dow � ð½� min; � max �; � min � � maxÞ to support the real-time

requirement. The priority of every thread in the agent must

lie in � . Then, formally, an agent is a tuple < AgentID;
NodeID;Funcs; Thrs; �; T ; IP

0
;OP

0
>. Funcs is the set of

four hook functions; Thrs is the set of threads; IP
0 � IP and

OP
0 � OP are the ports that the agent holds. The framework

always keeps the rule that for any two agents Ai and Aj,

IP
0 ½Ai� \ IP

0 ½Aj� ¼ � and OP
0 ½Ai� \ OP

0 ½Ai� ¼ �. This

rule guarantees that a port is exclusively owned by one

agent.

Port. Similarly to other frameworks,13,14,16,27 ports are used

to pass messages between agents, giving the advantage of

flexibility, low coupling, and ease of use. In our model, the

input and output ports are explicitly distinguished. An

agent can only receive data from input ports and send data

to output ports. The data flow is established by binding

input ports to output ports. In the OPRoS model, three types

of ports are defined: service, data, and event ports.13 How-

ever, in order to maintain simplicity and reduce the foot-

print size, only the type of data port is reserved in EmSBoT.

We argue that the event port and service port can be easily

implemented using a data port. Actually, an event usually

includes the payload data,7 so listening to an event can be

converted to listening to the data port. One outstanding

feature of EmSBoT is that only the pointer to messages is

transmitted in the node domain, which guarantees real-time

capability in inner-node communication. Every port in our

model also has a unique ID, PortID, and a string, Name

indicating its data type. The input (output) port can only

bind to the output (input) port, which has the same Name.

The model does not restrict the number of output ports that

can bind to the same input port, and vice versa. Every port

in EmSBoT inherits the same priority �mt from the MT

thread. Then, either an input port or an output port can be

expressed as a tuple < PortID;AgentID;NodeID;Name;
�mt;PL >. The AgentID denotes the agent that owns the

port, and the NodeID indicates the node at which the port is

located. PL is the set of ports that bind to it.

Figure 4 shows the UML diagram of these elements in

the EmSBoT system. The framework is responsible for

maintaining their relationships, which can be used to help

analyze agent dependencies and fault recovery.

Communication mechanism

The communication between agents is achieved via the

data flow from the output port of one agent to the input

port of another agent. The communication process is expli-

citly divided into two steps: (1) port binding and (2) data

sending and receiving.

Init
Record start 

time Ts
Exec

Wait until 

period T expires

Record end 

time Te

Fault handling disabled ||

no faults detected Faulthandling

Normal cycle

Fault handling enabled  &&

((T!=0 && (Te-Ts>T)) ||

faultMsgs is not empty ||

Exec returns false)

Fault handling

succeeds

Fault handling

fails

Fault handling by the 

EmSBoT  framwork
Destroy

Figure 3. Activity diagram of the lifecycle of an agent, integrated with the fault-tolerant mechanism.
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Figure 4. UML diagram of the EmSBoT system model. EmSBoT:
Embedded modular Software framework for a networked roBoTic
system.
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Port binding. In the EmSBoT framework, an agent that needs

data from an output port of another agent needs to request

an input port with the same name from the framework and

bind it to the output. Similarly, an agent that intends to send

data to an input port of another agent must request an

output port and bind it. In our model, every (input or out-

put) port can be ‘‘active’’ or ‘‘passive’’ according to the

action of the agent. For instance, an agent that provides

other agents with normalized sensor information will use

a ‘‘passive’’ output port to export the IR data because it has

no perception of which agents need the IR data. On the

other hand, if a navigation agent Anav uses an input port

IPtp to receive the target position, then the input port is

‘‘passive’’ in Anav. A high-level agent that relies on Anav

obviously needs to employ an output port OPtp to send the

position data to IPtp, in which case OPtp is ‘‘active.’’ This

kind of property can be declared explicitly when the agent

requests a port. The EmSBoT framework provides two

kinds of core binding methods: static binding and dynamic

binding. Both sides are specifically assigned in static bind-

ing, whereas in dynamic binding, the ‘‘active’’ side is not

aware of where the ‘‘passive’’ side is located. The frame-

work will help solve the lookup or discovery problem.

However, this process is completely transparent from the

agent’s side.

Sending and receiving messages. After port binding is fin-

ished, the agent with the output port can send messages

to agents with the matching input port. If the input port is

in the same node, EmSBoT directly pushes the message

into the receiving buffer of the input port; if the input port

is across nodes, the message is first staged in a dummy

remote input port (RIP) and then a service named EBRout-

ing, which is a dedicated thread employed to handle mes-

sage routing asynchronously over node boundaries, is

activated. Once EBRouting has been notified, it gets mes-

sages from RIPs and passes them to the corresponding

communication agent. The whole sending process is illu-

strated in Figure 5. When data are available in the input

port, instead of using callback to invoke the user-defined

function, EmSBoT only provides the receiving function to

retrieve the data from the input port with or without block-

ing, which is more flexible than the callback method.

In EmSBoT, the data items in the input port are also

attached to the identity information, indicating the source

of the data. This is very helpful when the input port is used

to aggregate data from several agents. Additionally, output

port multiplexing is supported in EmSBoT. As an example,

take a multi-robot surveillance task in which three worker

robots ðNodeworkerÞ are assigned to monitor different areas.

The navigation agent ðAnavÞ in each Nodeworker is used to

receive the target location from the input port ðIPtpÞ and then

guides the robot to the desired location. A remote controller

robot ðNodeconÞ sends different target locations to the three

worker robots via output ports. This idea of output port

multiplexing is illustrated in Figure 6. Instead of creating

one output port for each IPtp, only one output port is created

in Acon and is binded to all three IPtp. The output port sends

the data group (target locations) in multiplexing mode, and

thereby every Anav can receive a different target location.

Such a mechanism is very helpful in a memory-limited

robot, as it does create excessive output ports.

In order to increase its soft real-time capability, we

implemented a priority-based message passing approach

in EBRouting inspired by the optimization work of parallel

intent broadcasts in real-time Android.32 When multiple

input ports pend on the same output port simultaneously,

this approach guarantees that the agent with the higher

priority will receive messages earlier than others. In the

study by Kalkov et al.,32 a priority message queue is

employed to arrange the messages based on priorities.

Instead of prioritizing the messages, our approach sorts the

input ports according to the attribute �mt derived from

agents. Analogously, in EBRouting, the remote input ports

are sorted according to their priorities. It always pulls data

from the RIP that has the highest priority. One problem

with priority queue is that the time taken to insert one

element varies with the priority of the element and the

length of the queue, which makes it less deterministic. Our

previous research shows that such a problem can be solved

using a priority level bitmap table,32 together with a highly

efficient search algorithm (based on the count leading

EmSBoT

core

Communication

agent

Thread in

agent

Output

port

EBRoung

service

Input port Remote input

port

pull(): Message

push()

allocate(): Output port

stage()

send(Message)

send()

notify()

Figure 5. The sequence diagram of sending data.
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zeroes (CLZ) instruction or a bit pattern lookup table). We

also use such a method in EBRouting, making the whole

process quick and stable.

Besides, as EBRouting is implemented as a dedicated

thread, its priority should be deliberately assigned in the

platform with RTOS inside. The running of EBRouting
should avoid destroying the real-time capability of the

whole system. One solution could be assigning a static

moderate priority. However, we argue that a high priority

or a low priority is not appropriate. When it is given a low

priority, the messages sent to agents with high priority

could be delayed. On the other hand, if we give it a high

priority, the real-time requirement of agents with high pri-

ority cannot be guaranteed if agents with lower priority

receive a lot of messages, as EBRouting will have exclu-

sive use of the CPU time until all the messages have been

handled. Therefore, we take the strategy of tuning its pri-

ority dynamically according to the priorities of the RIPs.

When the system starts up, EBRouting initializes its pri-

ority to the lowest one. We adjust its priority at two

moments: (1) when EBRouting is notified that an RIP has

staged messages and (2) between when EBRouting
finishes handling the current RIP and when it pulls mes-

sages from the next one. In the first case, EBRouting
inherits the priority from the RIP if its priority is lower than

that of the RIP. This principle makes sure that the RIP with

the highest priority receives messages as soon as possible.

In the second case, EBRouting directly lowers its priority

to that of the next RIP. This principle guarantees that

EBRouting will not paralyze the real-time requirement

of agents with high priority. Finally, if there are no mes-

sages to send, EBRouting goes back to the initial low

priority state.

When managing the communication between heteroge-

neous platforms, dealing with the data format and type

marshalling are inevitable. Frameworks such as R2P2 and

�ORB23 do not consider this problem because they are

deployed in homogeneous nodes or in a single node only.

As stated in the literature,21 there are two main kinds of

approaches: text-type format and binary data format. Text-

type format can be XML, CSV, and JSON, which are more

interpretable and language- and platform-independent.

However, considering the performance, energy consump-

tion, and communication network bandwidth limit in

swarm and modular robots, it is better to use binary data

format, which saves encoding time and network bandwidth.

As EmSBoT primarily focuses on the resource-constrained

platforms, the use of specific binary data format is adopted.

It is preferred and advisable to specify the content of mes-

sages using standard C data structures. In its current ver-

sion, EmSBoT directly transmits the content of memory

that the message (data structure) occupies without data

marshalling when the message is transferred between

homogeneous nodes, which promotes the efficiency of the

framework. Data marshalling happens only when the mes-

sage is transferred between heterologous nodes. It is

intended that future version EmSBoT will integrate the

type specification and marshalling mechanisms of LCM.33

Some frameworks provide synchronous communication

mechanisms, such as ROS, MIRA, and FINROC. They all

implement the remote procedure call service, a typically

synchronous communication mechanism. When a client

agent sends a request to the server agent, it will be blocked

until the response from the server agent is returned. EmS-

BoT does not support synchronous communication, as it

mainly copes with microcontroller-based robots and

diverse networks. Considering simplicity and efficiency

as its design principles, EmSBoT only employs asynchro-

nous communication based on data ports. In practice, if

needed, the synchronous communication can be achieved

by setting up two communication connections between two

agents as shown in Figure 7. The server agent As provides

service by receiving a request from the input port IPs and

sending the response back via the output port OPs. The
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Figure 6. An illustration of output port multiplexing.
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client agent Ac consumes As‘s service just by setting up the

binding with IPs and OPs, and synchronization is realized

by pending on IPc.

Communication agents

In our framework, to facilitate communication between

different computing nodes, we creatively abstract the

communication layer as individual agents, each of which

is associated with one communication channel. A commu-

nication agent is in charge of sending (receiving) mes-

sages to (from) its corresponding communication

channel. An agent is identified as a communication agent

by providing three callbacks to the EmSBoT core via the

system API

EB_err eb_comchannel_register(
EB_comchannel **channel,
Sendfunc sendfunc,
Broadcastfunc broadcastfunc,
Getnetaddrfunc netaddrfunc

),

where Sendfunc and Broadcastfunc perform unicasting

and broadcasting, respectively; Getnetaddrfunc returns the

communication channel’s network address, which is actu-

ally regarded as NodeID because of its uniqueness in the

whole system. Inside eb_comchannel_register, the

framework also attaches a thread-safe hook function

eb_handle_data to the communication agent. When

one message is available in the communication agent, it

is passed to the EmSBoT core by calling eb_handle_
data.

To keep its flexibility, the framework does not strictly

specify how the three callbacks are implemented in a com-

munication agent. For instance, we have already implemen-

ted a UDP/IP communication agent, in which a public UDP

port is shared among nodes and is used to broadcast mes-

sages, while each node holds an exclusive UDP port to send

and receive unicasting messages. In reality, when perform-

ing port binding, the framework will first broadcast a port

metadata discovery message to all other nodes and then the

other nodes will reply with the matching results by uni-

casting. However, the port binding process can be com-

pletely different if we prefer to use a centralized hub

that manages all the port metadata. In this scenario, we

only need to implement the Broadcastfunc function

just by sending messages to the hub server without

enforcing real broadcasting.

Fault-tolerant support

The prevalence of NRS is due to its advantages, such as

robustness and fault tolerance, over a single robot. A team

of robots with different functionalities could cooperate to

carry out the tasks assigned in parallel. In a high level, an

abnormal robot could be replaced by another normal one.

In a low level, when a functional software unit of a robot

does not work correctly, the robot could benefit from uti-

lizing the same software unit located in another robot.

However, it is not straightforward to achieve these objec-

tives autonomously at runtime, especially in a distributed

environment. There are at least two major problems to

consider: (1) how to detect the failure of an agent and

(2) how to recover from the failure in a tractable way.

EmSBoT promotes the separation of fault handling from

the normal logic of an agent.

Fault detection. In EmSBoT, the faults for an agent either

originate from the agent itself through self-checking or from

other coupled agents through fault propagation. The frame-

work now supports the detection of two types of faults:

timing fault and functional fault. A timing fault is identified

by recording the start and end time of Exec of the agent (see

Figure 3). If the agent has timing specification ðT > 0Þ and

Te � Ts > T , it tells that the system cannot meet the agent’s

timing requirement. A functional fault is indicated by the

return value of Exec. For the agent designer, Exec can return

false if the agent does not work properly. For instance, con-

sider a speed control agent, the Exec of which is to make the

robot maintain a desired speed. After a period of time, the

agent is unable to keep the speed due to low power. It is

desirable that the Exec function returns a false value, making

the agent enter into the fault mode. Meanwhile, an agent can

receive fault messages from other agents that connect with it

via port binding. A fault message means that the sender

agent is out of order, and then the agent that receives it

should reconfigure its port binding. As shown in Figure 3,

each time Exec is finished, the framework will check the

faults mentioned earlier. In this way, the fault detection is

separated from the normal logic of an agent. If faults are

detected and the agent itself enables fault handling, the agent

enters into the fault recovery procedure.

Fault recovery. The fault recovery procedure is divided into

two steps. First, if the Faulthandling function is provided

by the agent designer, the fault is passed to it. The proto-

type of Faulthandling is defined as follows:
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IPc OPs

1. Pending on IPs to 

receive request from A c

AAAAAAssss
2. Process the request
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Figure 7. Implementation of synchronous communication using
two-way port connections in EmSBoT. EmSBoT: Embedded mod-
ular Software framework for a networked roBoTBoTic system.
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boolean Faulthandling(
uint32 nodeid,
uint16 agentid,
FAULT_TYPE type
),

where the first two parameters indicate the source of the fault,

and type is a structure and denotes the fault type and value. In

Faulthandling, the agent designer can implement different

fault recovery strategies according to its context and different

fault types. For instance, if the timing fault happens, the agent

can go back to normal by requesting for more computation

resource from the system (through increasing its priority) if

this mechanism is supported by the operating system. Further-

more, when a fault message is received, the agent can identify

the faulty agent by nodeid and agentid and then change the

port binding with the faulty agent.

Finally, if Faulthandling is incapable of handling the

fault, the fault will be further processed by the framework.

At this step, we can conclude that the agent is impossible to

recovery from the fault, so this agent is marked as faulty,

and the framework will propagate a specific fault message

to other agents that are connected with the faulty agent.

Through fault propagation and dynamic port binding, EmS-

BoT supports distributed fault tolerance in a novel and

tractable way.

Implementation and experimental
evaluation

EmSBoT is initially proposed to achieve transparent com-

munication between devices with constrained resources, so

we implement it primarily on top of the �C/OS-III RTOS

on both the ARM Cortex-A8 and Cortex-M4 processors. As

the goal of EmSBoT is to support heterogeneous hardware

platforms and operating systems, it does not use any stan-

dard libraries that depend on specific operating systems.

EmSBoT only employs a minimal set of OS features

including threads (tasks), semaphores, mutexes, and tim-

ing, all of which are available in RTOSs and general-

purpose operating systems. By introducing the OSAL,

EmSBoT also supports QNX, Windows, and Linux plat-

form. Our practical experience shows that porting EmSBoT

to other platforms can be done effortlessly just by rewriting

around 200 lines of code for the OS abstraction layer. Con-

sidering performance and programming of embedded

devices, the framework is written entirely in C language

and compiled using the GNU toolchain. MinGW (Minimal-

ist GNU for Windows) is used in a Windows environment,

while for ARM Cortex processors, the gcc-arm-embedded

toolchain is used.

Memory footprint

One of the merits of the EmSBoT framework is its small

memory footprint, which makes it feasible and suitable

for deployment on MCUs. Table 1 shows the memory

usage when running the EmSBoT framework on the

STM32F4DISCOVERY board, which has 1 MB of flash

memory for code and 192 KB of SRAM for data. The

source code contains the �C/OS-III RTOS, necessary BSP

files, the framework, and agents. Each agent has one input

port and one output port. All the data in the table are sta-

tically allocated through the memory pool. When the pro-

gram is executing, it will never acquire memory from the

heap, which avoids deterioration of determinism using

dynamic memory allocation. However, the framework also

supports dynamic memory heap through configuration

when compiling. It is favorable to use dynamic memory

when the size of the program is hard to estimate or when the

behavior of the program is unpredictable. The firmware is

compiled by the GNU toolchain for ARM processors with

Optimization Flag ‘O3’ (Optimize most) and with ‘gc-sec-

tions’ enabled (remove unused sections). From the table,

EmSBoT will cost about 13 KB of flash memory and 5 KB

of data memory when there are two agents in the system.

When one agent is added, it will additionally cost about

1 KB of data memory.

In conclusion, it has been shown that EmSBoT is

very suitable for most microcontroller-based robots.

When provided with a well-designed communication

agent, EmSBoT is a desirable candidate for swarm

robotic applications.

Performance evaluation

We have carried out three primary tests to check the frame-

work’s performance and real-time support. The first one

measures the message delivery latency between agents in

node domain. In this test, one agent ðAG SÞ with the output

port is assigned to send 4 bytes of data at 500 Hz to the

other agents ðAG R0:::nÞ, all of which pend on the corre-

sponding input port binding with the output port. In order to

verify the framework’s real-time support, these agents are

classified into three categories with different priorities:

AG S, AG R0, and AG R1:::n. We set the priority of

AG R0 to be always greater than that of AG R1:::n. In the

test, 4096 messages are transmitted every round and then is

repeated with different priorities of AG S and increasing

Table 1. Memory usage of the firmware when deploying the
EmSBoT framework on the STM32F4DISCOVERY board with �
C/OS-III RTOS.

Section

Without
EmSBoT
(bytes)

With EmSBoT
and two agents

(bytes)

With EmSBoT
and three agents

(bytes)

.text 11,732 24,932 24,932

.data 16 16 16

.bss 5308 10,316 11,268

EmSBoT: Embedded modular Software framework for a networked
roBoTic system
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n (from 0 to 16). In such a way, we can identify whether

low priority agents have influence on the high priority

agent. The time is measured from the moment AG S sends

the message to the moment AG R0 consumes the message

received. The hardware and OS used are the same as in the

previous section. The CPU is running at 144 MHz. The

embedded SRAM has zero wait state, and the flash used

for storing code and read-only data has five wait states (six

CPU cycles). Figure 8 reports the results that we obtained.

Figure 8(a) shows that the latency increases linearly

with n if AG S has higher priority than all AG R0:::n. This

is in conformity with reality, because AG R0 can only con-

sume the message after AG S sends the message to all other

agents. The time added for every AG Ri is nearly 5 ms,

including the time consumed by the framework, and the

time taken to signal semaphore and activate the agent.

When AG S has lower priority than AG R0, the latency is

almost constant (8.9 ms; see Figure 8(b) and (c)), with jitter

of less than 0.1 ms. EmSBoT distributes the data to the input

ports according to their priorities, so AG R0 will always

receive the data first and will then be activated to execute.

From the test results, we can conclude that EmSBoT has

real-time capability. If the priorities of agents are properly

assigned, the message delivery latency between agents will

be deterministic. It should also be noted that in this test we

did not observe any effect of tick interrupts during the

message delivery (only the tick interrupt was enabled).

Because AG S always transmits data immediately after

sleeping for 2 ms (500 Hz), it will never encounter the tick

interrupts during message delivery due to its short latency.

However, in reality, the effect of interrupts needs to be

thoroughly verified for hard real-time applications.

The second test measures the message delivery latency

in distributed domain. As it is intractable to measure

absolute latencies between two systems, in this test, the

round-trip message delivery time is measured between two

distributed heterogeneous systems. EmSBoT is first

deployed in the Beaglebone Black board with 1 GHz ARM

Cortex-A8 processor, 512 MB RAM, and QNX Neutrino

6.5 running on top. On the other side, the processor is Intel

Core i5 750@2.67 GHz with four cores, 8 GB of memory,

and Ubuntu 14.04 LTS 64 bit running on top. The two

systems are connected via a GigE switch, and the UDP/IP

communication agent is employed in EmSBoT. On the

QNX side, agent AG S1 is assigned to send a 4 byte mes-

sage to AG R1 on the Ubuntu side. Once AG R1 receives

the message, it immediately sends an echo message (4

bytes) to AG S1. The time from the moment AG S1 send

a message to the moment it receives the echo is called the

round-trip latency. We also call AG S1 and AG R1 as a

round-trip pair. In order to check the performance under

the competitive environment, we measure the round-trip
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latency with increasing number of round-trip pairs. All the

round-trips pairs send message simultaneously contending

for CPU time and network bandwidth. Figure 9 shows the

result. We can see that the round-trip latency between AG S1

and AG R1 increases linearly as the increasing number of

round-trip pairs. This is reasonable because agents on both

sides share the same network but send messages simultane-

ously. When there is only one round-trip pair in the system,

EmSBoT can send messages in the 1000 Hz range, while

125 Hz range can be achieved when 16 round-trip pairs are

needed. Besides, the result also shows that EmSBoT is deter-

ministic with stable jitters as the increasing number of

round-trip pairs. In summary, this test demonstrates that

EmSBoT’s implementation is highly efficient and determi-

nistic in distributed heterogeneous environment.

The third test is used to check the framework’s maxi-

mum throughput in node domain under different circum-

stances. It measures the maximum number of transmitted

messages with different n and different priorities of AG S

as the first test does. However, in this test, AG S only sends

messages to AG R1:::n continuously without sleep. AG R1:::n

have the same priority. Figure 10 reports the benchmark

result with the priority of AG S higher than, equal to, and

less than that of AG R1:::n. It is obvious that the throughput

is affected by the priority assignment. When AG S has the

highest priority, it sends messages without preemption, so

that other agents have no time slot for consuming the mes-

sages, and then the system has very high throughput

(16,3861 messages transmitted per second when n ¼ 1).

With this configuration, the system can reach maximum

throughput, although it is impractical in real applications.

Practically, AG S should yield to let other agents run to

avoid starvation, which makes the throughput much lower

than the values given here. The maximum ‘‘worst-case’’

throughput occurs when the priority of AG S is set much

lower than that of the others. In this scenario, AG S can

send the next message only after all other agents have

consumed the message. However, we still observed a max-

imum throughput of 60,316 messages per second when

n ¼ 1. When all the agents have the same priority, the

throughput depends on the scheduling policy of the OS.

In our test, all agents with the same priority are scheduled

in a round robin fashion with time quanta 10 ms, so the

result is slightly different from the scenario in which AG S

has the highest priority.

In conclusion, the performance evaluation shows that

EmSBoT preserves and supports the real-time capability

of the system and meets the latency and throughput require-

ments for most real applications.

A case study

We used the EmSBoT framework in a simple leader–fol-

lower robotic application, which proved the effectiveness

of EmSBoT. Two differential drive wheeled robots

(Figure 11, modified QuickBoT) are used in the experi-

ment. Both feature two wheel encoders and are controlled

by the Beaglebone Black board. The state information

(position and velocity) of the robot is approximately esti-

mated by measuring the distances travelled by each wheel

at 1000 Hz using the wheel encoders. The communication

between the two robots is achieved via the Digi XBee
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ZigBee RF module. The �C/OS-III RTOS is ported to

the board.

Each robot (the control board) is viewed as a single node

and features three agents (Figure 12). The main functions

of these agents are as follows:

� AG QBCtr: Agent QuickBot Controller. This

agent controls the velocity of the two wheels

using a closed-loop PI controller at 50 Hz. It

receives the reference velocity from the input

port IP rbvel and provides other agents with

the state information through the output port

OP rbstate.

� AG Leader: The leader agent keeps a list of goal

points. In order to visit these points, it needs

to calculate the desired linear and angular

velocities according to its current state received

from IP rbstate. This process is also implemented

via a PID controller at 50 Hz. The velocity command

is sent to AG QBCtr through OP rbvel.
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� AG Follower: The follower agent takes charge of

keeping a desired distance from the leader robot,

so it calculates the follower robot’s velocity con-

stantly at 50 Hz according to state information from

itself and the leader robot. All the binding informa-

tion between ports is shown in Figure 12.

� AG Xbee: This is the communication agent that

employs Xbee to transmit state information between

agents across nodes.

Figure 13 reports the experimental results that we

obtained. The data are collected from the follower robot,

which has the state information of both robots. The leader

robot remains at a fixed linear velocity while visiting all the

points. When it arrives at one point, the goal point is

switched to the next one accordingly. Figure 13(b) shows
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OP_rbvel

AG_QBCtr

T = 20msT
IP_rbvel

T
IP_rbstate

mssss
OP_rbstate

AG_Xbee AG_Xbee

Figure 12. The architecture of the control software for the
experiment. Solid lines denote the binding between input and
output ports inside nodes, while the dashed line indicates that the
binding is across nodes.
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the trajectories of both robots. The follower robot can fol-

low the path of the leader perfectly when they remain in

(50 cm, 0�)-formation,34 except near goal points. This is

acceptable because AG Follower only utilizes the leader’s

position information, without other states such as its angu-

lar and angular velocity. Figure 13(a) reports the distance

between the two robots. In the initial stage, the distance

increases until the follower adjusts its speed to a high value

in order to catch up with the leader. Afterward, the distance

gradually becomes close to 50 cm, and, ideally, remains

the same.

One major problem in the experiment is the indeter-

minism of message latency of the Xbee communication

channel, which meant that AG Follower could receive

obsolete state data of the leader robot. Sometimes, we

observed a delay of one second. We use two strategies

to solve this problem. First, every message in EmSBoT

includes a timestamp to indicate when the message is sent

from the output port. The time stamp can be used to judge

whether the message is received in time. If the message is

received within a reasonable time window, it will be kept

and used by AG Follower; otherwise, it will be discarded.

Second, if the state information received is obsolete and

discarded, or if no state information is received in this

round, the previous state information of the leader robot

is employed to predict its current state. Using such two

strategies, we can calculate the velocity of the follower

robot as accurately as possible.

Conclusion and future work

The inherent complexity of developing (distributed)

robotic applications promotes the popularity of RSFs, most

of which adopt the component-based approach with differ-

ent communication patterns. However, few RSFs consider

embedded devices with constrained resources. EmSBoT,

presented in this article, is an embedded modular

component-based robotic software framework targeting

heterogeneous platforms. It is deliberately built upon light-

weight RTOSs, making it suitable for resource-constrained

devices such as microcontroller-based robots. Furthermore,

the OS abstraction layer extends it to other operating sys-

tems without too much effort. It uses the port-based com-

munication mechanism as the only way to exchange

messages between agents, which makes the agents loosely

coupled, and endows the system with fault-tolerant capa-

bility by binding and rebinding ports dynamically at run-

time. By isolating the communication channels as separate

agents, we provide uniform message-passing APIs for

agents, making the communication transparent over node

boundaries. It also employs a priority-based message pass-

ing approach, providing the application with real-time

capability. We also introduce a distributed fault-handling

mechanism in EmSBoT. The agent can either have its own

fault-handling procedure or propagate a fault message to

other agents that bind to it.

The EmSBoT framework is fully implemented in C lan-

guage. So far, it has already been ported to �C/OS-III,

QNX, Windows, and Linux operating systems. The foot-

print (together with �C/OS-III) measured in the

STM32F4Discovery board shows that EmSBoT is very

suitable for microcontroller-based robots. We also con-

ducted an exhaustive performance evaluation of EmSBoT

inside one node, proving that EmSBoT is capable of main-

taining real-time performance and providing high through-

put. A leader–follower distributed application, which

employs the XBee ZigBee mesh network to pass messages,

was conducted to verify its effectiveness. In the future, we

intend to develop other communication agents for the

framework, such as agents over CAN and TCP/IP. Further

experiments need to be conducted to evaluate its distributed

performance, to compare it with other frameworks, and to

demonstrate its fault-tolerant capability. At present, EmS-

BoT is in its initial version, so we do not consider the

problem of message marshalling, which is a necessity when

messages are exchanged between heterogeneous platforms.

We will add this feature in the next version.
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