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1. Introduction
Current treatments for many degenerative diseases such 
as Alzheimer and Parkinson disease, motor neuron 
disease, multiple sclerosis, diabetes, and kidney, liver, 
and heart diseases, as well as for many types of cancer, 
are mainly symptomatic, and for certain diseases, total 
recovery implies whole organ transplantation (Gieseck et 
al., 2015). 

Stem cell therapy that concerns cell reprogramming 
and transplantation of embryonic stem cells (ESCs), 
mesenchymal stem cells (MSCs), and induced pluripotent 
stem cells (iPSCs) represents an interesting yet disputed 
research area, with exciting results for many diseases. 
These pluripotent/multipotent cells can be differentiated 
in vitro to a desired cell type and they are used for 
transplantation into patients with various disorders, as 
illustrated in the Figure. Stem cells, including ESCs and 
MSCs, present self-renewal ability and they also have the 
capacity to differentiate into one or more mature cellular 
lineages, being promising tools for clinical applications. 
In the course of mammalian development, stem cells are 
involved in tissue and organ formation (ESCs), and in 

several adult tissues they can provide regenerative capacity 
(adult stem cells). These properties are directed by the 
interaction of cell type-specific transcription factors and 
chromatin regulators (Klimanskaya et al., 2008; Sarkar and 
Hochedlinger, 2013; Mariano et al., 2015). 

Gaining knowledge about stem cells has enabled 
the development of a new branch of medicine, called 
regenerative medicine. In this new branch, the therapeutic 
act involves the manipulation of stem cells in order to 
regenerate tissues and organs of an organism altered by 
destruction, disease, or congenital defects (Katari et al., 
2014; El-Badawy and El-Badri, 2015; McNamara et al., 
2015). A first use of the stem cells has been performed 
in bone marrow transplantation containing multipotent 
stem cells in patients with various forms of hematological 
disorders, including acute myelogenous leukemia, acute 
lymphoblastic leukemia, non-Hodgkin lymphoma, and 
myelodysplastic syndromes (Karanes et al., 2008). This 
review presents several current clinical and nonclinical 
data concerning mainly the use of ESCs, MSCs, and iPSCs 
in the treatment of different diseases, highlighting both the 
opportunities and the limitations of this therapy.
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2. Embryonic stem cells 
ESCs are stem cells derived from an early stage of embryo 
development or from the inner cell mass of the developing 
embryo, capable of differentiating into nearly all cell 
types of all three germ layers (ectoderm, mesoderm, and 
endoderm). Pluripotency characterizes especially the 
early stage of embryo development (Mizuno et al., 2012; 
Chuang et al., 2015). The ESC capacity of proliferation 
and transformation in all somatic cells made these 
cells, initially, the main source of stem cells. The use of 
ESCs in therapy, although extremely promising, raises 
diverse issues such as rejection of ESCs, which requires 
immunosuppressive treatment, and the possibility to 
induce tumor cells, presenting legal and ethical limitations 
(Kfoury, 2007; Ramos-Zuniga et al., 2012; Schwartz et al., 
2012). Thus, in vivo experiments conducted in the areas 
of tissue destruction showed that ESC administration to 
immunodeficient mice, by injection of these cells into the 
wound, did not lead to the restoration of the tissue but 
rather to the formation of tumors called teratoma, with a 
low malignancy potential, containing structures derived 
from all three germ layers. This type of experiment has 
shown that the therapeutic use of ESCs necessitates 
isolation, cultivation, and forced differentiation in order 
for them to derive into the desired cell types. Only these 
differentiated cells may be safely injected into the recipient 
(Hentze et al., 2009). 

Limitations of ESC use are also caused by their 
immunological rejection phenomena; therefore, 

appropriate immunosuppressive strategies are required 
(Stuckey and Shah, 2014). Clinical trials using ESCs 
have focused on several disease treatments, including 
neurological (Ambasudhan et al., 2014), cardiac (Ban 
et al., 2014), and pancreatic (Wu et al., 2011) disorders, 
highlighting the regenerative potential of ESCs for 
damaged structures. 

In a study that used human ESC-derived cardiomyocytes 
in a nonhuman primate model of myocardial ischaemia, 
it was shown that the infarcted monkey heart presented 
extensive remuscularization after treatment, with nonfatal 
ventricular arrhythmias as a secondary effect (Chong et 
al., 2014). Hepatocyte-like cells derived from human ESCs 
and engrafted into mice sustained proliferation of host 
hepatocytes and revascularization of injured host liver tissue 
by providing trophic factors involved in liver regeneration, 
while human ESC-derived pancreatic progenitor cells can 
differentiate in vivo into functional islets in diabetic mice 
(Rezania et al., 2012; Woo et al., 2012). 

In the United States, two prospective phase 1/2 
studies evaluated the safety and tolerability of subretinal 
transplantation of human ESC-derived retinal pigment 
epithelium in patients with Stargardt macular dystrophy 
and atrophic age-related macular degeneration. 
The preliminary results suggested that no adverse 
proliferation, rejection, or safety issues were associated 
with the treatment. Moreover, improvements in subretinal 
pigmentation visual acuity have been observed (Schwartz 
et al., 2015). 

Figure. The main strategies for generating desired cell types for subsequent 
transplantation into patients involve direct differentiation of embryonic stem cells 
(ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) 
derived from somatic cells by manipulation of several transcription factors (TF) or by 
modulation of signaling pathways.
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3. Adult stem cells 
MSCs, the commonest type of adult stem cells, represent 
an attractive research field for scientists due to their 
potential to regenerate damaged or degenerated tissues 
and organs, and also because their use does not create 
ethical or immunological concerns. MSCs represent 
an accessible stem cell source since they can be isolated 
from adult somatic tissues, such as the bone marrow, skin, 
adipose tissue, umbilical cord, and intestines. These cells, 
together with endometrial stem cells, can differentiate into 
one or more lineages with mesodermal and ectodermal 
origin (hepatocytes, osteoblasts, smooth muscle, 
cardiomyocytes, cartilage, adipocytes, pancreatic cells, 
neuronal cells, dopaminergic neurons), displaying a high 
proliferative potential, clonogenicity, or colony forming 
unit activity (Ghobadi et al., 2015; Goodarzi et al., 2015). 
MSCs are able to manage the repair response by recruiting 
other cells and by secreting several bioactive molecules, 
including growth factors and matrix proteins capable of 
stimulating the recovery of damaged cells and inhibiting 
inflammation. These cells are also characterized by weak 
immunogenicity and, at the same time, by the ability 
to perform immunomodulatory functions. Although 
primary MSCs are found in a limited number in human 
tissues, these stem cells can be expanded in long-term 
culture systems, allowing the obtainment of a large-scale 
production of MSCs for clinical application (Wang et al., 
2011; Wang et al., 2012).  

Based on MSCs’ unique properties, such as tissue 
repair and major histocompatibility complex (MHC)-
unmatched immunosuppression, these cells have been 
used for graft-versus-host disease (GVHD) treatment, a 
major cause of morbidity and mortality after allogeneic 
hematopoietic stem cell transplantation. A combination 
therapy with MSCs and Treg cells, for example, seems 
to increase the immunomodulatory activity of MSCs 
(Kitazawa et al., 2012; Lim et al., 2014). Using in vitro 
and in vivo experiments, Jang et al. demonstrated that 
placenta-derived MSCs transplanted into mice can control 
GVHD after hematopoietic stem cell transplantation 
(Jang et al., 2013). Clinical data suggest a benefit in 
approximately two-thirds of the patients with steroid-
resistant acute GVHD (Tolar et al., 2011; Resnick 
et al., 2013). In systemic sclerosis, a chronic disease 
characterized by early activation of the immune system, 
MSCs manifest immunomodulatory functions, such as an 
immunosuppressive effect on lymphocyte proliferation 
(Cipriani et al., 2013). Furthermore, preclinical and clinical 
studies have focused on MSC-based therapy in Crohn 
disease, a major inflammatory bowel disease characterized 
by pathological immune responses to different antigens 
(Forte et al., 2015). Clinical studies demonstrated that, 
when administered locally by injection, MSCs represent a 

harmless therapy that can sustain the therapeutic response 
in patients with Crohn disease (Ciccocioppo et al., 2015).

MSCs have been efficiently developed as a promising 
tool for clinical applications in digestive tract defects 
(Sirbu-Boeti et al., 2009), as well as in musculoskeletal 
diseases, including bone fractures, bone defects, focal 
chondral lesions, osteoarthritis, spinal diseases, and 
tendon injuries (Wei et al., 2014). Recent studies in the 
equine industry demonstrated that MSCs have the capacity 
to differentiate into osteoblasts by manipulation of several 
transcription factors, such as runt-related transcription 
factor 2 (Runx2) and osterix (Osx); this therapy can 
improve fracture healing and reduce the incidence of 
reinjury (Govoni, 2015). In secondary osteoporosis, 
systemic transplantation of human bone marrow MSCs 
and stem cells from exfoliated deciduous teeth in murine 
models recovered the reduction of bone density through 
IL-17 suppression (Ma et al., 2015).

Due to the important role of MSCs in bone tissue repair 
or regeneration, numerous studies have focused on testing 
pharmacological molecules able to promote MSC homing 
or to mobilize bone marrow MSCs in the peripheral blood 
for enhancing the recruitment of MSCs to the injured 
bone tissues (Zhou et al., 2015). 

There are also several studies showing that MSCs 
can be considered therapeutic tools for patients with 
neurodegenerative diseases, including Alzheimer 
disease, Parkinson disease, amyotrophic lateral sclerosis, 
Huntington disease, and multiple sclerosis, due to their 
capacity to transdifferentiate into neural cells and their 
neuroprotective and immunomodulatory effects (Tanna 
and Sachan, 2014). Genetically modified MSCs were used 
in neurodegenerative diseases as vehicles for transporting 
or releasing neurotrophic factors, such as glial cell-derived 
neurotrophic factor (GDNF), nerve growth factor (NGF), 
and brain-derived neurotrophic factor (BDNF), able to 
protect and to sustain regeneration of damaged tissue 
(Wyse et al., 2014). Even if initially adult neural stem 
cells (aNSCs) were considered a promising source for 
stem cells in neurodegenerative disorders due to their 
capacity to differentiate easily into neuronal lineages, 
experiments showed that these stem cells are vulnerable 
to immune responses following transplantation. The 
results obtained by an in vivo study demonstrated that 
transplantation of combined MSCs and aNSCs resulted in 
increased survival of the transplanted aNSCs as well as a 
longer-term behavioral benefit in a transgenic rat model 
of Huntington disease, mainly because MSCs are less 
vulnerable to rejection following transplantation and also 
due to the fact that MSCs might ensure a more favorable 
environment for aNSCs’ survival (Rossignol et al., 2014). 
In a rat model of Parkinson disease, MSC transplantation 
resulted in upregulation of peripheral antiinflammatory 
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cytokines, increased neurogenesis, and improved memory 
functioning, with modulatory effects on the hippocampus 
(Schwerk et al., 2015).

Neural crest cells represent a multipotent and migratory 
cell population able to generate a variety of cell and tissue 
types, such as craniofacial cartilage and bone, smooth 
muscle, peripheral and enteric neurons, glia, melanocytes, 
or connective tissue (Achilleos and Trainor, 2012). Neural 
crest progenitors persist in adult life in differentiated 
tissues, including the enteric nervous system of the gut, 
the hair follicles of the facial skin, etc. (Teng and Labosky, 
2006). Although differentiated, the neural crest-derived 
cells possess phenotypic plasticity. Dupin et al., using in 
vitro experiments, showed that epidermal pigment cells 
and Schwann cells from peripheral nerves have the capacity 
to reverse into multipotent neural crest-like progenitors 
with a self-renewal property. It seems that various neural 
crest progenitors can express stem cell properties; at the 
same time, differentiated cells of neural crest origin can 
reacquire these functions, raising the possibility of using 
them as a promising tool for regeneration (Dupin et al., 
2007). Human epidermal neural crest stem cells from the 
bulge of hair follicles are also suitable candidates for cell-
based therapies, disease modeling, and drug discovery 
(Sieber-Blum, 2014). 

Recently, a rare population of very small embryonic-
like stem cells (VSELs), still under scientific debate, was 
identified in a quiescent state in bone marrow and other 
adult tissues. They are smaller than red blood cells, 
express several markers characteristic for pluripotent 
stem cells (Oct 4, Nanong, SSEA), and could be mobilized 
in peripheral blood under stress conditions. They are 
supposed to be a link between early development stages 
and adult stem cell compartments. VSELs hold the promise 
of a new source for developing regenerative therapies to 
repair complex tissue damaged by trauma or degenerative 
conditions, such as osteoporosis (Ratajczak et al., 2012; 
Havens et al., 2013; Ratajczak et al., 2014). 

Recent but also disputed studies have identified stem 
cells in adult mammalian ovaries that can be involved 
in oocyte renewal. These ovarian germline stem cells are 
well characterized in nonmammalian model organisms 
and the perspective of isolation and growth of human 
ovarian stem cells could offer new opportunities for the 
treatment of women’s infertility (Hanna and Hennebold, 
2014). In vivo studies demonstrated that transplantation 
of a small proportion of human and mouse cells from 
ovarian epithelium and cortical tissue can generate 
immature oocytes into ovaries of immunodeficient mice 
(Gheorghisan-Galateanu et al., 2014).

Nasal stem cells are multipotent stem cells localized 
in the olfactory mucosa, being considered as an attractive 
source for autologous stem cell-based therapies due 

to their accessibility. These stem cells are involved in 
adult neurogenesis and tissue regeneration after injury; 
therefore, several studies focused on the use of nasal stem 
cells for biomarker identification in brain disorders or 
for repairing processes in the pathological/traumatized 
nervous system (Fletcher et al., 2011; Feron et al., 2013; 
Stamegna et al., 2014).

Hematopoietic stem cells (HSCs) symbolize the 
classical stem cell of the organism. The first clinical use was 
in hematological malignancy therapy, aiming to restore 
normal hematopoiesis. Nowadays, HSC transplantation is 
utilized with increased success rates in various malignant 
and nonmalignant conditions. HSCs can be isolated from 
bone marrow and umbilical cord blood and they have the 
capacity to repopulate the entire hematopoietic system. 
HSCs also have the capacity to sustain the regeneration 
of nonhematopoietic tissue such as that of the liver, heart, 
and brain. More than 2000 clinical studies regarding the 
use of HSCs in the treatment of numerous diseases (e.g., 
cancers, leukemia, lymphoma, cardiac failure, neural 
disorders, autoimmune diseases, immunodeficiency, 
and metabolic or genetic disorders) are currently being 
conducted (Chivu-Economescu and Rubach, 2015; Porada 
et al., 2015).

4. Human induced pluripotent stem cells 
In 2006, a seminal paper (Takahashi and Yamanaka, 2006) 
showed, using mouse fibroblasts, that adult somatic cells 
could be converted to stem cells. These cells share similar 
features to ESCs (morphology, stem cell markers, stem 
cell gene expression, self-renewal, and differentiation 
potential) and they were designated as iPSCs. The 
technology employed by Yamanaka’s team to reprogram 
adult cells required simultaneous introduction of four 
transcription factor genes (called reprogramming factors), 
Oct3/4, Sox2, c-Myc, and Klf4, by means of a retroviral 
system. A year later, 2 research groups managed to 
independently generate human induced pluripotent stem 
cells (hiPSCs) from somatic cells using either the same 
approach as in mouse cells –Oct4, Sox2, c-Myc, and Klf4 
with a retroviral vector (Takahashi et al., 2007) – or OCT4, 
SOX2, NANOG, and LIN28 with a lentiviral system (Yu et 
al., 2007). 

Although the precise process by which somatic cells 
are converted to iPSCs is not fully understood, recent 
studies have revealed that the reprogramming factors 
Oct3/4, Sox2, and Nanog inhibit genes involved in cell 
differentiation, and together with c-Myc determine 
epigenetic changes (methylation of DNA, chromatin 
modification) that lead to the generation of iPSCs (Loh et 
al., 2006; Kim et al., 2008). Moreover, similarly to ESCs, 
the promoter regions of Nanog, Oct3/4, and Fbx15 were 
demethylated in iPSCs (Takahashi and Yamanaka, 2006; 
Miyazaki et al., 2012).
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Since their first description, hiPSCs have received huge 
interest not only among scientists but also in the general 
population due to their tremendous potential applications 
in regenerative medicine, drug development, toxicity tests, 
and disease modeling. They overcome the ethical aspects 
related to ESC production and represent an endless source 
for patient-specific stem cells.

Besides dermal fibroblasts, commonly used as source 
for hiPSC generation (Takahashi et al., 2007; Yu et al., 2007; 
Raab et al., 2014), a wide variety of cells were employed: 
hepatocytes (Liu et al., 2010), keratinocytes (Aasen et al., 
2008), melanocytes (Utikal et al., 2009), astrocytes (Ruiz 
et al., 2010), dental pulp cells (Yoo et al., 2013), umbilical 
vein endothelial cells (Haile et al., 2015), cord blood 
(Haase et al., 2009), peripheral blood mononuclear cells 
(Fuerstenau-Sharp et al., 2015), kidney mesangial cells 
(Song et al., 2011), exfoliated renal epithelial cells present 
in urine (Zhou et al., 2012), etc.

However, though a promising tool for future therapies, 
hiPSC technology implies certain challenging hurdles 
in terms of safety and efficacy: the risk of insertional 
mutagenesis, as well as tumor formation, a low efficiency 
rate of conversion, and incomplete reprogramming. In 
order to avoid the integration of vector and transgene 
sequences into the cell genome, alternate vectors were 
used: adenoviral vectors (Zhou and Freed, 2009), Sendai 
virus (Fusaki et al., 2009; Chichagova et al., 2016), 
episomes (Fontes et al., 2013), plasmids (Okita et al., 
2008), transposons (Kaji et al., 2009; Woltjen et al., 2009), 
synthesized mRNAs (Warren et al., 2010), and protein 
(Kim et al., 2009).

Direct transfection of human somatic cells with specific 
mature microRNA molecules (such as a combination of 
mir-200c, -302s, and -369s families (Miyoshi et al., 2011) 
or the miR302/367 cluster (Anokye-Danso et al., 2011)) 
is capable of reprogramming human somatic cells to 
pluripotency (Okano et al., 2013).

Recent studies were pursued to generate iPSCs using 
combinations of small molecules that could replace either 
partially or completely the transcription factors and 
improve the efficiency of reprogramming. These small 
chemical compounds are epigenetic modifiers, WNT signal 
modulators, moderators of cell senescence, modulators of 
metabolism, and regulators of MET (Lin and Wu, 2015). 
In 2013, Hou et al. described for the first time a cocktail 
of small molecules (forskolin, valproic acid, CHIR99021, 
616452, tranylcypromine, 3-deazaneplanocin) that are 
able to reprogram differentiated cells into iPSCs (Hou et 
al., 2013).

iPSCs offer an attractive application in disease-
modeling and drug discovery. To date, many patient-
specific iPSC lines have been established and used to create 
disease models, and they are expected to facilitate studies 

on rare diseases (Bellin et al., 2012). An international 
collaborative project, StemBANCC, started in 2012, aims 
to generate and characterize 1500 hiPSC lines. The project, 
conducted by the University of Oxford and gathering 10 
pharmaceutical companies and 23 universities, will offer 
researchers valuable resources for a better understanding 
of the disease pathogenic mechanisms and the chance to 
develop new treatments (http://stembancc.org/).

The ability to differentiate into many cell types, the 
relatively easy accessibility, the renewable capacity, and 
the possibility to use individual autologous and allogeneic 
cells contribute to the therapeutic potential of hiPSCs in 
regenerative medicine. In diseases previously considered 
incurable, such as neurodegenerative disorders (Ross 
and Akimov, 2014; Brandl et al., 2015), spinal cord injury 
(Kobayashi et al., 2012; Nakamura and Okano, 2013), 
heart failure (Fujita et al., 2012; Hsiao et al., 2013; Khan 
et al., 2015), diabetes (Abdelalim et al., 2014; Bose et al., 
2014; Holditch et al., 2014), and retinal disease (Mead et 
al., 2015), hiPSC replacement-based therapies represent a 
promising approach (Seki and Fukuda, 2015).

The damaged or degenerated tissue is repaired by 
means of iPSCs obtained from the patient’s somatic cells, 
differentiated in vitro and then transplanted in the affected 
tissue. In the case of diseases caused by a genetic mutation, 
it is possible to correct the genetic defect by obtaining 
mutation-free iPSCs, further to be differentiated to specific 
cell types. In a very recent paper, using reprogramming 
and editing genome technologies, Crane et al. managed 
to correct CFTR gene mutations responsible for cystic 
fibrosis in patient-derived iPSCs and restored gene 
function (Crane et al., 2015). Another group reported 
gene correction of alpha 1 anti-trypsin (A1AT) deficiency, 
one of the common genetic disorders associated with liver 
disease that might progress to cirrhosis and hepatocellular 
carcinoma, as well as with pulmonary emphysema. 
Hepatocyte-like cells obtained through differentiation of 
iPSCs presented the genetic and phenotypic correction of 
the Z mutation, one of the most common mutant forms of 
A1AT (Choi et al., 2013).

In 2013, Takebe et al. reported the generation of a 
functional human organ from pluripotent stem cells for 
the first time. They managed to create a three-dimensional 
vascularized and functional human liver using a coculture 
of hepatic endoderm cells derived from human iPSCs, 
human umbilical vein endothelial cells, and human MSCs. 
iPSC-derived liver buds transplanted into mice generated 
a vascularized and functional human liver. Although 
there are many steps to be done before their application in 
clinical medicine, these findings open a promising path in 
regenerative medicine (Takebe et al., 2013). 

The first clinical trial using hiPSCs received the 
approval of the Japanese Ministry of Health and started 
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in Japan in 2014; the study addresses people suffering 
from wet age-related macular degeneration, a disease 
that may lead to blindness in aged people. The study 
employs autologous iPSCs derived from the patient’s 
skin that are differentiated to retinal pigment epithelial 
cells and transplanted into the affected retina (Reardon 
and Cyranoski, 2014). Nevertheless, several studies have 
demonstrated that during in vitro culture, reprogrammed 
cells can accumulate genomic instability and genomic 
abnormalities, including de novo mutations that are not 
identified in human ESCs. Although the consequences 
of these epigenetic and genetic alterations are not well 
known, the affected cells seem to acquire premalignant 
properties, such as decreased differentiation and increased 
proliferative capacity. These observations support the 
necessity of controlling the hiPSCs’ genome integrity 
before any clinical application (Puri and Nagy, 2012; 
Nguyen et al., 2013).

5. Cell signaling pathway modulation promotes somatic 
cell reprogramming 
Stem cells are involved in tissue development, renewal, 
and regeneration, activities sustained by the ‘niche’, a local 
stem cell microenvironment. On the other hand, stem 
cells can generate their own niche, using several signaling 
pathways crucial for stem cell maintenance (Clevers 
et al., 2014). An important resource for regenerative 
medicine is the reprogramming of mature somatic cells 
to become pluripotent by the manipulation of several 
factor expressions. Trying to understand and improve 
the molecular mechanisms of induced pluripotency, 
cell signaling pathways that control the reprogramming 
process have also been extensively studied, including LIF/
STAT3, PI3K/Akt, Wnt/β-catenin, TGFβ, and MAPK 
cascades (Kim et al., 2011; Hawkins et al., 2014).

In order to reprogram somatic cell, Samavarchi-
Tehrani et al. used a secondary mouse embryonic fibroblast 
model to obtain iPSCs by manipulating Oct4, Klf4, c-Myc, 
and Sox2 expressions. Based on the results obtained by 
temporal gene expression analysis, they suggested that 
somatic cell reprogramming is a multistep process that 
includes initiation, maturation, and stabilization phases 
(Samavarchi-Tehrani et al., 2010).

The initiation phase of reprogramming is characterized 
by loss of the somatic cell program (e.g., loss of the 
transcription factors Snail1/2 or Zeb1/2 and gain of an 
epithelial signature by increased expression of CDH1, 
EpCAM, or the epithelial-associated miRNA family), 
metabolism changes, increased proliferation rate, 
inhibition of apoptosis and senescence, and morphologic 
changes (e.g., fibroblasts undergo a mesenchymal-to-
epithelial transition, MET) (David and Polo, 2014). The 
epigenetic regulators have a significant role in the initiation 

phase; using mouse embryonic fibroblasts deleted in all 
three TET genes, Hu et al. observed that this model failed 
to initiate the reprogramming, mainly because TETs are 
involved in miR-200 activation and MET, respectively (Hu 
et al., 2014). The maturation phase is characterized by a 
major transcriptional modification, the gain of a subset 
of pluripotency associated genes (Nanog, Oct4, Esrrb, 
ICAM1), while the stabilization phase includes transgene-
independent self-renewal, pluripotency, loss of epigenetic 
memory, x-reactivation, and telomerase elongation, 
presenting as specific markers Sox2, Dppa4, and PECAM 
(David and Polo, 2014).   

Recent studies demonstrated that modulation of Wnt/
β-catenin, MAPK/ERK, TGF-β, or PI3K/Akt signaling 
pathways enhances somatic-cell reprogramming (Sanges 
and Cosma, 2010). 

The Wnt/β-catenin signaling pathway comprises Wnt 
ligands, Frizzled receptors, and a complex composed 
of APC (adenomatous polyposis coli), Axin1, GSK-3β 
(glycogen synthase kinase 3-β), and CK1 (casein kinase 
1) that stabilizes β-catenin (Amado et al., 2014). Several 
studies demonstrated the critical role of Wnt signaling in 
self-renewal and maintenance of stem cells, and also in 
somatic-cell reprogramming. Marson et al. showed that 
Wnt cascade activation by soluble Wnt3a can directly 
sustain the induction of pluripotency, even in the absence 
of c-Myc transduction (Marson et al., 2008). In a recent 
study, Aulicino et al. demonstrated that in the early 
reprogramming phases of mouse embryonic fibroblasts 
into iPSCs, Wnt signaling must be downregulated, 
while in the late reprogramming phases an activation of 
this signaling is required in order to obtain an efficient 
reprogramming (Aulicino et al., 2014). These results are 
supported by another study showing that Wnt signaling, 
through its transcriptional factors Tcf1, Lef1, Tcf3, and 
Tcf4, can inhibit the early stage of reprogramming to 
iPSCs (Ho et al., 2013). An in vitro study showed that 
blocking nuclear localization of β-catenin by upregulation 
of E-cadherin (inhibitor of Wnt signaling) sustains the 
epiblast stem cells’ reprogramming to ESCs (Murayama et 
al., 2015).

The TGF-β cascade is another critical signaling 
pathway for somatic-cell reprogramming. Several studies 
demonstrated that Sox2, Oct4, and c-Myc factors sustain 
MET by suppression of Snail and TGF-β1/TGF-βR2 
(epithelial-to-mesenchymal transition activators), while 
the Klf4 factor directly sustains MET by E-cadherin 
activation. Thus, TGF-β signaling inhibition has a crucial 
role in both early and late events of somatic cell transition 
to a pluripotent state (Li et al., 2010; Samavarchi-Tehrani 
et al., 2010; Vidal et al., 2014). Yuan et al. reported that 
a TGF-β receptor inhibitor, A-83-01, in combination 
with a protein arginine methyltransferase inhibitor, AMI-
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5, sustained the reprogramming of mouse embryonic 
fibroblasts transduced with only Oct4 factor (Yuan et 
al., 2011). Primordial germ cell reprogramming into a 
pluripotent state is carried out by downregulation of 
TGF-β and ERK (extracellular signal-regulated kinase) 
signaling pathways, using specific inhibitors (Attari et al., 
2014). 

The JAK-STAT3 cascade is one of the most significant 
signaling pathways for the maintenance of mouse ESC 
pluripotency and propagation, by activation of c-Myc 
transcription and stabilization of c-Myc protein levels; 
moreover, it has been demonstrated that Klf4 expression 
is induced by JAK-STAT3 signaling activation, depending 
on LIF signaling (Tang and Tian, 2013). LIF/STAT3 
signaling is crucial for the maturation phase of mouse 
iPSCs’ reprogramming by suppression of DNMT1 (DNA 
methyltransferase) and histone deacetylases 2, 3, and 8, 
with the final result of demethylation of pluripotency-
associated gene promoters (Hawkins et al., 2014).

PI3K/Akt signaling activation was identified in the 
initiation phase, being involved in the metabolic switch 
from oxidative phosphorylation to glycolysis by activation 
of glycolytic regulators AS1060 and PFKB2 (Chen et al., 
2012; Hawkins et al., 2014). Zhu et al. demonstrated that 
Akt activation is capable of increasing reprogramming by 
upregulation of glycolytic genes (Zhu et al., 2010).

Cell signaling pathways modulated by extrinsic factors 
and an intrinsic transcriptional network control the 
somatic cell reprogramming and the use of small molecule 
modulators of these signaling pathways can induce 
reprogramming with greater efficiency, substituting for 
classical transcription factors (Ma et al., 2013; David and 
Polo, 2014). 

6. Biomimetic scaffolds and stem cells
Stem cell therapy in regenerative medicine involves the use 
of different strategies for in vitro construction of three-
dimensional tissues or organs. Usually these approaches 
combine diverse scaffolds and signaling systems, thus 
inducing the differentiation of stem cells. Biomimetic 
scaffolds are made of natural or synthetic polymers or 
natural/synthetic hybrids. Natural polymers-collagen 
(Ott et al., 2008), fibrin (Christman et al., 2004), alginate 
(Landa et al., 2008), Matrigel (Giraud et al., 2008), chitosan 
(Lu et al., 2009), and hyaluronic acid (Holloway et al., 
2015) are biodegradable proteins or polysaccharides that 
have a structure similar to the native components of the 
extracellular matrix, making them biocompatible and less 
immunogenic than synthetic polymers. They also have a 
higher capacity for cell adhesion and influence on various 
cellular functions. Disadvantages of such natural polymer-
based scaffolds reside in the limited mechanical properties 
and biodegradability.

Skin and oral mucosa were generated on a micronized 
acellular dermal matrix (micronized Alloderm), using a 
combination of keratinocytes and adipose tissue stem cells 
(hASCs) (Yoo and Lim, 2009), as well as on other matrixes 
(Fang et al., 2014). The same cells (hASCs) were used on 
advanced collagen scaffolds with regular architecture, 
generating in vivo neovascularization and adipocyte 
differentiation (von Heimburg et al., 2003; Hemmrich et 
al., 2005). 

In cardiac repair, some promising results were related 
to the use of collagen scaffolds, reported to enhance the 
survival of cardiomyoblasts and improve survival of 
ischemic rats (Miki et al., 2012). Injection of biomimetic 
scaffolds at the site of myocardial infarction (eventually 
supplemented with bioactive molecules) is reported to 
decrease the amount of fibrosis and ventricular dilation 
and to promote angiogenesis and recruitment of native 
stem cells (Kutschka et al., 2006; Zamora et al., 2013).

Bone reconstruction using scaffolds like hydroxyapatite, 
hydroxyapatite gel, or calcium phosphate was reported 
in bone reconstruction using bone marrow stromal cells 
(Özdal-Kurt et al., 2015); a similar approach was reported 
for the regeneration of dental pulp (Ravindran and George, 
2015). The use of stem cells in neural differentiation/
neuroregeneration was also reported, such as for induction 
of motor neuron differentiation applied with complex 
matrices that included collagen grafted nanofibers (Bagher 
et al., 2015), or peripheral nerve repair with single-walled 
carbon nanotubes/poly-lactic acid scaffolds (Kabiri et al., 
2015).  

Combination of multiple cell types, like hepatocytes and 
MSCs, with acellular matrixes for organ reconstruction is 
another field with promising results (Kadota et al., 2014).

7. Conclusions
Induced pluripotent stem cells together with embryonic 
stem cells and adult stem cells represent important 
candidates for regenerative medicine due to their extensive 
self-renewal and pluripotent proprieties. Stem cells have 
been tested for use in several diseases such as spinal 
cord injury, heart disease, stroke, and Parkinson disease, 
and also in various forms of hematological disorders. 
Nevertheless, the therapeutic use of stem cells is currently 
limited by several issues such as ethical considerations, 
teratoma development, and the long-term possibility 
of carcinogenesis, somatic mutations, and epigenetic 
defects induced by reprogramming. Further preclinical 
and clinical studies are needed in order to determine 
whether stem cell-based therapies can be useful in treating 
disorders for which available current treatments only 
succeed in slowing down the progression of the disease.
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