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Abstract

Motor primitives provide a modular organization to
complex behaviours in both vertebrates and invertebrates.
Inspired by this, here we generate motor primitives for a
complex snake-like robot with screw-drive units, and
thence chain and combine them, in order to provide a
versatile, goal-directed locomotion for the robot. The
behavioural primitives of the robot are generated using a
reinforcement learning approach called "Policy Improve‐
ment with Path Integrals" (PI2). PI2 is numerically simple
and has the ability to deal with high-dimensional systems.
Here, PI2 is used to learn the robot’s motor controls by
finding proper locomotion control parameters, like joint
angles and screw-drive unit velocities, in a coordinated
manner for different goals. Thus, it is able to generate a
large repertoire of motor primitives, which are selectively
stored to form a primitive library. The learning process was
performed using a simulated robot and the learned
parameters were successfully transferred to the real robot.
By selecting different primitives and properly chaining or
combining them, along with parameter interpolation and
sensory feedback techniques, the robot can handle tasks

like achieving a single goal or multiple goals while avoid‐
ing obstacles, and compensating for a change to its body
shape.

Keywords Snake-like Robot Using Screw-drive Mecha‐
nism, Goal-directed Locomotion, Motor Primitives,
Reinforcement Learning, Policy Improvement With Path
Integrals

1. Introduction

Snake-like robots have been an active research topic for
several decades [1, 2, 3]. These robots generally have a high
flexibility, with several segments connected in a serial
manner, giving them a slender shape. This provides them
with multifunctionality on the one hand, while making
them difficult to control on the other hand, due to the high
number of degrees of freedom [2, 7]. They are often used as
an experimental platform to study locomotion or motor
coordination problems [4]. Due to their structure, their
applications include search and rescue operations [5] or
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deployment for locomotion in narrow spaces, like pipes [6].
Undulatory movements are the conventional way to
generate their locomotion [2], but this form of movement
generally requires a greater width than the width of the
robot. This can become a problem in narrow spaces. From
this perspective, we have developed a new type of snake-
like robot using a screw-drive mechanism [8]; this robot
does not require undulation for its movement as propul‐
sion is generated by the rotation of the screws. It has four
screw-drive units, which are connected serially by three
active joints. Furthermore, through the proper combination
of these screw angular velocities, omni-directional move‐
ment is possible, unlike in most existing snake-like robots.
Continuing this development, we have created a frame‐
work for generating motor primitives for the robot.

Figure 1. A goal-directed locomotion control framework

We would like to emphasize that the main contribution of
this paper is a model-free, goal-directed locomotion control
framework of a nonstandard snake-like robot. The frame‐
work, as shown in Figure 1, consists of three main mecha‐
nisms:

1. A learning mechanism which can learn individual
motor controllers (i.e., each controller for each degree
of freedom) in parallel, for periodic and nonperiodic
motor primitives.

2. A chaining mechanism combining different primitives
for a more complex goal-directed locomotion. This can
be achieved by manual selection, sensory feedback,
and/or a searching process. Here, a symbolic planning
approach (acting as a searching process) for automatic
action chaining is employed.

3. A bilinear interpolation mechanism for generating
new locomotion behaviours based on a library of
(learned) motor primitives.

Although a part of the framework for learning nonperiodic
motor primitives has already been published in [10], this
article presents the new features of the framework (includ‐
ing the mechanism for learning periodic motor primitives,
as well as the chaining and interpolation mechanisms and
sensing techniques), thereby leading to versatile goal-
directed locomotion control for the robot. Furthermore,
experimental results are presented, including the results
related to goal-directed locomotion with periodic body

movements and complex locomotion tasks, which demon‐
strate the performance of the framework. The framework
uses a reinforcement learning approach called "Policy
Improvement with Path Integrals" (PI2) [9]. PI2 is used to
generate different motor primitives, and is here applied to
a nonstandard snake-like robot for the first time.

Motor primitives are the "building blocks" [21] of move‐
ment generation. They remain operative throughout life in
both vertebrates and invertebrates. The biological study in
[22] demonstrated the additive properties of primitives, by
stimulating two spinal sites in frogs. At a neural level, they
are seen as force fields generated by a combination of
activations from different muscles at the same time. At the
behavioural level, it has been shown how adaptation of
sub-movements can generate rapid hand movements [21].
Furthermore, human reaching movements were shown to
be formed through a combination of different primitives
with hand velocities in [23]. From a robotics point of view,
a reasonable repository of motor primitives can provide a
robot with self-improvement and evolutionary capabilities.
The usage of a basis set of behaviours for the future
adaptability of the system thus reduces complex problem
of robot control, as it helps with dimensionality reduction
[21, 24] and gives the robot the ability to handle new tasks
in the future. Traditional principal component analysis
(PCA) method have been shown to be used to generate
primitives from motion capture data for human arm
movements [25]. Movement primitives represented by
dynamical systems can be found in [12, 13, 26], and have
been shown to handle many complex tasks. The work in
[26] shows how primitives are obtained by imitation
learning and can be self-improved through reinforcement
learning, in order to complete a complex task like the ball-
in-a-cup task. The work in [27] shows how motor primitives
were learned using different policy gradient-based meth‐
ods for a baseball hitting task, as well as presenting a study
on primitive learning by such various methods. Thus,
different approaches exist regarding the ways in which
movement primitives can be defined and used in robotic
systems.

The motor primitive approach in this work reduces the
complexity of the robot control problem for a challenging
task like goal-directed locomotion generation of the
complex snake-like robot, while also giving the robot the
ability to handle unknown situations. Here, the robot learns
to locomote toward a goal using PI2, and thus a proper
combination of locomotion control parameters are ob‐
tained for different goals and robot shapes (i.e., straight-
line, zigzag, arc, etc.). From this, we take certain sets of
learned control parameters as motor primitives and then
combine them properly using chaining and parameter
interpolation to produce new behaviours in an online
manner. The approach we present here also overcomes the
problems of the classical control mechanisms used for
generating locomotion in this snake robot. These classical
mechanisms include trajectory tracking based on feedback,
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and front-unit control [8]. Both of these are model-based
mechanisms which require a kinematic model of the robot
and can only deal with simple robot shapes. They fail to
provide any closed-form kinematic solutions both for
screw velocity and joint periodic movement control, and
for the joint-by-joint control of complex body shapes (for
instance, zigzag and semi-zigzag shapes). Furthermore,
they sometimes have difficulty in finding proper control
parameters for goal-directed locomotion, due to the
switching of the passive wheels of the robot in contact with
the ground. Using sensors to achieve adaptive control
typically also requires a kinematic model [8], and it is
difficult to find proper sensorimotor connections that can
generate effective locomotion for complex robot shapes.
Our approach, on the other hand, is able to find proper
parameters for controlling both screw velocities and joint
periodic movements, and can also generate locomotion
with body deformation. It is also robust, meaning that
learned motor primitives from a simulation can be directly
applied to the real robot without adjusting or tuning the
control parameters. Thus, a library of motor primitives can
be generated without trouble.

The rest of the paper is organized as follows: in Section 2,
we briefly describe the snake-like robot with screw-drive
units; Sections 3 and 4 present the learning formulation and
experiments using PI2 to generate motor primitives for both
periodic and nonperiodic motions; and Sections 5 and 6
describe how the generated motor primitives are used in
real robot experiments to obtain new robot behaviours, and
thus to address locomotion in unknown situations using
primitive chaining and parameter interpolation.

2. The Snake-Like Robot with Screw-Drive Units

The basic structure of the 10-DOF snake-like robot with
screw-drive units is shown in Figure 2. The robot has three
active joints and four screw-drive units. Each screw-drive
unit has one A-max22 Maxon DC motor, one screw part,
and an encoder. The rotation of the screw unit around its
rotation axis is driven by the motor. Each screw-drive unit
has eight blades attached to it, with each blade having four
alternately passive wheels with rubber rings. The rubber
rings provide a better grip. Propulsion is generated by the
rotation of the screw-units, which facilitates the movement
of the robot in any direction. Each screw unit is said to be
a "left" or a "right" screw unit, depending on the inclination
(α) of its blade. The first screw unit connected to the head
is a right screw unit and the other units are alternatively
left (if, α > 0) or right (if, α < 0). Two servo motors (Dyna‐
mixel DX-117, Robotis) drive each joint, with each having
two degrees of freedom (pitch and yaw angles). Since all
the screw units remain in contact with the ground via at
least one wheel, and flat ground is here presumed in our
present study, the pitch angle of the robot is always zero

for all our experiments. The joint angles have a range of ± π
2

rad.

Figure 2. The snake-like robot with screw-drive units: robot
structure showing four screw-drive units and three active joints.
There are eight blades with passive wheels attached to each screw
unit. The head of the robot is provided with a ball bearing, ground
contact, and a bumper for stability.

5 and 6 describe how the generated motor primitives
are used in real robot experiments to obtain new robot
behaviours, and thus to address locomotion in unknown
situations using primitive chaining and parameter
interpolation.

2. The Snake-Like Robot with Screw-Drive Units

The basic structure of the 10-DOF snake-like robot with
screw-drive units is shown in Figure 2. The robot has three
active joints and four screw-drive units. Each screw-drive
unit has one A-max22 Maxon DC motor, one screw part,
and an encoder. The rotation of the screw unit around its
rotation axis is driven by the motor. Each screw-drive unit
has eight blades attached to it, with each blade having four
alternately passive wheels with rubber rings. The rubber
rings provide a better grip. Propulsion is generated by the
rotation of the screw-units, which facilitates the movement
of the robot in any direction. Each screw unit is said to be a
"left" or a "right" screw unit, depending on the inclination
(α) of its blade. The first screw unit connected to the head is
a right screw unit and the other units are alternatively left
(if, α > 0 ) or right (if, α < 0). Two servo motors (Dynamixel
DX-117, Robotis) drive each joint, with each having two
degrees of freedom (pitch and yaw angles). Since all the
screw units remain in contact with the ground via at least
one wheel, and flat ground is here presumed in our present
study, the pitch angle of the robot is always zero for all our
experiments. The joint angles have a range of ±π

2 rad.

3. Learning Motor Control with PI2 to Generate Motor
Primitives

PI2 is a probability-based reinforcement learning (RL)
approach which follows direct policy search in order
to improve the policy. In this study, we focus on
providing the framework, rather than comparing different
optimization approaches (or learning mechanisms) to
the task; we therefore employ the state-of-the-art
learning mechanism PI2. It was selected because it
has been successfully used for learning in continuous,
high-dimensional action spaces [9, 13, 28], thereby
confirming that it is an appropriate choice for the task at
hand. It is a robust mechanism, as well as being easy
and efficient to implement for the purposes of trajectory
rollouts and direct policy searches in parameter space. It
is numerically simple without any matrix inversion and
can be used as model-free in nature, with easy-to-construct

cost function requirements. It has no open parameters
to be tuned other than exploration noise [11–13] and is
faster than gradient-based RL approaches by one order of
magnitude [9]. Some interesting applications of PI2 have
been seen; for example, in [9], a 12-DOF simulated robotic
dog learned to jump a gap. In [13], an 11-DOF arm hand
learns both the goal and the shape of the motion required
to complete a pick-and-place task. In [28], a robot arm
learns to pour water using PI2 and dynamic movement
primitives. In contrast to these previous studies, here we
apply PI2 to the task of learning the locomotion control
parameters of the snake robot, in order to generate motor
primitives and locomotion.
Typically, RL has been shown to be one of the most
suitable learning methodologies to deal with robot
control problems [14]. Since the frame is flexible, one
can also replace the RL-based PI2 learning mechanism
with other learning mechanisms (e.g., genetic algorithm
(GA), particle swarm optimization (PSO) [18, 19], or a
combination of RL and PSO [20]), if required. However,
GA and PSO, which fall into the category of evolutionary
optimization techniques [18, 19], may require searching
through a large number of candidate control policies.
Thus, they might take more time to learn the best
policy [15]. They may also require the complex tuning
of their open parameters, like crossover/mutation rates
and population size for GA [16], and inertia factor,
self-confidence and swarm confidence for PSO [17, 19].
In GA, certain further components – like chromosome
encoding, and selection and replacement strategies – also
need to be designed.
In this study, using RL-based PI2, we generate motor
primitives for the robot (i.e., motions with and without
periodic body movements). Prior to the start of the
learning process, a policy, cost function and exploration
noise is defined. After this the learning starts, and the
parameter vector to be learned, U (containing locomotion
control parameters), is updated using PI2 at the end of
every update t. Each update consists of K noisy trajectories
or roll-outs. n updates are performed in order to obtain the
final parameter vector, which will make the robot locomote
toward a given goal. Table 1 gives the notations used here.

3.1. Policy Formation

The snake-like robot with screw-drive units follows the
feature described in Equations (1-3) [8]:

Aẇ = Bu, (1)

w = [x, y, ψ, φ1, φ2, φ3], (2)

u = [θ̇1, θ̇2, θ̇3, θ̇4, φ̇1, φ̇2, φ̇3]. (3)

Here, w is the state vector and u is its control input
vector. (x, y) gives the head position of the robot. ψ is
the absolute orientation of the first screw-drive unit with
the robot head. The three yaw joint angles are given
by φ1, φ2, φ3 in radian (rad), while θ̇1, θ̇2, θ̇3, θ̇4 are the
respective angular velocities of the first, second, third and
fourth screw-drive units from the head, in radians/sec
(rad/s). φ̇1, φ̇2, φ̇3 are the angular velocities of the three
joints in rad/s. A and B are the system matrices [8] and
depend on system configurations. The learning is executed
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Figure 2. The snake-like robot with screw-drive units: robot structure
showing four screw-drive units and three active joints. There are eight
blades with passive wheels attached to each screw unit. The head of the robot
is provided with a ball bearing, ground contact, and a bumper for stability.

3. Learning Motor Control with PI2 to Generate Motor
Primitives

PI2 is a probability-based reinforcement learning (RL)
approach which follows direct policy search in order to
improve the policy. In this study, we focus on providing
the framework, rather than comparing different optimiza‐
tion approaches (or learning mechanisms) to the task; we
therefore employ the state-of-the-art learning mechanism
PI2. It was selected because it has been successfully used for
learning in continuous, high-dimensional action spaces [9,
13, 28], thereby confirming that it is an appropriate choice
for the task at hand. It is a robust mechanism, as well as
being easy and efficient to implement for the purposes of
trajectory rollouts and direct policy searches in parameter
space. It is numerically simple without any matrix inver‐
sion and can be used as model-free in nature, with easy-to-
construct cost function requirements. It has no open
parameters to be tuned other than exploration noise [11, 12,
13] and is faster than gradient-based RL approaches by one
order of magnitude [9]. Some interesting applications of
PI2 have been seen; for example, in [9], a 12-DOF simulated
robotic dog learned to jump a gap. In [13], an 11-DOF arm
hand learns both the goal and the shape of the motion
required to complete a pick-and-place task. In [28], a robot
arm learns to pour water using PI2 and dynamic movement
primitives. In contrast to these previous studies, here we
apply PI2 to the task of learning the locomotion control
parameters of the snake robot, in order to generate motor
primitives and locomotion.

Typically, RL has been shown to be one of the most suitable
learning methodologies to deal with robot control prob‐
lems [14]. Since the frame is flexible, one can also replace
the RL-based PI2 learning mechanism with other learning
mechanisms (e.g., genetic algorithm (GA), particle swarm
optimization (PSO) [18, 19], or a combination of RL and
PSO [20]), if required. However, GA and PSO, which fall
into the category of evolutionary optimization techniques
[18, 19], may require searching through a large number of
candidate control policies. Thus, they might take more time
to learn the best policy [15]. They may also require the
complex tuning of their open parameters, like crossover/
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mutation rates and population size for GA [16], and inertia
factor, self-confidence and swarm confidence for PSO [17,
19]. In GA, certain further components – like chromosome
encoding, and selection and replacement strategies – also
need to be designed.

In this study, using RL-based PI2, we generate motor
primitives for the robot (i.e., motions with and without
periodic body movements). Prior to the start of the learning
process, a policy, cost function and exploration noise is
defined. After this the learning starts, and the parameter
vector to be learned, U (containing locomotion control
parameters), is updated using PI2 at the end of every update
t. Each update consists of K noisy trajectories or roll-outs.
n updates are performed in order to obtain the final
parameter vector, which will make the robot locomote
toward a given goal. Table 1 gives the notations used here.

Notation Description

w Robot’s state vector

u Robot’s control input vector

ϕi Joint angle

ϕ̇ i Joint angular velocity

θ̇ i Screw angular velocity

(x,y) Position of robot head

ψ Orientation of first screw unit with robot head

U1 Parameter set learned for a prefixed robot shape

U2 Parameter set with all seven control parameters

U3 Parameter set learned for periodic movements

φi Joint angle phase

r Cost function

(xG,yG) Goal position

n Total number of updates

t Update index

τ(a) Trajectory with control parameter set (a)

K Number of noisy trajectories or roll-outs

k Roll-out index

єt ,k Noise in kth trajectory of tth update

єθ̇ i(t ,k ) Noise applied to screw velocity

єϕi(t ,k ) Noise applied to joint angle

єφi(t ,k ) Noise applied to joint angle phase

It ,k Final cost at the end of noisy roll-out

Pt ,k Probability weighting

Table 1. Notations

3.1 Policy Formation

The snake-like robot with screw-drive units follows the
feature described in Equations (1-3) [8]:

= ,Aw Bu& (1)

1 2 3= , , , , , ,w x y y f f fé ùë û (2)

1 2 3 4 1 2 3= , , , , , , .u q q q q f f fé ùë û
& & & & & & & (3)

Here, w is the state vector and u is its control input vector.
(x,y) gives the head position of the robot. ψ is the absolute
orientation of the first screw-drive unit with the robot head.
The three yaw joint angles are given by ϕ1,ϕ2,ϕ3 in radian
(rad), while θ̇1,θ̇2,θ̇3,θ̇4 are the respective angular velocities
of the first, second, third and fourth screw-drive units from
the head, in radians/sec (rad/s). ϕ̇1,ϕ̇2,ϕ̇3 are the angular
velocities of the three joints in rad/s. A and B are the system
matrices [8] and depend on system configurations. The
learning is executed such that, if the initial head position is
at (x0,y0) and the goal to be reached is G (xG,yG), the final
state vector wgoal  on reaching the goal should have the head
position as (xG,yG). Two parameter vectors representing the
control policy are described by Equations (4) and (5):

1 1 2 3 4= , , , ,U q q q qé ùë û
& & & & (4)

2 1 2 3 4 1 2 3= , , , , , , .U q q q q f f fé ùë û
& & & & (5)

The parameter vector to be learned is selected according to
the learning problem. U1 is used for experiments when joint
angles are fixed, and U2 is used when all seven control
parameters, four screw-drive velocities θ̇ i and three joint
angles ϕi are to be learned. Thus the control policy follow‐
ing Equations (1–3) is represented by U1 and U2 of Equa‐
tions (4 – 5).

3.2 Defining Cost Function and Exploration Noise

Here, Euclidean distance is used as cost function r:

2 2( , ) = ( ) ( ) .G Gr x y x x y y- + - (6)

It provides the distance in metres (m) between a reached
robot head position (x,y) and a given goal position (xG,yG).
The final parameter vector is obtained after learning
converges and the cost is almost zero (i.e., the goal is
reached and the task is completed).

Noise is the only open parameter in PI2 and is designed as
per need. Random values ζ from a normal distribution
N(0,1), which has zero mean and a standard deviation of 1,
are selected here. Following this, ζ are then dynamically
adjusted according to the noise-free cost rt−1 obtained at the
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end of the previous update. When rt−1 >3 m, then the noise

is drawn as follows: єt ,k =(exp
−1
rt−1

) / L ⋅ζ, ζ∈N (0,1). Here,

L=10 metres, and єt ,k  is the noise during the k th  noisy
trajectory or the roll-out of the t th  update. When 0.5< rt−1≤3
m, then the noise is adjusted as follows:
єt ,k =0.05ζ,ζ∈N (0,1). When it is very low – ≤0.5m – then the
noise is adjusted as follows: єt ,k =0.025ζ,ζ∈N (0,1).єθ̇ i(t ,k ) (i=1,
2, 3, 4) and єϕi(t ,k ) (i=1, 2, 3) represent the noise applied to
the screw velocities and joint angles, respectively. All seven
of these noise distributions follow the above description of
єt ,k .

3.3 Implementation of PI2 for Nonperiodic Motor Primitives

To start with, parameter vector U1 or U2 is selected accord‐
ing to the learning task. We then fix the number of roll-outs
K per update to 40. In every roll-out k, the robot is simulated
to move with noisy parameters for a given time (10s),
starting from robot start position (x0,y0). The robot is driven
by the locomotion control parameters (screw velocities and
joint angles). In this way, the corresponding noisy trajecto‐
ry is obtained as follows:

τt ,k (θ̇1 + �θ̇1(t ,k ),θ̇2 + �θ̇2(t ,k ),θ̇3 +

+�θ̇3(t ,k ),θ̇4 + �θ̇4(t ,k ),ϕ1,ϕ2,ϕ3)
(7)

or

τt ,k (θ̇1 + єθ̇1(t ,k ),θ̇2 + єθ̇2(t ,k ),θ̇3 + єθ̇3(t ,k ),θ̇4 +

+єθ̇4(t ,k ),ϕ1 + єθ̇4(t ,k ),ϕ2 + єθ̇4(t ,k ),ϕ3 + єθ̇4(t ,k ))
(8)

In the above, θ̇ i + єθ̇ i(t ,k ) (i=1,2,3,4) give the noisy screw
velocity parameters and ϕi + єϕi(t ,k ) (i=1,2,3) the noisy joint
angles. Having obtained the reached position (xt ,k ,yt ,k ) of
the robot head at the end of this roll-out, the final cost for
the roll-out is calculated by evaluating the cost function as
follows: It ,k = r(xt ,k ,yt ,k ). In this way, all K noisy roll-outs
from the robot start position within one update process t
are completed, and a corresponding It ,k  is stored for each
roll-out. From here, the PI2 update process starts and an
exponential value is calculated on It ,k  for each roll-out, as
follows:

( )min, ,

( ) ( )max min, ,,( ) = .exp
I It k t kk

I It k t kt k kk
S lt

-

-
- (9)

The constant factor λ =30. The probability weighting Pt ,k  for
each roll-out is calculated as follows:

,
,

,
=1

( )
= ,

( )

t k
t k K

t l
l

S
P

S

t

tå (10)

and the parameter updates are

Δθ̇ i =∑
k=1

K
Pt ,k ⋅єθ̇ i(t ,k ), Δϕi =∑

k=1

K
Pt ,kєϕi(t ,k ). (11)

From the above equations, the update vector is constructed
as ΔU1 = Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4 , or ΔU2

= Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4,Δϕ1,Δϕ2,Δϕ3 . The locomotion control
parameter vector at the end of an update t is thus given by
U1(t ) =U1 + ΔU1 or U2(t ) =U2 + ΔU2. While updating, the joint
angles are limited within ±1 rad and the screw-drive
velocities within ±1 rad/s to avoid conditions whereby, for
example, the robot is made to go into a shape in which, at
any instant, ϕ1 =ϕ2 =ϕ3 =90 (1.57rad ). At the end of each
update process t, one noise-free trajectory with updated
parameters U1(t ) or U2(t ) is simulated, in order to obtain the
noise-free cost rt = r(xt ,yt) for the reached robot head
position (xt ,yt). If the cost is smaller than a set threshold, no
further updates are required; if not, the process is repeated
for the next update t+1. This iterative process continues
until the robot has learned the required parameters to reach
the goal.

3.4 Implementation of PI2 for Periodic Motor Primitives

With this mechanism in place, despite having an artificial
robot locomotion behaviour involving rotating screw units,
the robot can make periodic snake-like movements. In this
learning mechanism, to locomote toward a goal while
making periodic body movements, the following control
parameter vector is learned:

3 1 2 3 4 1 2 3= , , , , , , .U q q q q j j jé ùë û
& & & & (12)

The control policy for the periodic generation task follows
Equations (1-3) and is represented by U3, being a combina‐
tion of the screw-drive velocities (θ̇ i) and joint angle phases
(φi) parameters. At the same time, each joint angle ϕi

follows a sinusoidal motion shifted in phase as follows:

( )= sin .i iA Tf w j+ (13)

So, the joint angles with amplitude A and frequency ω are
represented as above. A=0.2 and ω is taken as 0.6 for the
presented data. A restricts the joint angle within ±0.2 rad.
The noise values used for the screw-units, єθ̇ i(t ,k ) (i=1,2,3,4),
are drawn as described above. The noise values applied to
the phase of each joint angle are єφi

(t ,k ) (i=1,2,3) are, and
follows the Gaussian distribution N (0,0.02). The learning
process is analogous to the one described in Section 3.3. In
every roll-out k, the robot moves with the noisy parameters,
giving the following trajectory:

τt ,k (θ̇1 + єθ̇1(t ,k ),θ̇2 + єθ̇2(t ,k ),θ̇3 + єθ̇3(t ,k ),θ̇4 +

+ єθ̇4(t ,k ), Asin(ωT + (φ1 + єφ1(t ,k ))),
Asin(ωT + (φ2 + єφ2(t ,k ))),
Asin(ωT + (φ3 + єφ3(t ,k ))))

(14)
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Once the final cost for this trajectory It ,k  is obtained,
followed by S (τt ,k ) and P(τt ,k ) using the equations in (9-10),
the updates on the parameters are: Δθ̇ i =∑k =1

K Pt ,k ⋅єθ̇ i(t ,k ) and
Δφi =∑k =1

K Pt ,k ⋅єφi(t ,k ). At the end of this update, the new
parameters are U3

(t ) =U3 + ΔU3, where, ΔU3
= Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4,Δφ1,Δφ2,Δφ3 . The update process
iteratively continues until the final parameters are ob‐
tained. In this way, periodic robot behaviours are generated
for different goals, and some are taken as periodic motor
primitives. In future, we plan to investigate how these
periodic motor primitives can be used to handle locomo‐
tion on complex ground conditions, e.g., on a slope.

4. Experiments in Generation of Motor Primitives

These experiments demonstrate the generation of motor
primitives using PI2. For all the following experiments, we
select one of three parameter vectors – U1, U2 or U3, from
Equations (4), (5) and (12) – depending on our learning task,
and initialize it to zero. First, we learn the control parame‐
ters with a simulated robot and then we successfully
transfer them to the real one. The robot length is around 0.9
m. All goal positions are in metres (m) and the robot starts
at (0m, 0m). We encourage readers also to view the
supplementary video documenting all the real robot
experiments (1-4), available online at http://manoon‐
pong.com/IJARS2015/svideo.mpeg.

4.1 Learning Robot Control for a Straight-Line Shape

In Experiment 1, we restrict the robot shape to a straight
line, with ϕi (i=1,2,3) = 0rad. Four screw velocities θ̇ i (i.e.,

parameter vector U1) are learned for this body shape and a
given goal. Figure 3(a) shows the experiment for goal (-3m,
-3m), the learning curves, and the changes in screw
velocities during the learning.

4.2 Learning Robot Control for Any Fixed Shape

The experiment in this section demonstrates the learning of
θ̇ i (i=1,2,3,4) when the robot has a different body shape. In
Experiment 2, we fix the robot shape into a zigzag – with
ϕ1 =0.5rad, ϕ2 = −0.5rad, and ϕ3 =0.5rad – prior to learning.
θ̇ i (i.e., parameter vector U1) are then learned for this body
shape and a given goal. Figure 3(b) shows the experiment
for goal (2m, -2m), along with the learning curves.

4.3 Learning All Seven Robot Control Parameters

This experiment demonstrates that the robot learns all of
its seven control parameters using U2, θ̇ i (i=1,2,3,4) and ϕi

(i=1,2,3) for locomoting toward a given goal. Figure 4 shows
the learning curves for the goal (-1m, -3m).

4.4 Learning Robot Control for Periodic Body Movements

This experiment demonstrates how the robot locomotes
toward a given goal with learned screw velocities and joint
angle phases, so as to have periodic body movements. The
parameter vector learned is U3. Figure 5 presents the
experiment and shows the goal position (-2m, -2m), the
learning curves, and the changes to the screw velocities,
joint angles phases and joint angles during the learning.

(a)

(b)

Figure 3. (a) Experiment 1 with a straight-line body shape: (i) Shows the robot reaching the goal position (-3 m, -3 m) (shown by the small
blue circle) in a straight-line body shape. The final followed trajectory is indicated by the blue dashed line. (ii) The learning converges
to the lowest cost for all 10 runs, taking around 20 updates for the average run (in bold). (iii) Shows that the learning of screw velocities
stabilizes after the goal is reached at around 20 updates. The final values are θ̇1 = -0.35 rad/s, θ̇2 = 0.77 rad/s, θ̇3 = -0.3 rad/s, and θ̇4 =
0.65 rad/s. (b) Experiment 2 with a zigzag body shape: (i) Robot reaches the goal position (2 m, -2 m; the small blue circle). (ii) Learning
converges to the lowest cost at around 16 updates for the average run (in bold red). (iii) The final learned screw velocities in the third
picture are θ̇1 = 0.16 rad/s, θ̇2 = 0.61 rad/s, θ̇3 = 0.14 rad/s, and θ̇4 = 0.30 rad/s.

Figure 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position (-1 m, -3 m) shown in the inset.
Learning converges to lowest cost for all 10 runs, taking around 20 updates for the average run (in red). (b) The learned screw velocities
are θ̇1 = -0.39 rad/s, θ̇2 = -0.02 rad/s, θ̇3 = -0.32 rad/s, and θ̇4 = -0.08 rad/s. (c) The learned joint angles are φ1 = −0.05 rad, φ2 = 0.11 rad, and
φ3 = 0.02 rad.

Figure 5. Experiment 4: Learning all seven locomotion control parameters with periodic body movements. (a) The robot reaches the
learned goal position (-2 m, -2 m), shown in the inset. The final followed trajectory is indicated by the red dashed line. Learning converges
to lowest cost for all 10 runs, taking around 15 updates for the average run (in bold). (b) Learning of the screw velocities (θ̇i) and joint angle
phases (ϕi) converges around 15 updates. The final learned values are θ̇1 = -0.10, θ̇2 = 0.53, θ̇3 = -0.12, and θ̇4 = 0.50; ϕi are ϕ1 = 0.6, ϕ2
= -0.5, and ϕ3 = -0.3. (d) The three learned joint angles φi following sinusoidal motion shifted in phase. It shows that φ2 and φ3 are almost
in phase, while φ1 leads them.

4 (a) and 5 (a). A reasonable number of motor primitives
are stored to form a library, which can be used to handle

a variety of situations. The primitives are described as:
"moving straight in a straight configuration", "moving
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Figure 3. (a) Experiment 1 with a straight-line body shape: (i) Shows the robot reaching the goal position (-3 m, -3 m) (shown by the small blue circle) in a
straight-line body shape. The final followed trajectory is indicated by the blue dashed line. (ii) The learning converges to the lowest cost for all 10 runs, taking
around 20 updates for the average run (in bold). (iii) Shows that the learning of screw velocities stabilizes after the goal is reached at around 20 updates. The
final values are θ̇1 = -0.35rad/s, θ̇2 = 0.77rad/s, θ̇3 = -0.3rad/s, and θ̇4 = 0.65rad/s. (b) Experiment 2 with a zigzag body shape: (i) Robot reaches the goal position
(2m, -2m; the small blue circle). (ii) Learning converges to the lowest cost at around 16 updates for the average run (in bold red). (iii) The final learned screw
velocities in the third picture are θ̇1 = 0.16rad/s, θ̇2 = 0.61rad/s, θ̇3 = 0.14rad/s, and θ̇4 = 0.30rad/s.
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From the results of these experiments, we can see how PI2

learns control parameters (joint angles and screw veloci‐
ties) for different goals and body shapes, and thus gener‐
ates periodic and nonperiodic motor primitives. We can
also see that, in most of these cases, convergence in learning
was reached and the motor primitives were achieved
within 12-20 updates.

5. Generating Complex Behaviour with Motor Primitives

The above demonstrates how motor primitives can be
generated. Some of them are shown in Figures 3(a), 3(b),
4(a) and 5(a). A reasonable number of motor primitives are
stored to form a library, which can be used to handle a
variety of situations. The primitives are described as:
"moving straight in a straight configuration", "moving
straight in an arc robot shape", "moving diagonally in a
zigzag robot shape", etc. Figure 6, taken as an example,
shows the main motor primitives. A part of the formed
primitive library is given in Table 2. The robot chains some
of these primitives, in order to produce a sequence of
behaviours in the real environment. Parameter interpola‐

tion and sensory feedback are employed to generate new
locomotion behaviour.

Figure 6. Generated Primitives: P1 to P8 give the generated
robot behaviours with different body configurations. P1 gives the
robot behaviour to move at 135◦; for a similar description of other
primitives, refer to Table 2. G1 to G8 give the existing goals, and
the red arrowhead indicates the robot’s head.

straight in an arc robot shape", "moving diagonally in a
zigzag robot shape", etc. Figure 6, taken as an example,
shows the main motor primitives. A part of the formed
primitive library is given in Table 2. The robot chains
some of these primitives, in order to produce a sequence
of behaviours in the real environment. Parameter
interpolation and sensory feedback are employed to
generate new locomotion behaviour.

Primitive Real robot behaviour
P1s move at 135◦ with a straight shape
P1a move at 135◦ with an arc shape
P2s move at 90◦ with a straight shape
P2a move at 90◦ with an arc shape
P2z move at 90◦ with a zigzag shape
P3s move 45◦ diagonally with a straight shape
P4s move straight forwards with a straight shape
P4z move straight forwards with a zigzag shape
P4pe move at -90◦ with periodic body movements
P5s move -45◦ diagonally with a straight shape
P5pe move at -30◦ with periodic body movements
P6s move at -90◦ with a straight shape
P7z move at -135◦ with a zigzag shape
P8s move straight backwards with a straight shape
P8a move straight backwards with an arc shape
P9 move at 90◦ with a semi-arc shape
P10 move straight forwards with a semi-zigzag shape
P11 move at 45◦ with a semi-zigzag shape
P12 move at 90◦ with a semi-zigzag shape
P13 move straight backwards with a semi-zigzag shape

Table 2. The Motor Primitive Library

5.1. Chaining of Primitives

Figure 7 shows a graphical representation of how
primitives have been chained in this work. The primitives
can belong to any robot shape or configuration, whether
straight-line, zigzag, arc, etc. As an example, Figure 7
shows that the first primitive to move at 20◦ (m1) forward
is chained with the second primitive to move at 70◦ (m2)
forward, in order to reach position C. These primitives are
followed by the third primitive, which moves at -70◦ (m3)
downward, thus finally reaching the goal. Primitives are

also chained and driven by sensory feedback as a reactive
control mechanism. For example, in an environment
with obstacles, multiple primitives are chained by sensory
feedback to allow the robot to avoid the obstacles and
reach a goal. Similar sensory feedback techniques, such
as sensing joint angles, etc., can also be employed. In this
way, chaining can be effectively used to obtain new robot
behaviours for unknown situations.

5.1.1. Symbolic planning for automatic action chaining

Here, we present a symbolic planning approach (i.e.,
a STRIPS-like planner [32]) for generating a plan
based on learned primitives. This is executed at the
highest level of abstraction, as in a multilayer cognitive
architecture [29, 30]. The planner searches for plans using
a declarative knowledge representation and generates
actions to instruct the robot to achieve desired tasks, like
moving to a goal or avoiding an obstacle, etc. The list of
primitives in the library, shown in Table 2, is used for the
action definition. The planning domain definition consists
of a list of predicates, actions and planning operators.
Predicates are logical formulas which take true or false
values. In our example, the predicates are defined as

1. ongoal(robot) 2. obstacle(angle)

The predicate ongoal(robot) describes the situation in
which the robot is on the goal, whereas obstacle(angle)
refers to a situation in which an obstacle is detected in
the direction specified by the angle. In our case, angle
∈ {angletoGoal, angletoGoal + 90◦, angletoGoal − 90◦}.
An action is defined as move(angle, shape) to instruct the
robot to move in the direction specified by the angle,
with a given robot body shape. Planning operators (POs)
consist of three parts: PO = {a, p, e}, with a = actions, p =
preconditions, and e = effect. If p (a set of predicates) are
true, then the corresponding PO can be applied using a, so
as to act in order to produce the effect e. The change after
execution is also coded as a set of predicates.
For the execution of a specific task, we need to define the
planning problem, consisting of an initial state Sini and
the goal specification g. In our example, Sini is defined as
{ongoal(robot), obstacle(angletoGoal), obstacle(angletoGoal +
90◦), obstacle(angletoGoal − 90◦)}, i.e., a set of initial
predicates at the start, with each taking true/false
values. In turn, g is defined as the specification that
ongoal(robot) = True, i.e., the final grounded predicate at
the end of the task. In our case, we adopt a replanning
strategy. The high-level planning module makes an
evaluation at every action interval. If there is a violation of
the preconditions (p) of the POs, while the effects (e) have
not been yet obtained, then the system generates a new
plan, with a replanning approach. Thus, the planner uses
all the above elements to generate a sequence of actions,
which produces the sequence of changes necessary to
obtain g from Sini. In Section 6, an example is presented of
a plan to avoid obstacles.

5.2. Parameter Interpolation

Once this basic primitive set of P1 to P8 was selected, as
depicted in Figure 6, this work made use of parameter
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Figure 6. Generated Primitives: P1 to P8 give the generated robot behaviours
with different body configurations. P1 gives the robot behaviour to move at
135°; for a similar description of other primitives, refer to Table 2. G1 to G8
give the existing goals, and the red arrowhead indicates the robot’s head.

(a)

(b)

Figure 3. (a) Experiment 1 with a straight-line body shape: (i) Shows the robot reaching the goal position (-3 m, -3 m) (shown by the small
blue circle) in a straight-line body shape. The final followed trajectory is indicated by the blue dashed line. (ii) The learning converges
to the lowest cost for all 10 runs, taking around 20 updates for the average run (in bold). (iii) Shows that the learning of screw velocities
stabilizes after the goal is reached at around 20 updates. The final values are θ̇1 = -0.35 rad/s, θ̇2 = 0.77 rad/s, θ̇3 = -0.3 rad/s, and θ̇4 =
0.65 rad/s. (b) Experiment 2 with a zigzag body shape: (i) Robot reaches the goal position (2 m, -2 m; the small blue circle). (ii) Learning
converges to the lowest cost at around 16 updates for the average run (in bold red). (iii) The final learned screw velocities in the third
picture are θ̇1 = 0.16 rad/s, θ̇2 = 0.61 rad/s, θ̇3 = 0.14 rad/s, and θ̇4 = 0.30 rad/s.

Figure 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position (-1 m, -3 m) shown in the inset.
Learning converges to lowest cost for all 10 runs, taking around 20 updates for the average run (in red). (b) The learned screw velocities
are θ̇1 = -0.39 rad/s, θ̇2 = -0.02 rad/s, θ̇3 = -0.32 rad/s, and θ̇4 = -0.08 rad/s. (c) The learned joint angles are φ1 = −0.05 rad, φ2 = 0.11 rad, and
φ3 = 0.02 rad.

Figure 5. Experiment 4: Learning all seven locomotion control parameters with periodic body movements. (a) The robot reaches the
learned goal position (-2 m, -2 m), shown in the inset. The final followed trajectory is indicated by the red dashed line. Learning converges
to lowest cost for all 10 runs, taking around 15 updates for the average run (in bold). (b) Learning of the screw velocities (θ̇i) and joint angle
phases (ϕi) converges around 15 updates. The final learned values are θ̇1 = -0.10, θ̇2 = 0.53, θ̇3 = -0.12, and θ̇4 = 0.50; ϕi are ϕ1 = 0.6, ϕ2
= -0.5, and ϕ3 = -0.3. (d) The three learned joint angles φi following sinusoidal motion shifted in phase. It shows that φ2 and φ3 are almost
in phase, while φ1 leads them.

4 (a) and 5 (a). A reasonable number of motor primitives
are stored to form a library, which can be used to handle

a variety of situations. The primitives are described as:
"moving straight in a straight configuration", "moving

6 Int J Adv Robotic Sy, 2014, Vol. , :2014 www.intechopen.com

Figure 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position (-1m, -3m) shown in the inset. Learning converges to
lowest cost for all 10 runs, taking around 20 updates for the average run (in red). (b) The learned screw velocities are θ̇1 = -0.39rad/s, θ̇2 = -0.02rad/s, θ̇3 =

-0.32rad/s, and θ̇4 = -0.08rad/s. (c) The learned joint angles are ϕ1 = −0.05rad, ϕ2 =0.11rad, and ϕ3 =0.02rad.

(a)

(b)

Figure 3. (a) Experiment 1 with a straight-line body shape: (i) Shows the robot reaching the goal position (-3 m, -3 m) (shown by the small
blue circle) in a straight-line body shape. The final followed trajectory is indicated by the blue dashed line. (ii) The learning converges
to the lowest cost for all 10 runs, taking around 20 updates for the average run (in bold). (iii) Shows that the learning of screw velocities
stabilizes after the goal is reached at around 20 updates. The final values are θ̇1 = -0.35 rad/s, θ̇2 = 0.77 rad/s, θ̇3 = -0.3 rad/s, and θ̇4 =
0.65 rad/s. (b) Experiment 2 with a zigzag body shape: (i) Robot reaches the goal position (2 m, -2 m; the small blue circle). (ii) Learning
converges to the lowest cost at around 16 updates for the average run (in bold red). (iii) The final learned screw velocities in the third
picture are θ̇1 = 0.16 rad/s, θ̇2 = 0.61 rad/s, θ̇3 = 0.14 rad/s, and θ̇4 = 0.30 rad/s.

Figure 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position (-1 m, -3 m) shown in the inset.
Learning converges to lowest cost for all 10 runs, taking around 20 updates for the average run (in red). (b) The learned screw velocities
are θ̇1 = -0.39 rad/s, θ̇2 = -0.02 rad/s, θ̇3 = -0.32 rad/s, and θ̇4 = -0.08 rad/s. (c) The learned joint angles are φ1 = −0.05 rad, φ2 = 0.11 rad, and
φ3 = 0.02 rad.

Figure 5. Experiment 4: Learning all seven locomotion control parameters with periodic body movements. (a) The robot reaches the
learned goal position (-2 m, -2 m), shown in the inset. The final followed trajectory is indicated by the red dashed line. Learning converges
to lowest cost for all 10 runs, taking around 15 updates for the average run (in bold). (b) Learning of the screw velocities (θ̇i) and joint angle
phases (ϕi) converges around 15 updates. The final learned values are θ̇1 = -0.10, θ̇2 = 0.53, θ̇3 = -0.12, and θ̇4 = 0.50; ϕi are ϕ1 = 0.6, ϕ2
= -0.5, and ϕ3 = -0.3. (d) The three learned joint angles φi following sinusoidal motion shifted in phase. It shows that φ2 and φ3 are almost
in phase, while φ1 leads them.

4 (a) and 5 (a). A reasonable number of motor primitives
are stored to form a library, which can be used to handle

a variety of situations. The primitives are described as:
"moving straight in a straight configuration", "moving
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Figure 5. Experiment 4: Learning all seven locomotion control parameters with periodic body movements. (a) The robot reaches the learned goal position (-2
m, -2 m), shown in the inset. The final followed trajectory is indicated by the red dashed line. Learning converges to lowest cost for all 10 runs, taking around
15 updates for the average run (in bold). (b) Learning of the screw velocities (θ̇ i) and joint angle phases (φi) converges around 15 updates. The final learned

values are θ̇1 = -0.10, θ̇2 = 0.53, θ̇3 = -0.12, and θ̇4 = 0.50; φi are φ1 = 0.6, φ2 = -0.5, and φ3 = -0.3. (d) The three learned joint angles ϕi following sinusoidal

motion shifted in phase. It shows that ϕ2 and ϕ3 are almost in phase, while ϕ1 leads them.
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Primitive Real robot behaviour

P1s move at 135° with a straight shape

P1a move at 135° with an arc shape

P2s move at 90° with a straight shape

P2a move at 90° with an arc shape

P2z move at 90° with a zigzag shape

P3s move 45° diagonally with a straight shape

P4s move straight forwards with a straight shape

P4z move straight forwards with a zigzag shape

P4 pe move at -90° with periodic body movements

P5s move -45° diagonally with a straight shape

P5 pe move at -30° with periodic body movements

P6s move at -90° with a straight shape

P7z move at -135° with a zigzag shape

P8s move straight backwards with a straight shape

P8a move straight backwards with an arc shape

P9 move at 90° with a semi-arc shape

P10 move straight forwards with a semi-zigzag shape

P11 move at 45° with a semi-zigzag shape

P12 move at 90° with a semi-zigzag shape

P13 move straight backwards with a semi-zigzag shape

Table 2. The Motor Primitive Library

5.1 Chaining of Primitives

Figure 7 shows a graphical representation of how primi‐
tives have been chained in this work. The primitives can
belong to any robot shape or configuration, whether
straight-line, zigzag, arc, etc. As an example, Figure 7
shows that the first primitive to move at 20° (m1) forward
is chained with the second primitive to move at 70° (m2)
forward, in order to reach position C. These primitives are
followed by the third primitive, which moves at -70° (m3)
downward, thus finally reaching the goal. Primitives are
also chained and driven by sensory feedback as a reactive
control mechanism. For example, in an environment with
obstacles, multiple primitives are chained by sensory
feedback to allow the robot to avoid the obstacles and reach
a goal. Similar sensory feedback techniques, such as
sensing joint angles, etc., can also be employed. In this way,
chaining can be effectively used to obtain new robot
behaviours for unknown situations.

5.1.1 Symbolic planning for automatic action chaining

Here, we present a symbolic planning approach (i.e., a
STRIPS-like planner [32]) for generating a plan based on
learned primitives. This is executed at the highest level of
abstraction, as in a multilayer cognitive architecture [29,
30]. The planner searches for plans using a declarative
knowledge representation and generates actions to instruct

the robot to achieve desired tasks, like moving to a goal or
avoiding an obstacle, etc. The list of primitives in the
library, shown in Table 2, is used for the action definition.
The planning domain definition consists of a list of predi‐
cates, actions and planning operators. Predicates are logical
formulas which take true or false values. In our example,
the predicates are defined as

1. ( ) 2. ( )ongoal robot obstacle angle

The predicate ongoal(robot) describes the situation in which
the robot is on the goal, whereas obstacle(angle) refers to a
situation in which an obstacle is detected in the direction
specified by the angle. In our case, angle∈  {angletoGoal ,
angletoGoal + 90° , angletoGoal −90° }. An action is defined as
move(angle,shape) to instruct the robot to move in the
direction specified by the angle, with a given robot body
shape. Planning operators (POs) consist of three parts: PO
= {a,p,e}, with a = actions, p = preconditions, and e = effect.
If p (a set of predicates) are true, then the corresponding PO
can be applied using a, so as to act in order to produce the
effect e. The change after execution is also coded as a set of
predicates.

For the execution of a specific task, we need to define the
planning problem, consisting of an initial state Sini and the
goal specification g. In our example, Sini is defined as
{ongoal(robot), obstacle(angletoGoal), obstacle(angletoGoal +
90°), obstacle(angletoGoal - 90°)}, i.e., a set of initial predicates
at the start, with each taking true/false values. In turn, g is
defined as the specification that ongoal(robot)=True, i.e., the
final grounded predicate at the end of the task. In our case,
we adopt a replanning  strategy. The high-level planning
module makes an evaluation at every action interval. If
there is a violation of the preconditions (p) of the POs, while
the effects (e) have not been yet obtained, then the system
generates a new plan, with a replanning approach. Thus,
the planner uses all the above elements to generate a
sequence of actions, which produces the sequence of
changes necessary to obtain g from Sini. In Section 6, an
example is presented of a plan to avoid obstacles.

Figure 7. Graphical representation of the chaining of primitives
to produce complex robot behaviours, to achieve multiple goals.
The red arrowhead indicates the robot’s head. m1, m2 and m3 are
the three angles relative to instantaneous robot body orientation.
Three required primitives are selected to take the robot from start
position A to the goal, via B and C points. The red dashed line gives
the trajectory.

interpolation of nonperiodic primitives, in an attempt to
further generalize locomotion generation. The goal was to
make the robot generate new motor controls, and actions
necessary to reach new goals, from existing primitives.
Here, bilinear interpolation – a basic interpolation
method for non-linear systems – is used for interpolating
parameters, considering that the snake-like robot
follows non-linear kinematics and uses all seven control
parameters for interpolation. For interpolation, new goals
are present in one of the quadrants marked as A, B, C and
D, as shown in Figure 6. For example, by interpolating the
learned control parameters for primitives P1, P2 and P8 in
the quadrant marked A, the motor control for the robot to
move 120◦, i.e., diagonally backwards to its start position,
is generated. Similarly, to obtain new robot behaviours
for new goals in the quadrant marked B, P2, P3 and P4
are used for the interpolation; in the quadrant marked
C, P4, P5 and P6 are used; and in quadrant D, P6, P7 and
P8 are used for interpolation. Once the new goal has
been mapped to see in which quadrant of the coordinate
plane it belongs, and the necessary primitives have been
selected, the corresponding learned parameters for the
primitives are selected to give UPi for each one, with i
being the primitive index:

UPi = [θ̇1, θ̇2, θ̇3, θ̇4, φ1, φ2, φ3]. (15)

In this work, for convenience, we take each quadrant to be
a 2 m × 2 m area, to help generate motor primitives. Thus,
the interpolation is considered within this range. So, the
total area covered by all quadrants of the coordinate plane
comprises a 4 m× 4 m grid. For example, let the parameter
interpolation set up take place in the quadrant marked
as A in Figure 6. The goals G1, ..., G7, G8 correspond to
positions (2, 2), (0, 2), (-2, 2), (-2, 0), (-2, -2), (0, -2), (2, -2) and
(2, 0), respectively. All goal positions are in metres (m). So,
P1, P2 and P8 are to be interpolated in A, thus giving i=1,
2, 8 for Equation (15). As a result, the interpolation takes
place with f (G2) = UP2 , f (G1) = UP1 , f (G8) = UP8 , f (O) =
[0, 0, 0, 0, 0, 0, 0], with f giving the mapping between the
learned goals and the required primitives. Positions G2 =
(x1, y2) = (0, 2), G1 = (x2, y2) = (2, 2), G8 = (x2, y1) =
(2, 0), O = (0, 0). Thus, the interpolated parameters for a
new goal G(x,y) are obtained as follows:

f (S1) =
x2 − x
x2 − x1

f (O) +
x− x1
x2 − x1

f (G8), where S1 = (x, y1),

(16)

f (S2) =
x2 − x
x2 − x1

f (G2) +
x− x1
x2 − x1

f (G1), where S2 = (x, y2),

(17)

f (G) =
y2 − y
y2 − y1

f (S1) +
y− y1
y2 − y1

f (S2). (18)

In this way, new robot behaviours are obtained through
interpolation from the elementary primitive set. An
experiment is shown in Figure 8 to demonstrate this. Three
primitives from Table 2 (P1s , P12, P13) are interpolated
in order to obtain a new robot behaviour (new control
parameters), using Equations (16–18) for the new goal (2
m, 1 m), as shown in Figure 8 (d).

6. Experiments for Complex Tasks

This section presents Experiments (6–10), demonstrating
how the robot handles complex tasks – like goal-directed
obstacle avoidance, goal-directed locomotion with body
deformation, and tasks with multiple goals – using the
developed framework. We encourage readers also to view
the supplementary video of these experiments, available
at http://manoonpong.com/IJARS2015/svideo.mpeg.

6.1. Goal-Directed Locomotion with Obstacle Avoidance

The experiments in Figure 9 show goal-directed
locomotion with and without obstacles. Figure 9 (a)
shows the experiment without any obstacles; here, the
robot uses only one motor primitive (taken as Set 1) to
reach the goal (-3 m, -1 m). Set 1 consists of θ̇1 = -0.26
rad/s, θ̇2 = 0.42 rad/s, θ̇3 = -0.29 rad/s, and θ̇4 = 0.34
rad/s; and φ1 = 0.05 rad, φ2 = 0.16 rad, and φ3 = −0.02
rad. Figure 9 (b) shows the experiment with obstacles.
The obstacles are avoided here by sensing through an IR
sensor attached to the robot’s head. To achieve this, three
robot behaviours are sequentially chained for avoiding
obstacles and moving to the goal. From the primitive
library in Table 2, two motor primitives – P2s (which makes
the robot move left, i.e., to 90◦) and P6s (which makes it
move right, i.e., to -90◦) – are selected and used. The robot
starts with a learned parameter set (i.e., Set 1) for reaching
the original goal (-3 m, -1 m). The IR sensor provides
feedback on the distance between the obstacle and the
robot. Once the robot has detected the obstacle (i.e., the
IR signal is higher than the threshold), it automatically
selects a predefined motor primitive (i.e., P2s for moving
to the left), so as to avoid the obstacle. Once the obstacle
has been avoided (i.e., the IR signal is smaller than a
threshold), the robot then returns to its previous motor
primitive (i.e., moving straight towards the goal with Set
1). Following a predefined time-out period after moving
straight, it then selects another motor primitive (i.e., P6s

moving to the right) and finally reaches the goal. In this
way, the primitives are chained and activated using the
sensor and a time-out period mechanism.
Another experiment in obstacle avoidance is also shown
in Figure 10. Two primitives – P4s (to move straight) and
P2z (to move left) – are selected from Table 2 and chained,
again using the IR sensor attached to the robot’s head. The
P4s primitive is used by the robot when there is no obstacle
detected (i.e., the IR signal is lower than a threshold) and
P2z as soon as an obstacle is sensed.
However, further sensors can be added to render the
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Figure 7. Graphical representation of the chaining of primitives to produce
complex robot behaviours, to achieve multiple goals. The red arrowhead
indicates the robot’s head. m1, m2 and m3 are the three angles relative to
instantaneous robot body orientation. Three required primitives are selected
to take the robot from start position A to the goal, via B and C points. The
red dashed line gives the trajectory.
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5.2 Parameter Interpolation

Once this basic primitive set of P1 to P8 was selected, as
depicted in Figure 6, this work made use of parameter
interpolation of nonperiodic primitives, in an attempt to
further generalize locomotion generation. The goal was to
make the robot generate new motor controls, and actions
necessary to reach new goals, from existing primitives.

Here, bilinear interpolation – a basic interpolation method
for non-linear systems – is used for interpolating parame‐
ters, considering that the snake-like robot follows non-
linear kinematics and uses all seven control parameters for
interpolation. For interpolation, new goals are present in
one of the quadrants marked as A, B, C and D, as shown in
Figure 6. For example, by interpolating the learned control
parameters for primitives P1, P2 and P8 in the quadrant
marked A, the motor control for the robot to move 120°, i.e.,
diagonally backwards to its start position, is generated.
Similarly, to obtain new robot behaviours for new goals in
the quadrant marked B, P2,P3 and P4 are used for the
interpolation; in the quadrant marked C, P4,P5 and P6 are
used; and in quadrant D, P6,P7 and P8 are used for interpo‐
lation. Once the new goal has been mapped to see in which
quadrant of the coordinate plane it belongs, and the
necessary primitives have been selected, the corresponding
learned parameters for the primitives are selected to give
U Pi

 for each one, with i being the primitive index:

1 2 3 4 1 2 3= , , , , , , .Pi
U q q q q f f fé ùë û

& & & & (15)

In this work, for convenience, we take each quadrant to be
a 2m × 2m area, to help generate motor primitives. Thus,
the interpolation is considered within this range. So, the
total area covered by all quadrants of the coordinate plane
comprises a 4m × 4m grid. For example, let the parameter
interpolation set up take place in the quadrant marked as
A in Figure 6. The goals G1,...,G7,G8 correspond to positions
(2, 2), (0, 2), (-2, 2), (-2, 0), (-2, -2), (0, -2), (2, -2) and (2, 0),
respectively. All goal positions are in metres (m). So, P1, P2

and P8 are to be interpolated in A, thus giving i=(1, 2, 8) for
Equation (15). As a result, the interpolation takes place with
f (G2)=U P2

, f (G1)=U P1
, f (G8)=U P8

, f (O)= 0,0,0,0,0,0,0 ,
with f giving the mapping between the learned goals and
the required primitives. Positions
G2=(x1,y2)= (0,2),G1=(x2,y2)= (2,2),G8=(x2,y1)= (2,0),O =(0,0).
Thus, the interpolated parameters for a new goal G(x,y) are
obtained as follows:

2 1
1 8 1 1

2 1 2 1

( ) = ( ) ( ), where = ( , ),x x x xf S f O f G S x y
x x x x

- -
+

- -
(16)

2 1
2 2 1 2 2

2 1 2 1

( ) = ( ) ( ), where = ( , ),x x x xf S f G f G S x y
x x x x

- -
+

- -
(17)

2 1
1 2

2 1 2 1

( ) = ( ) ( ).y y y yf G f S f S
y y y y

- -
+

- -
(18)

In this way, new robot behaviours are obtained through
interpolation from the elementary primitive set. An
experiment is shown in Figure 8 to demonstrate this. Three
primitives from Table 2 (P1s

, P12, P13) are interpolated in
order to obtain a new robot behaviour (new control
parameters), using Equations (16–18) for the new goal (2m,
1m), as shown in Figure 8(d).

6. Experiments for Complex Tasks

This section presents Experiments (6–10), demonstrating
how the robot handles complex tasks – like goal-directed
obstacle avoidance, goal-directed locomotion with body
deformation, and tasks with multiple goals – using the
developed framework. We encourage readers also to view
the supplementary video of these experiments, available at
http://manoonpong.com/IJARS2015/svideo.mpeg.

6.1 Goal-Directed Locomotion with Obstacle Avoidance

The experiments in Figure 9 show goal-directed locomo‐
tion with and without obstacles. Figure 9(a) shows the
experiment without any obstacles; here, the robot uses only
one motor primitive (taken as Set 1) to reach the goal (-3m,
-1 m). Set 1 consists of θ̇1 = -0.26rad/s, θ̇2 = 0.42rad/s, θ̇3 =
-0.29rad/s, and θ̇4 = 0.34rad/s; and ϕ1 =0.05rad, ϕ2 =0.16rad,
and ϕ3 = −0.02rad. Figure 9 (b) shows the experiment with
obstacles. The obstacles are avoided here by sensing
through an IR sensor attached to the robot’s head. To
achieve this, three robot behaviours are sequentially
chained for avoiding obstacles and moving to the goal.
From the primitive library in Table 2, two motor primitives
– P2s

 (which makes the robot move left, i.e., to 90°) and P6s

(which makes it move right, i.e., to -90°) – are selected and
used. The robot starts with a learned parameter set (i.e., Set
1) for reaching the original goal (-3m, -1m). The IR sensor
provides feedback on the distance between the obstacle and
the robot. Once the robot has detected the obstacle (i.e., the
IR signal is higher than the threshold), it automatically
selects a predefined motor primitive (i.e., P2s

 for moving to
the left), so as to avoid the obstacle. Once the obstacle has
been avoided (i.e., the IR signal is smaller than a threshold),
the robot then returns to its previous motor primitive (i.e.,
moving straight towards the goal with Set 1). Following a
predefined time-out period after moving straight, it then
selects another motor primitive (i.e., P6s

 moving to the right)
and finally reaches the goal. In this way, the primitives are
chained and activated using the sensor and a time-out
period mechanism.

Another experiment in obstacle avoidance is also shown in
Figure 10. Two primitives – P4s

 (to move straight) and P2z

(to move left) – are selected from Table 2 and chained, again
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using the IR sensor attached to the robot’s head. The P4s

primitive is used by the robot when there is no obstacle
detected (i.e., the IR signal is lower than a threshold) and
P2z

 as soon as an obstacle is sensed.

However, further sensors can be added to render the
locomotion fully sensor-driven. Additionally, a planner
that analyses the scene (as far as is visible) and then
automatically selects motor primitives to approach the goal
and/or avoid obstacles can be implemented (as an addi‐
tional module in the framework), using any planning

method or reactive/proactive control method [31]. An
example planner is presented below.

6.1.1 A symbolic planning example using primitives

Here, we briefly show an example of how a STRIPS-like
planner [32] could be used to generate a plan (see Section
5.1.1). The task at hand is obstacle avoidance. The POs for
this task (in terms of (a,p,e)) are defined in Table 3. Here, T
shows that the predicate takes a "True" value, and F, "False".
With the move(), the corresponding primitive (e.g., P2s

 and

Figure 8. Experiment 5: Generating new behaviours with parameter interpolation. Start position is (0m, 0m). (a) Primitive P1s from the
library. It is generated using the goal (2 m, 2 m) for a straight-line shape. (b) Primitive P12 from the library, which is generated using the
goal (0 m, 2 m) for a semi-zigzag shape, having φ1 = 0.5 rad, φ2 = -0.5 rad, and φ3 = -0.1 rad. (c) Primitive P13 from the library, which is
generated using the goal (2 m, 0 m) for a semi-zigzag shape. (d) The robot reaches the goal (2 m, 1 m) using parameters obtained by
interpolating the above primitives belonging to different robot shapes.

Figure 9. Experiment 6: Goal-directed locomotion of the real robot without and with obstacles in a complex environment. (a) Real robot
experiment without obstacles, showing the robot reaching the goal (-3 m, -1 m) using the learned control parameters. Start position is (0m,
0m). (b) Goal-directed obstacle avoidance behaviour in a real robot experiment. The robot reaches the goal (shown in red) while avoiding
obstacles on its path. The robot behaviour is driven by chaining three motor primitives, obtained through PI2.

Figure 10. Experiment 7: Real robot experiment demonstrating obstacle avoidance. All primitives are sequenced using IR sensory
feedback. The numbers of the obstacles are marked; two obstacles can be seen being avoided at the shown timestamps.
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robot reaches the goal (2m, 1m) using parameters obtained by interpolating the above primitives belonging to different robot shapes.
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library. It is generated using the goal (2 m, 2 m) for a straight-line shape. (b) Primitive P12 from the library, which is generated using the
goal (0 m, 2 m) for a semi-zigzag shape, having φ1 = 0.5 rad, φ2 = -0.5 rad, and φ3 = -0.1 rad. (c) Primitive P13 from the library, which is
generated using the goal (2 m, 0 m) for a semi-zigzag shape. (d) The robot reaches the goal (2 m, 1 m) using parameters obtained by
interpolating the above primitives belonging to different robot shapes.

Figure 9. Experiment 6: Goal-directed locomotion of the real robot without and with obstacles in a complex environment. (a) Real robot
experiment without obstacles, showing the robot reaching the goal (-3 m, -1 m) using the learned control parameters. Start position is (0m,
0m). (b) Goal-directed obstacle avoidance behaviour in a real robot experiment. The robot reaches the goal (shown in red) while avoiding
obstacles on its path. The robot behaviour is driven by chaining three motor primitives, obtained through PI2.

Figure 10. Experiment 7: Real robot experiment demonstrating obstacle avoidance. All primitives are sequenced using IR sensory
feedback. The numbers of the obstacles are marked; two obstacles can be seen being avoided at the shown timestamps.
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Figure 9. Experiment 6: Goal-directed locomotion of the real robot without and with obstacles in a complex environment. (a) Real robot experiment without
obstacles, showing the robot reaching the goal (-3m, -1m) using the learned control parameters. Start position is (0m, 0m). (b) Goal-directed obstacle avoidance
behaviour in a real robot experiment. The robot reaches the goal (shown in red) while avoiding obstacles on its path. The robot behaviour is driven by chaining
three motor primitives, obtained through PI2.
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P5s
, in the case of the example shown in Figure 9(b)) is

selected from Table 2 for action grounding: PO1 takes the
robot straight, PO2 takes it left, and PO3 takes it right.

To show how these operators can be searched and se‐
quenced, the initial scenario shown in Figure 9(b) is taken.
For this scenario, the starting state Sini is {F ,F ,F ,F }, and
accordingly, a plan is generated consisting of a single PO:
PO1. At the point where an obstacle is detected, a replanning
operation is performed with the new initial state Sininew

 =
{F ,T ,F ,F }. The new plan to reach the goal is then PO2,PO1.

Alternatively, at the point of the obstacle, PO3,PO1 would
also be a possible new plan, as can be ascertained from the
p in Table 3 and from Sininew

. Similarly, for the initial setup
in Figure 10, a plan PO1 is generated at the start. When
Obstacle 1 is detected, replanning occurs with Sininew

 =
{F ,T ,F ,T }, and the new plan is PO2,PO1. As, Sininew

 is again
{F ,T ,F ,T } when Obstacle 2 is detected, the new plan is again
PO2,PO1, which thus allows the robot to reach the goal
while avoiding the obstacles. In this way, a planner that
uses the learned primitives obtained by PI2 can be integrat‐
ed into the framework for goal-directed locomotion.

Figure 8. Experiment 5: Generating new behaviours with parameter interpolation. Start position is (0m, 0m). (a) Primitive P1s from the
library. It is generated using the goal (2 m, 2 m) for a straight-line shape. (b) Primitive P12 from the library, which is generated using the
goal (0 m, 2 m) for a semi-zigzag shape, having φ1 = 0.5 rad, φ2 = -0.5 rad, and φ3 = -0.1 rad. (c) Primitive P13 from the library, which is
generated using the goal (2 m, 0 m) for a semi-zigzag shape. (d) The robot reaches the goal (2 m, 1 m) using parameters obtained by
interpolating the above primitives belonging to different robot shapes.

Figure 9. Experiment 6: Goal-directed locomotion of the real robot without and with obstacles in a complex environment. (a) Real robot
experiment without obstacles, showing the robot reaching the goal (-3 m, -1 m) using the learned control parameters. Start position is (0m,
0m). (b) Goal-directed obstacle avoidance behaviour in a real robot experiment. The robot reaches the goal (shown in red) while avoiding
obstacles on its path. The robot behaviour is driven by chaining three motor primitives, obtained through PI2.

Figure 10. Experiment 7: Real robot experiment demonstrating obstacle avoidance. All primitives are sequenced using IR sensory
feedback. The numbers of the obstacles are marked; two obstacles can be seen being avoided at the shown timestamps.
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Figure 10. Experiment 7: Real robot experiment demonstrating obstacle avoidance. All primitives are sequenced using IR sensory feedback. The numbers of
the obstacles are marked; two obstacles can be seen being avoided at the shown timestamps.

Figure 11. Experiment 8: Real robot movement through multiple goals. The followed trajectory is indicated by the dotted lines and the
goals are marked in red. The robot reaches the final goal via G1, G2 and G3. The three motor primitives giving the three control parameter
sets are sequentially activated.

Figure 12. Experiment 9: The robot reaches multiple goals (G1, G2, G3), which are marked. The chaining of the robot behaviours is
IM1 → IM2 → IM3 → P5pe → P4pe . IM1 (obtained from interpolating P8s , P1s and P2s ), which gives the robot behaviour for moving to 120◦

diagonally in a straight shape, is chained with IM2 (obtained from interpolating P1a , P2a and P8a ). This is followed by IM3 (obtained from
interpolating P4a , P5a and P6a ), for moving the robot to −30◦ with a bent arc-like configuration, with all its joint angles negative. IM3 is used
to change the robot’s direction. In this way, G1 is reached. To reach G2, the motor primitive P5pe for moving to −30◦ diagonally with periodic
body movements is used. In order to reach the final goal (G3), P4pe , for moving the robot to −90◦ vertically downward with periodic body
movements, is used.

locomotion fully sensor-driven. Additionally, a planner
that analyses the scene (as far as is visible) and then
automatically selects motor primitives to approach the
goal and/or avoid obstacles can be implemented (as an
additional module in the framework), using any planning
method or reactive/proactive control method [31]. An
example planner is presented below.

6.1.1. A symbolic planning example using primitives

Here, we briefly show an example of how a STRIPS-like
planner [32] could be used to generate a plan (see Section
5.1.1). The task at hand is obstacle avoidance. The POs for
this task (in terms of (a, p, e)) are defined in Table 3. Here,
T shows that the predicate takes a "True" value, and F,
"False". With the move(), the corresponding primitive (e.g.,
P2s and P5s , in the case of the example shown in Figure
9 (b)) is selected from Table 2 for action grounding: PO1
takes the robot straight, PO2 takes it left, and PO3 takes
it right. To show how these operators can be searched
and sequenced, the initial scenario shown in Figure 9 (b) is
taken. For this scenario, the starting state Sini is {F, F, F, F},
and accordingly, a plan is generated consisting of a single
PO: PO1. At the point where an obstacle is detected, a
replanning operation is performed with the new initial
state Sininew = {F, T, F, F}. The new plan to reach the goal is
then PO2, PO1. Alternatively, at the point of the obstacle,
PO3, PO1 would also be a possible new plan, as can be
ascertained from the p in Table 3 and from Sininew . Similarly,

Definition
PO1 a: move(angletoGoal, shape)

p: obstacle(angletoGoal) = F, ongoal(robot) = F
e: ongoal(robot)= T

PO2 a: move(angletoGoal+90◦, shape)
p: obstacle(angletoGoal+90◦) = F,
obstacle(angletoGoal)= T
e: obstacle(angletoGoal)= F

PO3 a: move(angletoGoal-90◦, shape)
p: obstacle(angletoGoal-90◦)= F,
obstacle(angletoGoal)= T
e: obstacle(angletoGoal)= F

Table 3. Planning Operators for Obstacle Avoidance

for the initial setup in Figure 10, a plan PO1 is generated at
the start. When Obstacle 1 is detected, replanning occurs
with Sininew = {F, T, F, T}, and the new plan is PO2, PO1.
As, Sininew is again {F, T, F, T} when Obstacle 2 is detected,
the new plan is again PO2, PO1, which thus allows the
robot to reach the goal while avoiding the obstacles. In this
way, a planner that uses the learned primitives obtained by
PI2 can be integrated into the framework for goal-directed
locomotion.

6.2. Goal-Directed Behaviour with Multiple Goals

Here, the goal-directed behaviour of the robot is
demonstrated as it is made to move through multiple
goals. Figure 11 shows an experiment in which the robot
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sets are sequentially activated.

Figure 12. Experiment 9: The robot reaches multiple goals (G1, G2, G3), which are marked. The chaining of the robot behaviours is
IM1 → IM2 → IM3 → P5pe → P4pe . IM1 (obtained from interpolating P8s , P1s and P2s ), which gives the robot behaviour for moving to 120◦

diagonally in a straight shape, is chained with IM2 (obtained from interpolating P1a , P2a and P8a ). This is followed by IM3 (obtained from
interpolating P4a , P5a and P6a ), for moving the robot to −30◦ with a bent arc-like configuration, with all its joint angles negative. IM3 is used
to change the robot’s direction. In this way, G1 is reached. To reach G2, the motor primitive P5pe for moving to −30◦ diagonally with periodic
body movements is used. In order to reach the final goal (G3), P4pe , for moving the robot to −90◦ vertically downward with periodic body
movements, is used.

locomotion fully sensor-driven. Additionally, a planner
that analyses the scene (as far as is visible) and then
automatically selects motor primitives to approach the
goal and/or avoid obstacles can be implemented (as an
additional module in the framework), using any planning
method or reactive/proactive control method [31]. An
example planner is presented below.

6.1.1. A symbolic planning example using primitives

Here, we briefly show an example of how a STRIPS-like
planner [32] could be used to generate a plan (see Section
5.1.1). The task at hand is obstacle avoidance. The POs for
this task (in terms of (a, p, e)) are defined in Table 3. Here,
T shows that the predicate takes a "True" value, and F,
"False". With the move(), the corresponding primitive (e.g.,
P2s and P5s , in the case of the example shown in Figure
9 (b)) is selected from Table 2 for action grounding: PO1
takes the robot straight, PO2 takes it left, and PO3 takes
it right. To show how these operators can be searched
and sequenced, the initial scenario shown in Figure 9 (b) is
taken. For this scenario, the starting state Sini is {F, F, F, F},
and accordingly, a plan is generated consisting of a single
PO: PO1. At the point where an obstacle is detected, a
replanning operation is performed with the new initial
state Sininew = {F, T, F, F}. The new plan to reach the goal is
then PO2, PO1. Alternatively, at the point of the obstacle,
PO3, PO1 would also be a possible new plan, as can be
ascertained from the p in Table 3 and from Sininew . Similarly,

Definition
PO1 a: move(angletoGoal, shape)

p: obstacle(angletoGoal) = F, ongoal(robot) = F
e: ongoal(robot)= T

PO2 a: move(angletoGoal+90◦, shape)
p: obstacle(angletoGoal+90◦) = F,
obstacle(angletoGoal)= T
e: obstacle(angletoGoal)= F

PO3 a: move(angletoGoal-90◦, shape)
p: obstacle(angletoGoal-90◦)= F,
obstacle(angletoGoal)= T
e: obstacle(angletoGoal)= F

Table 3. Planning Operators for Obstacle Avoidance

for the initial setup in Figure 10, a plan PO1 is generated at
the start. When Obstacle 1 is detected, replanning occurs
with Sininew = {F, T, F, T}, and the new plan is PO2, PO1.
As, Sininew is again {F, T, F, T} when Obstacle 2 is detected,
the new plan is again PO2, PO1, which thus allows the
robot to reach the goal while avoiding the obstacles. In this
way, a planner that uses the learned primitives obtained by
PI2 can be integrated into the framework for goal-directed
locomotion.

6.2. Goal-Directed Behaviour with Multiple Goals

Here, the goal-directed behaviour of the robot is
demonstrated as it is made to move through multiple
goals. Figure 11 shows an experiment in which the robot
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Figure 12. Experiment 9: The robot reaches multiple goals (G1, G2, G3), which are marked. The chaining of the robot behaviours is
I M1 → I M2 → I M3 → P5 pe

→ P4 pe
. I M1 (obtained from interpolating P8s

, P1s
 and P2s

), which gives the robot behaviour for moving to 120°  diagonally in a straight
shape, is chained with I M2 (obtained from interpolating P1a

, P2a
 and P8a

). This is followed by I M3 (obtained from interpolating P4a
, P5a

 and P6a
), for moving

the robot to −30°  with a bent arc-like configuration, with all its joint angles negative. I M3 is used to change the robot’s direction. In this way, G1 is reached.
To reach G2, the motor primitive P5 pe

 for moving to −30°  diagonally with periodic body movements is used. In order to reach the final goal (G3), P4 pe
, for

moving the robot to −90°  vertically downward with periodic body movements, is used.

11Sromona Chatterjee, Timo Nachstedt, Minija Tamosiunaite, Florentin Wörgötter, Yoshihide Enomoto, Ryo Ariizumi, Fumitoshi Matsuno
and Poramate Manoonpong:

Learning and Chaining of Motor Primitives for Goal-directed Locomotion of a Snake-like Robot with Screw-drive Units



Definition

PO 1 a: move(angletoGoal, shape)

p: obstacle(angletoGoal) = F, ongoal(robot) = F

e: ongoal(robot)= T

PO 2 a: move(angletoGoal+90°, shape)

p: obstacle(angletoGoal+90°) = F,

obstacle(angletoGoal)= T

e: obstacle(angletoGoal)= F

PO 3 a: move(angletoGoal-90°, shape)

p: obstacle(angletoGoal-90°)= F,

obstacle(angletoGoal)= T

e: obstacle(angletoGoal)= F

Table 3. Planning Operators for Obstacle Avoidance

6.2 Goal-Directed Behaviour with Multiple Goals

Here, the goal-directed behaviour of the robot is demon‐
strated as it is made to move through multiple goals. Figure
11 shows an experiment in which the robot moves through
multiple sub-goals (G1 and G2) in order to reach the final
goal (G3). Three primitives (P1s

,P4z
,P9) are manually

selected from Table 2 for this task, and their final chaining
sequence is P1s

→ P4z
→ P9. The chaining can be described as

follows: the robot uses P1s
, the motor primitive for moving

to 135  with a straight-line shape, to reach the first goal (G1)
from the start; this is followed by P4z

, for moving straight
with a zigzag shape, to reach the second goal (G2); finally,
the robot uses P9, for moving to 90°  upward with a semi-
arc shape, to reach the final goal (G3). Another multiple
goal experiment is shown in Figure 12. Primitives of
different shapes, and both nonperiodic and periodic, are
selected in these experiments to demonstrate the possibility
of chaining between different robot configurations.

6.3 Goal-Directed Locomotion with Body Deformation

In these experiments, the robot successfully moves toward
a goal even when it has suffered body deformation, i.e.;
changes to its body shape, on its way. A single deformation
is shown in Figure 13(b), whereas Figure 13(c) shows
multiple deformations in body shape.

Figure 13(a–b) uses three motor primitives – P10, P11, P12 –
which are manually selected from Table 2 for the task.
Figure 13(a) shows the robot behaviour when there is no
deformation on its way to the goal (-1m, 2m). The learned
parameters for this situation, taken as Set 1, are θ̇1 =
-0.38rad/s, θ̇2 = -0.05rad/s, θ̇3 = -0.42rad/s and θ̇4 = 0.06rad/
s, with ϕ1 =ϕ2 =ϕ3 =0. Figure 13(b) shows the robot behav‐
iour when its body shape changes on the way toward the
goal (-1m, 2m), while it is using the above Set 1 parameters.
When it detects a change in its body shape, using its joint

Figure 13. Experiment 10: Goal-directed locomotion while handling changes in body shape. (a) Robot reaches the goal without
deformation, maintaining φi=0 rad throughout its locomotion. The goal is (-1 m, 2 m) and the start position (0 m, 0 m).(b) Even when its
body shape changes on its path at 0.25 min, it continues with the new shape to reach the same goal (-1 m, 2 m). It uses the corresponding
motor primitives/robot control for the new body shape to handle this change. (c) Simulation showing that the robot can successfully handle
multiple body shape changes on its route, and still reach the goal. The first snapshot shows the robot reaching the goal (-2 m, 3 m) by
moving at 60◦, without any deformation and maintaining φi=0 rad throughout. Two deformations – the first from a straight to an arc shape,
followed by a change to a semi-zigzag (at both instants, the robot going to 20◦) – are handled using two derived motor primitives, as shown
in the second snapshot onwards. The pictures also show how the trajectory (the white line) is maintained even when there is deformation.
This points to a systematic primitive library formation, which can be used as required.

moves through multiple sub-goals (G1 and G2) in order
to reach the final goal (G3). Three primitives (P1s , P4z , P9)
are manually selected from Table 2 for this task, and
their final chaining sequence is P1s → P4z → P9. The
chaining can be described as follows: the robot uses P1s ,
the motor primitive for moving to 135◦ with a straight-line
shape, to reach the first goal (G1) from the start; this is
followed by P4z , for moving straight with a zigzag shape,
to reach the second goal (G2); finally, the robot uses P9,
for moving to 90◦ upward with a semi-arc shape, to reach
the final goal (G3). Another multiple goal experiment
is shown in Figure 12. Primitives of different shapes,
and both nonperiodic and periodic, are selected in these
experiments to demonstrate the possibility of chaining
between different robot configurations.

6.3. Goal-Directed Locomotion with Body Deformation

In these experiments, the robot successfully moves toward
a goal even when it has suffered body deformation, i.e.;
changes to its body shape, on its way. A single deformation
is shown in Figure 13 (b), whereas Figure 13 (c) shows
multiple deformations in body shape.
Figure 13 (a–b) uses three motor primitives – P10, P11, P12
– which are manually selected from Table 2 for the task.
Figure 13 (a) shows the robot behaviour when there is
no deformation on its way to the goal (-1 m, 2 m). The
learned parameters for this situation, taken as Set 1, are
θ̇1 = -0.38 rad/s, θ̇2 = -0.05 rad/s, θ̇3 = -0.42 rad/s and
θ̇4 = 0.06 rad/s, with φ1 = φ2 = φ3 = 0. Figure 13 (b)
shows the robot behaviour when its body shape changes
on the way toward the goal (-1 m, 2 m), while it is using

the above Set 1 parameters. When it detects a change
in its body shape, using its joint angle sensors, it uses
another robot behaviour, IM4, to enable it to handle this
morphological change. IM4 (belonging to the semi-zigzag
robot shape of φ1= 0.5 rad, φ2= −0.5 rad, and φ3 = −0.1
rad) is generated using parameter interpolation of the
primitives P10, P11 and P12, in order to move to 30◦. The
interpolation is performed following Equations (16–18).
The primitives to be interpolated are selected based on the
new deformed robot shape and the angle to the goal at
the instant that deformation takes place. Interpolation is
used to generate new behaviours, as no suitable primitive
previously existed. Using the derived behaviour IM4, the
robot moves with this new semi-zigzag shape and is able
to finally reach the goal.

7. Conclusion

We have successfully developed a framework that
provides a model-free goal-directed locomotion controller
for a snake-like robot with screw-drive units. The
framework handles a large number of behavioural
cases (within a defined scope). With the complete
framework for generating motor primitives using PI2,
along with parameter interpolation and the chaining of
primitives and/or interpolated parameters, the robot
can successfully perform goal-directed locomotion in
different situations. The framework thus generalizes
the locomotion generation for the complex nonstandard
snake-like robot.
Real robot experiments show that using the complete
framework enables the robot to successfully handle
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Figure 13. Experiment 10: Goal-directed locomotion while handling changes in body shape. (a) Robot reaches the goal without deformation, maintaining ϕi
=0rad throughout its locomotion. The goal is (-1m, 2m) and the start position (0m, 0m).(b) Even when its body shape changes on its path at 0.25min, it continues
with the new shape to reach the same goal (-1m, 2m). It uses the corresponding motor primitives/robot control for the new body shape to handle this change.
(c) Simulation showing that the robot can successfully handle multiple body shape changes on its route, and still reach the goal. The first snapshot shows the
robot reaching the goal (-2m, 3m) by moving at 60°, without any deformation and maintaining ϕi =0rad throughout. Two deformations – the first from a
straight to an arc shape, followed by a change to a semi-zigzag (at both instants, the robot going to 20°) – are handled using two derived motor primitives, as
shown in the second snapshot onwards. The pictures also show how the trajectory (the white line) is maintained even when there is deformation. This points
to a systematic primitive library formation, which can be used as required.
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angle sensors, it uses another robot behaviour, I M4, to
enable it to handle this morphological change. I M4

(belonging to the semi-zigzag robot shape of ϕ1 = 0.5rad, ϕ2

= -0.5rad, and ϕ3 = -0.1rad) is generated using parameter
interpolation of the primitives P10, P11 and P12, in order to
move to 30°. The interpolation is performed following
Equations (16–18). The primitives to be interpolated are
selected based on the new deformed robot shape and the
angle to the goal at the instant that deformation takes place.
Interpolation is used to generate new behaviours, as no
suitable primitive previously existed. Using the derived
behaviour I M4, the robot moves with this new semi-zigzag
shape and is able to finally reach the goal.

7. Conclusion

We have successfully developed a framework that pro‐
vides a model-free goal-directed locomotion controller for
a snake-like robot with screw-drive units. The framework
handles a large number of behavioural cases (within a
defined scope). With the complete framework for generat‐
ing motor primitives using PI2, along with parameter
interpolation and the chaining of primitives and/or
interpolated parameters, the robot can successfully per‐
form goal-directed locomotion in different situations. The
framework thus generalizes the locomotion generation for
the complex nonstandard snake-like robot.

Real robot experiments show that using the complete
framework enables the robot to successfully handle
challenging tasks like reaching a single/multiple goal(s)
while avoiding obstacles or compensating for a morpho‐
logical change (such as body damage) during locomotion.
Furthermore, it has also been shown that, by learning a
proper combination of locomotion control parameters (i.e.,
screw velocities and joint angles using PI2), motor primi‐
tives can be generated in a numerically simple manner.
Proper control parameters were also found for when the
robot was configured with different shapes (i.e., straight-
line, zigzag, arc, etc.) or with periodic body movements,
thereby establishing a rich primitive library which could
then be used. Thus, this framework and approach solves
the coordination problems relating to such a high degree-
of-freedom system as this nonstandard snake-like robot. As
a result, the robot is able to reach a given goal in different
situations. In addition, this study also shows how PI2 can
be used to learn motor control for this type of nonstandard
snake-like robot.

In some of the real robot experiments, a small deviation
(i.e., approximately 25cm) from the goal was observed. This
deviation was due to real conditions, such as friction,
cabling, etc. Major changes, like the variation of the friction
coefficient, can be handled by relearning the existing motor
primitives. However, sensory signals (e.g., joint angles,
goal detection, slip detection, etc.) are required in order to
enable the robot to perform online learning autonomously,
which can then adjust or optimize the parameters of our

motor primitives to deal significantly with body and
environmental changes. Implementing such sensors with
online learning is one of our future plans.
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