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Abstract: In this paper we prove a collection of new fixed point theorems for operators
of the form T + S on an unbounded closed convex subset of a Hausdorff topological
vector space (E,Γ). We also introduce the concept of demi-τ -compact operator and τ -
semi-closed operator at the origin. Moreover, a series of new fixed point theorems of
Krasnosel’skii type is proved for the sum T +S of two operators, where T is τ -sequentially
continuous and τ -compact while S is τ -sequentially continuous (and Φτ -condensing, Φτ -
nonexpansive or nonlinear contraction or nonexpansive). The main condition in our results
is formulated in terms of axiomatic τ -measures of noncompactness. Apart from that
we show the applicability of some our results to the theory of integral equations in the
Lebesgue space.
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