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1 Abstract—In order to improve the performance of 

traditional particle swarm optimization, this paper introduces 
the principle of Levy flight and cross-border reset mechanism. 
In the proposed particle swarm optimization, the dynamic 
variation of parameters meets the power-law distribution and 
the pattern of particles transition conforms to the Lévy flight in 
the process of algorithm optimization. It means the particles 
make long distance movements in the search space with a small 
probability and make short distance movements with a large 
probability. Therefore, the particles can jump out of local 
optimum more easily and coordinate the global search and 
local search of particle swarm optimization. This paper also 
designs the cross-border reset mechanism to make particles 
regain optimization ability when stranding on the border of 
search space after a long distance movement. The simulation 
results demonstrate the proposed algorithms are easier to jump 
out of local optimum and have higher accuracy when 
compared with the existing similar algorithms based on 
benchmark test functions and handwriting character 
recognition system.  
 

Index Terms—evolutionary computation, optimization, 
particle swarm optimization, performance evaluation, 
benchmark testing. 

I. INTRODUCTION 

With the rapid development of human society, people 
have to face much more complicated questions and have 
higher requirement for the optimal solution. Therefore, the 
outstanding optimization algorithms become more 
important. In the early 1990s, scholars proposed swarm 
intelligence optimization algorithms, which were inspired by 
the social activities mechanism of animals and insects in the 
nature [1]. Particle swarm optimization (PSO), which 
belongs to swarm intelligence optimization, has been 

widely used in particular. The mathematical operations of 
PSO are simple and pervasive because only a few 
parameters need to be adjusted. Moreover, it doesn’t need 
higher requirement for the performance of CPU and RAM. 
The distributed parallel algorithms for PSO enhance the 
capability of processing large quantity of data and improve 
the execution speed. In recent years, there are many 
problems need to be solved about PSO. For instance, how to 
jump out of local optimum and improve search accuracy, 
how to reduce computational complexity and enhance 
convergence speed. These problems need to be solved 
especially when dealing with complex problems [2]. 
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The algorithm can jump out of local optimum by 
balancing global and local search ability [3]. According to 
related researches, we learned the best search patterns for 
particular targets are the explosive, intermittent and 
occasional ones, which conform to the power-law 
distribution, rather than the distinct, systematic and regular 
ones [4]. Therefore, we introduce the principle of Lévy 
flight to improve the traditional PSO, in which the value of 
parameters follow the power-law distribution and the pattern 
of particles movement conformed to Lévy flight [5]. The 
particles make long distance movement in the search space 
with small probability and make short distance movement 
with large probability, which makes the particles can jump 
out of local optimum more easily. It provides new insights 
to solve the disadvantage of traditional PSO. This paper also 
proposed the cross-border reset mechanism to make the 
particles regain optimization ability when they stranded on 
the border of search space after a long distance movement. 
The proposed algorithms are compared with existing similar 
algorithms based on benchmark test functions and the 
handwriting character recognition system which developed 
by our group. 

II. RELATED WORK 

The swarm intelligence optimization has been 
increasingly used in the fields of engineering and 
economics. Scholars have proposed a series of bionic swarm 
intelligence algorithms, which typically include artificial ant 
colony algorithm, PSO, artificial fish algorithm, artificial 
bee colony algorithm, shuffled frog leaping algorithm, and 
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firefly algorithm, etc [6-7]. Kar [8] showed that PSO is 
effective, easy to operate and can be widely used 
in many fields. However, PSO lack an effective mechanism 
to escape of local optimum and has other problems worthy 
to research [9]. In recent years, the researchers improve the 
performance of PSO by several methods, including adjusted 
the parameters [10], optimized the topology structure [11], 
used improved hybrid optimization algorithm and 
introduced biological mechanism [12]. This paper adjusts 
the parameters of algorithm by Lévy flight dynamically and 
uses the cross-border reset mechanism to improve the 
performance of algorithm. 

The values of parameters w, c1, c2 has an important role 
in the search process. The original PSO don’t have inertia 
weight, which make the global search ability and local 
search ability unbalanced. Shi et al. [13] introduced the 
concept of inertia weight into the original PSO and proposed 
the standard particle swarm optimization (SPSO) in 1998. 
To make up for the shortcoming of linear decreasing inertia 
weight, Shi et al. [14] put forward fuzzy rules to adjust 
inertia weight according to the features of test functions. 
Clerc [15] proposed a random adjustment for inertia weight 
and Chatterjee [16] put forward a way of nonlinear inertia 
variation for dynamic adjustment in PSO. About the settings 
of c1 and c2, the traditional PSO uses fixed learning factors 
to achieve the best balance between global search and local 
search ability. For different problems, the ranges of c1 and 
c2 are both 1.0 to 2.5 in general. Suganthan [17] considered 
the best values of c1 and c2 are invariable. However, 
Ratnaweera et al. [18] used a linear function to adjust the 
learning factors, which make c1 lessen and c2 largen 
gradually and Zhang put forward a self-adjusting strategy of 
c1 and c2 based on the fitness values of the particles. 

To improve the performance of algorithm, researchers 
begin to introduce biological mechanism into PSO and 
related algorithms appeared constantly, which have been 
proved effective in practical applications. Liu [19] used the 
flight mechanism of geese migration to improve the PSO’s 
performance. Inspired by the symbiotic coevolution between 
species in nature, Chen [20] proposed a multi-species PSO, 
which extends the dynamics of the canonical PSO by taking 
into account species extinction and speciation events. Qin 
[21] was inspired by biological parasitic behavior and 
proposed a two species PSO, which refers to facultative 
parasitic behavior between hosts and parasites. Yang [22] 
proposed a new PSO based on the operator of chemotaxis in 
the bacterial foraging, which is easy to search for the 
optimal value in region. 

In 1996, Viswanathan et al. [23] proposed the biological 
mechanism named as Lévy flight by establishing the link 
between animal foraging behavior and random walk theory 
for the first time. They used GPS to research albatross 
foraging behavior and found the flight ranges of albatross 
following the power-law distribution, which consist with the 
foresight of Shlesinger a decade ago [24]. Lévy flight is 
speculated the most effective foraging pattern when the 
foods are scattered over a large area. Nowadays, Lévy flight 
is widely used to the optimization algorithm, which makes 
search efficiency maximization under uncertain 
environment. Literature [25] introduced the principle of 
Lévy flight into the PSO and proposed the several improved 

PSO which based on Lévy flight, including the algorithm’s 
step transfer obey the power-law distribution (Levy Bare 
Bones), the algorithm which based on the hyperspheres 
(Levy Pivot) and the part of parameters obey the power-law 
distribution (Levy PSO). It's worth noting that Levy PSO 
will be abbreviated as LPSO in this paper. These several 
algorithms lay a solid foundation to the further improvement 
about PSO which based on the Lévy flight and provide new 
insights into the improvement of PSO. Wang [26] proposed 
an earthquake disaster emergency rescue model based on 
cooperation mechanism and Lévy flight to reduce the 
blindness and randomness of the rescue work. Li [27] 
proposed a variant of cooperative quantum-behaved PSO 
with two mechanisms to reduce the search space and avoid 
the stagnation, which are dynamic varying search area and 
Lévy flight mechanism. Yan [28] put forward an improved 
bacterial foraging optimization algorithm based on Lévy 
flight and Xie proposed an improved bat algorithm based on 
Lévy flights and differential operators. In 2014, Hakli [29] 
proposed a novel particle swarm optimization algorithm 
with Lévy flight (LFPSO). In the proposed method, a limit 
value is defined for each particle, and if the particles could 
not improve self-solutions at the end of current iteration, the 
limit is increased. If the limit value determined is exceeded 
by a particle, the particle is redistributed in the search space 
with Lévy flight method. Experimental results show that the 
LFPSO is more successful than well-known and recent 
population-based optimization methods. 

In this paper, we introduce the power-law distribution into 
the dynamic variation of parameters (w, c1, c2) and make 
the step transfer follow the power-law distribution to 
enhance the ability of particles to jump out the local 
optimum. Furthermore, the coefficient of Lévy flight was no 
longer use the experience values which rely on the large 
number of according to the problems appeared in the 
experiments, we propose the cross-border reset mechanism 
to improve the convergence accuracy of the algorithm and 
enhance the ability of particle to jump out of local optimum. 
Finally, the performance and accuracy of the proposed 
algorithms will be examined on well-known benchmark 
functions, comparing with SPSO and LFPSO as well. 
Furthermore, we have found researchers always test the 
performance of algorithms by practical application in the 
further step, Castillo O, et al. [30] test the performance of 
improved ant colony optimization by fuzzy control of a 
mobile robot, Martín D, et al. [31] test the performance of 
multi-objective genetic algorithm by a complex 
electromechanical process, Harmanani H M, et al. [32] test 
the performance of improved genetic algorithm by open-
shop scheduling problem and Precup R E, et al. [33] test the 
nature-inspired optimal tuning of input membership 
functions of Takagi-Sugeno-Kang fuzzy models by anti-lock 
braking systems. In this paper, we will apply the proposed 
algorithms into handwriting character recognition system 
which developed by our group to test the performance of 
these algorithms as well. 

III. THE PSO BASED ON THE LÉVY FLIGHT AND CROSS-
BORDER RESET MECHANISM  

This paper adjusts the value of parameters (w, c1, c2) 
follow the power-law, which makes the pattern of particles 
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transition conform to Lévy flight. During the simulation, we 
found when a long distance movement happened, the 
particles have high possibility to strand on the border of 
search space and lost optimization ability. To solve this 
problem, we design the cross-border reset mechanism and 
propose particle swarm optimization with power-law 
parameter based on the cross-border reset mechanism (PLP-
PSO-CBR). Referring to the framework of LFPSO [29], we 
embed the cross-border reset mechanism into LFPSO and 
proposed LFPSO-CBR. The two improved algorithms which 
based on cross-border reset mechanism will be described in 
this chapter and the performance will be analyzed in later 
chapters. 
3.1 The Basic Principle of PSO 

The principle of PSO can be described as follow. It is 
assumed that the search space is M-dimensional and the 
number of particles is N. The position of the ith particle at 
time t is expressed as , of 

which the historical optimal position is expressed as 

1 2( ) ( ( ), ( ),..., ( ))M
i i i it x t x t x tX

1 2( , ,..., )
i

M
best i i ip p pP

1 2( , , ...,

 according to the fitness of the ith 

particle. The optimal value among  is recorded as 
, 1,2,3,...,i i Nbest 

P
M

best G G GG ）

( +1) V

 according to the fitness of all 

particles. The velocity of particles transition at time t+1 is 
defined as  and the 

position of the ith particle at time t+1 is replaced according 
to the following equations. 

1 2( +1), ( +1),... ( +1))M
i i i it v t v t(t v

1

2

( 1) ( ) ( ( ))

( ( )) 1 ,1

d d d d
i i i i
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i

V t w v t c rand p x t

c rand G x t i N d M

       

      ,
      (1) 

( 1) ( ) ( 1) 1 ,1d d d
i i ix t x t v t i N d       , M

] ]

   (2) 

In Eq. (1), the constant c1 and c2 are learning factors, w is 
inertia weight, and rand is a random number between 0 and 
1. The ranges of position and velocity in the dth dimension 
are  and . PSO will set the position 

as the boundary value when the particle stranded on the 
border of the dth dimension. The initial position and 
velocity of particle swarm are generated randomly, and they 
will be updated according to Eq. (1) and Eq. (2) until the 
stop condition is satisfied. 

max max[ ,d dx x max max[ ,d dv v

3.2 The Principle of Lévy flight 
The search pattern of Lévy flight is different from the 

ordinary pattern because of the randomness. Lévy flight is a 
type of random walk, of which the step sizes obey power-
law distribution and the search directions obey uniform 
distribution. The proposed algorithms use the generator of 
Lévy values with Mantegna rule [34]. In Mantegna rule, the 
step size is designed as follow: 

1/
( )s u v

                                 (3) 

In Eq. (3), u and v obey normal distribution, 
2~ (0, ), ~ (0, )uu N v N 2

v  . u  and v  are defined as 

follows: 

1u                                           (4) 
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In Eq. (5),  is standard Gamma function, . 

In this paper, 

( ) ( 1)!n n  
  i coefficient of Lévy flight and no constant 

value is taken for the 

s 

  parameter, but a random value in 

the (0, 2] interval is taken for each new distribution 
procedure [29]. If the  value randomly so taken takes 

small values, it allow the particle perform very long jumps 
in the search space and prevents constantly being trapped in 
local minima, if big values are attained, it allow the particle 
perform short movement in the search space and continues 
to derive new values around the global optimal. The 
randomization can be more efficient as the steps obey a 
Lévy distribution which can be approximated by the power-
law. Therefore, the steps consist of many small steps and 
occasionally large-step or long-distance jump. Thus, Eq. (2) 
can be restated as follow: 

  ( +1) ( ) ( )d d
i ix t x t levy                     (6)                  

In Eq. (6),   generally is a random number and   is 
dot product means entry-wise multiplications. In this paper, 
 is the step size which should be related to the scales of the 
problem of interest,   is random number for all dimensions 
of particles as well. Furthermore, ( )Levy   can be atecalcul d 

by Mantegna rule [35] as follow: 

1/( )~0.01 , (0 2)
u

levy
v

                   (7) 

In this paper, the parameters (w, c1, c2) of PSO are 
generated according to Mantegna rule and obey the power-
law distribution. Therefore, the velocity of particles 
transition is redefined as follow: 

1
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In Eq. (8), ( )wlevy  , 
1
( )clevy   and 

2
( )clevy   are 

produced respectively according to Eq. (3). In the meantime, 
Eq. (2) can be redefined as follow: 
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3.3 PLP-PSO-CBR 



            (5)                                

When we make the parameters (w, c1, c2) follow the 
distribution of power-law, it means the pattern of particles 
transition will conform to Lévy flight. During the 
experiments, we found the particles will strand on the border 
of search space occasionally after a long distance 
movement, which are unable to search further. To solve this 
problem, we introduce the cross-border reset mechanism 
and propose the PLP-PSO-CBR. The mechanism will 
initialize these particles which stranded on the border in the 
search space and make the initialized particles regain the 
optimization ability. The flow chart of PLP-PSO-CBR is 
shown in Figure 1. In the meantime, we can view the 
Pseudocode of PLP-PSO-CBR in Table I. 
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Figure 1. The flow chart of PLP-PSO-CBR 

TABLE I. PSEUDOCODE OF PLP-PSO-CBR 
Initialize the dimension of search space M, the number of particles N  

Initialize the current iteration t, the maximum iterations T 

Initialize the position of all particles  randomly , 1,2,3,..., ( )i i N tX

Initialize the fitness values of all particles according to benchmark test 

function 

Set the values of individual optimum  and global optimum 

 

, 1,2,3,...,i i Nbest 
P

bestG

While t<T do 

    Start the generator of levy value to update w, c1, c2 using Eq. (3) 

    For i=1:N 

        For d=1:M 

Update the velocity  of the ith particle using Eq. (8)( 1)d
iLV t 

Update the position ( )d
ix t  of the ith particle using Eq. (9) 

Use the cross-border reset mechanism according to whether 

stranded on the border 

        End for 

Evaluate the fitness value for new position  according to 

benchmark test functions 

( )i tX

 If  is better than  ( )i tX
ibestP

                        Set  to be  ( )i tX
ibestP

 End if 

 If  is better than  ( )i tX bestG

                         Set  to be  ( )i tX bestG

 End if 

End for 

    t = t + 1 

End while 

 
 

3.4 LFPSO-CBR 
    In the literature [29], the trial value and limit value are set 
for each particle. If the trial value is less than the limit value, 
the particles will move randomly in a small area. Otherwise, 
the particles make Lévy flight in a large range. Thus, the 
transition model of the particles can switch between random 
walk with large probability and Lévy flight with small 
probability. We also found inappropriate setting of limit 
value will disturb the balance of global and local search by 
extensive use of Lévy flight step transfer mode. Referring to 
the framework of algorithm in literature [29], the LFPSO-
CBR is proposed based on the cross-border reset mechanism 
and aim to prove the validity of this mechanism. The flow 
chart of LFPSO-CBR is shown in Figure 2. 

Figure 2. The flow chart of LFPSO-CBR 

IV. THE EXPERIMENTAL DESIGN 

The experiment is to verify the effectiveness of cross-
border reset mechanism and the principle of Lévy flight. We 
want to prove the algorithms can make the particles jumps 
out of the local optimum more easily and enhance the search 
accuracy when we introduce these two methods. LFPSO has 
shown the superior performance when compared with 
CLPSO, HPSO-TVAC, FIPSO, SPSO-40, DMS-PSO and 
other popular swarm intelligence algorithms in recent years, 
which include group search algorithm (GSO), cuckoo 
algorithm (CS) and firefly algorithm (FA) [33]. In this 
paper, the proposed algorithms are compared with LFPSO 
and SPSO for different types of benchmark test functions. In 
addition, we will analyze the setting of parameters for the 
proposed algorithm. 

There are 18 kinds of benchmark test functions in this 
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experiment, which are mainly derived from the literatures 
[29], [36-37]. The benchmark test functions can be divided 
into three types, including unimodal function (U), normal 
multimodal function (M) and rotated multimodal function 
(R). The hardware environment for the experiments is 
Intel(R) Pentium(R) CPU G620 @ 2.60GHz, memory 
8.00GB. The software environment is Windows 10 and 
MATLAB 2012a. The parameter setting about proposed 
algorithms are referenced in the literature [29], and the 
specific information is shown in Table II. The benchmark 
test functions are shown in Table III.  

In addition, the algorithms can be freely used via 
http://123.57.158.232:88/PSO/ and we will update and 
maintain this website regularly. Researchers can validate 
and improve these algorithms by this website. 

TABLE II. PARAMETER SETTINGS FOR THE ALGORITHMS 
Algorithm SPSO LFPSO/ 

LFPSO-
CBR 

LPSO PLP -PSO-
CBR 

Population 50 50 50 50 
Dimension 30 30 30 30 

Iteration 50000 50000 50000 50000 
Inertia weight 0.7213 linear  

decreasing 
_

ax _

Max iter iter

M iter



 

None Power-law 
distribution

  (0, 2] 

Learning factor c1=c2=1.
1931 

c1=c2=2 Experi
ence 

Value 

Power-law 
distribution

  (0, 2] 

Limit value - 5 - - 
Repetition 15 15 15 15 

TABLE III. LIST OF BENCHMARK TEST FUNCTIONS 

N
o 

Name 
T
yp
e 

Formula 

1 Sphere U 2

1
1

n

i
i

xF


   

2 Step U  2

2
1

0.5
n

i
i

F x


     

3 
Rosen
brock 

U 
1

2 2 2
3 1

1

[100( ) ( 1) ]
n

i i i
i

F x x x





     

4 
Quarti

c 
U 4

4
1

n

i
i

F ix


  

5 
Shifted 
Sphere 

U 

2
5 1 1 2

1

1 2

* *
1 1

_ , , [ , ,..., ]

[ 100,100] , : .

[ , ,... ] : _ _ _ .

_ : , ( ) _ 450

D

i
i

D

D

F z f bias z x o x x x x

x D dimmensions

o o o o the shifted global optimum

global optimum x o F x f bias



    

 


   

 D

 

6 

Shifted 
Schwe
fel’s Pr
oblem 

1.2 

U 

6 1 2

1 2

* *
2 2

2
2

1 1

, [ , ,..., ]

[ 100,100] : .

[ , ,... ]

( ) _ ,

: _ _ _ .

_ : , ( ) _ 450

D

D

D i

j
j

D

i

F o x x x x

x D dimmensions

o o o o the shifted global optimum

global optimum x o F x f bi

z f bi z x

s

a

a

s
 

   

 


   

 
 

7 
Rastrig

in 
M 2

7
1

[ 10cos(2 ) 10]
n

i i
i

F x x


    

8 Ackley M 

2
8

1

1

1
20exp{ 0.2 }

1
exp{ cos(2 )} 20

n

i
i

n

i
i

F x
n

x e
n







   

 




 

9 
Griew

ank 
M 2

9
1 1

1
cos( ) 1

4000

nn
i

i
i i

x
F x

i 

     

10 
Schwe

fel 
2.26 

M 10
1

418.98288727243369 sin( )
n

i i
i

F n x x


    

11 Alpine M 11
1

sin( ) 0.1
n

i i
i

iF x x x


     

12 Levy M 

1
2 2 2

12 1 1
1

2

( 1) [1 sin (3 )] sin (3 )

1[1 sin (3 )]

n

i i
i

n n

F x x x

x x

 








    

 

  

13 

Rotate
d 

hyper-
ellipso

id 

R 

2
13

1 1

( )
N i

i j

F x
 

   

14 

Rotate
d 

Schwe
fel 

R 

14
1

418.9828

sin( ), 500
, 420

0,

( 420.96), : _

n

i
i

i i i
i i

F n z

y y if y
z y

otherwise

y M x M orthogonal matrix



  

   


   



.96iy   

15 
Rotate
d Rastr

igin 
R 

2
15

1

[ 10cos(2 ) 10]

* , : _

n

i i
i

F y y

y M x M orthogonal matrix




  



  

16 

Rotate
d Ackl

ey 
 

R 

2
16

1

1

1
20exp{ 0.2 }

1
exp{ cos(2 )} 20

* , : _

n

i
i

n

i
i

F y
n

y e
n

y M x M orthogonal matrix







   

 





  

17 
Rotate
d Grie
nwank 

R 
2

17
1 1

1
cos( ) 1

4000

* , : _

nn
i

i
i i

y
F y

i

y M x M orthogonal matrix
 

  



   

18 
Rotate
d Rose
nbrock 

R 

1
2 2 2

18 1
1

( ) [100( ) ( 1) ]

* , : _

n

i i i
i

F x y y y

y M x M orthogonal matrix






  



 
 

V. RESULTS AND ANALYSIS 

In this paper, the algorithms based on the cross-border 
reset mechanism and Lévy flight are compared with SPSO, 
LFPSO and LevyPSO (LPSO) to verify the search precision 
and the ability to jump out of the local optimum. The results 
are analyzed by MATLAB curve fitting toolbox in the 
further step. Furthermore, we provide setting of parameters 
by these results to improve the efficiency of the algorithms. 
5.1 The Principle of Experiments 

In the experiments, we have got the search space and 
optimum value about these benchmark test functions 
previously. The algorithm will find the optimum value in the 
search space based on different benchmark test functions 
and the result will getting closer to the optimum value 
according to fitness function during the optimization. In the 
experiments, the fitness function is the benchmark test 
function itself. Fox example, if we choose a benchmark test 
function to test the performance of algorithm, we need to get 
the lower-bound and upper-bound of this benchmark test 
function first and use them to construct the search space. 
Then, the algorithm will find the optimum value in the 
search space according to the fitness function. Finally, we 
can get the optimal solution, error value and convergence of 
this algorithm. However, the initialization of PSO is 
stochastic, we need to repeat the algorithm and get the mean 
value of results to reduce the error of randomness. In 
addition, the algorithms which include SPSO, LPSO, 
LFPSO, LFPSO-CBR and PLP-PSO-CBR can be freely 
used via http://123.57.158.232:88/PSO/ respectively. In the 
meantime, the benchmark test functions which are 
mentioned above can be freely used via 
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http://123.57.158.232:88/PSO/5.SPSO/benchmark_func.m 
and http://123.57.158.232:88/PSO/5.SPSO/func.m. 
Furthermore, the optimum value and search space of each 
function can be freely used via 
http://123.57.158.232:88/PSO/5.SPSO/get_fun_info.m. 
5.2 Results of Contrast Experiments 

In this work, we compare the proposed algorithms which 
based on the cross-border reset mechanism and Lévy flight 
with SPSO, LFPSO, LevyPSO (LPSO) for 18 kinds of 
benchmark test functions and Table IV shows the simulation 
result. The simulation results contain the mean error 
and standard deviation error. The rank of algorithm depends 
on its mean error first and standard deviation error second. 
When the mean error between algorithms is close to each 
other, the algorithm with lower standard deviation error has 
a higher rank. The algorithms are evaluated between level 1 
to level 5. The performance of algorithm is judged by the 
mean rank for the 18 benchmark test functions and we can 
compare the algorithms by the final rank. 

TABLE IV. COMPARISON RESULTS OF ALGORITHMS 

No. Error SPSO LFPSO LPSO 
LFPSO-

CBR 

PLP-
PSO-
CBR 

Mean 3.61e+03 1.42e-01 4.28e-01 1.26e-01 0.93e-01 
Std.  1.20e+03 2.63e-02 3.61e-01 6.58e-02 9.21e-02 1 

Rank 5 3 4 2 1 
Mean 3.83e+03 2.63e+00 5.57e+02 2.80e+00 1.62e+00 
Std.  1.37e+03 3.48e+00 3.62e+02 4.33e+00 2.58e+00 2 

Rank 5 2 4 3 1 
Mean 1.35e+02 2.97e+01 3.95e+01 1.23e-02 2.74e+01 
Std.  6.07e+01 5.48e-01 1.50e+01 1.03e-02 5.32e-01 3 

Rank 5 3 4 1 2 
Mean 9.35e-01 4.72e-03 3.36e-02 4.21e-03 2.16e-03 
Std.  4.47e-01 2.83e-03 2.45e-02 3.58e-03 2.04e-03 4 

Rank 5 3 4 2 1 
Mean 2.03e+04 3.31e+01 5.23e+03 2.35e+01 2.90e+01 
Std.  5.93e+03 2.91e+01 4.01e+03 1.60e+01 2.69e+01 5 

Rank 5 3 4 1 2 
Mean 3.86e+04 2.03e+03 1.37e+04 1.73e+03 1.21e+03 
Std.  1.52e+04 5.33e+02 5.21e+03 5.08e+02 5.56e+02 6 

Rank 5 3 4 2 1 
Mean 1.26e+02 3.17e+01 1.38e+02 3.61e+01 2.11e+01 
Std.  2.32e+01 2.83e+01 3.26e+01 1.73e+01 2.42e+01 7 

Rank 4 2 5 3 1 
Mean 1.25e+01 7.01e-01 0.54e+01 7.09e-01 3.95e-01 
Std.  1.81e+00 7.23e-01 3.81e+00 8.14e-01 6.58e-01 8 

Rank 5 2 4 3 1 
Mean 3.05e+01 3.73e-01 5.37e-01 3.45e-01 1.27e-01 
Std.  1.07e+01 7.02e-02 4.77e-01 1.81e-01 7.82e-02 9 

Rank 5 3 4 2 1 
Mean 1.91e+02 1.72e+02 1.90e+02 1.55e+02 0.54e+02 
Std.  2.63e+01 6.21e+01 3.46e+01 6.66e+01 5.60e+01 10 

Rank 5 3 4 2 1 
Mean 1.40e+01 5.76e-01 3.17e+00 5.25e-01 2.04e-01 
Std.  3.63e+00 5.47e-01 2.36e+00 7.49e-01 5.01e-01 11 

Rank 5 3 4 2 1 
Mean 1.30e+01 1.79e+00 8.97e+00 1.14e+00 1.63e+00 
Std.  5.14e+00 1.53e+00 3.83e+00 1.85e+00 1.15e+00 12 

Rank 5 3 4 1 2 
Mean 1.00e+04 3.23e+00 4.71e+01 2.79e+00 1.76e-01 
Std.  5.14e+03 1.73e+00 6.52e+01 1.98e+00 1.56e+00 13 

Rank 5 2 4 3 1 
Mean 8.03e+02 8.42e-02 8.21e+02 7.63e-02 8.22e-02 
Std.  1.25e+02 1.68e+02 1.74e+02 1.98e+02 1.69e-01 14 

Rank 4 3 5 1 2 
Mean 5.12e+02 4.97e-02 5.42e+02 4.23e-02 4.95e-02 
Std.  1.07e+02 8.37e+01 9.52e+01 8.12e+01 1.47e+00 15 

Rank 4 3 5 1 2 
Mean 6.91e+02 5.09e-01 5.52e+02 5.14e-01 4.96e-01 
Std.  1.73e+02 1.03e+02 1.04e+02 8.37e+01 1.08e+00 16 

Rank 5 2 4 3 1 
Mean 1.08e+03 1.27e-03 1.14e+03 1.04e-03 1.00e-03 
Std.  4.47e+01 6.82e+01 6.07e+01 8.03e+01 6.79e-03 17 

Rank 4 3 5 2 1 
18 Mean 1.07e+03 1.37e-02 0.74e+03 1.00e-03 1.03e-03 

Std.  7.21e+01 5.26e-01 7.49e+01 6.91e-01 5.76e-02 
Rank 5 3 4 1 2 

Mean Rank 4.78 2.56 4.22 1.94 1.33 
Final Rank 5 3 4 2 1 

In Table IV, some results are bold. It means the best result 
for benchmark test functions. The final rank indicate PLP-
PSO-CBR has the best performance, LFPSO ranked second, 
LFPSO-CBR ranked third, LPSO ranked fourth and SPSO is 
the worst. The results are analyzed in detail as follow. 

The results between SPSO and LFPSO show that LFPSO 
has better performance for different types of benchmark test 
functions, which owe to the transition mode between 
random walk and Lévy flight. The results also show that 
several improved PSO which based on the principle of Lévy 
flight are better than SPSO, because the power-law 
distribution makes the pattern of particles transfer conform 
to the Lévy flight and enhance the ability to jump out of 
local optimum. 

During the experiments of LPSO, we found the particles 
always stranded on the border of search space after a long 
distance movement because the particles has lost the 
optimization ability. However, the cross-border reset 
mechanism can reset the stranded particles in the search 
space and make the initialized particles regain optimization 
ability. Therefore, PLP-PSO-CBR and LFPSO-CBR have 
better performance than LPSO. 

By compare the simulation results between LFPSO and 
LFPSO-CBR. It can be found the performance of LFPSO-
CBR is better than LFPSO. The reason is inappropriate 
setting of limit value disturbs the balance of global search 
and local search by extensive use of Lévy flight step transfer 
mode to different type of benchmark test functions in 
LFPSO. When we embedded the cross-border reset 
mechanism into LFPSO, it will help particles which 
stranded on the border regain the optimization ability. Thus, 
the performance of algorithm can improve by this method. 

The simulation results between PLP-PSO-CBR and 
LFPSO-CBR both present an excellent performance in the 
experiments. When compared these two algorithms, we can 
found PLP-PSO-CBR shows better performance for most of 
benchmark test functions than LFPSO-CBR, because the 
limit value is difficult to determine in advance and the 
setting of limit value in LFPSO-CBR always by people’s 
experience when dealing with different benchmark test 
functions. Although LFPSO can show a superior 
performance in several benchmark test functions, the setting 
of limit value will restricts the universality of the algorithm. 
Instead, PLP-PSO-CBR make the Lévy flight model 
integrated into dynamic variation of parameters (w, c1, c2). 
Researchers don’t need large number of experiment results 
to determine the value of parameters and it will enhance the 
randomness of the algorithm. Therefore, PLP-PSO-CBR can 
show a strong universality and excellent performance for 
different type of benchmark test functions. 
5.2 Analysis of Experiment Results 

According the above analysis, PLP-PSO-CBR shows the 
best performance among the proposed algorithms. In this 
section, the relationships between error values, convergence 
point and iteration number for PLP-PSO-CBR are analyzed 
by MATLAB curve fitting toolbox. The MATLAB curve 
fitting toolbox can provide the common fitting functions, 
including exponential function, fourier function, gaussian 
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function, interpolant function, polynomial function, power 
function, etc. The most appropriate fitting function can be 
found by this toolbox. In addition, the setting of parameters 
for PLP-PSO-CBR is given in this chapter and these settings 
will benefit to the efficiency of the algorithm. 
1) Correlation analysis of error value and iteration number 

The correlation analysis of error value and number of 
iterations for 9 kinds of benchmark test functions for PLP-
PSO-CBR are shown in Figure 3. We use number of 
iterations as horizontal axis and error value as vertical axis. 
The curves in Figure 3 are fitted by MATLAB curve fitting 
toolbox and the related parameters of the fitted curves are 
shown in Table V. 
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Figure 3. Correlation analysis of error value and number of iterations 

TABLE V. RELATED PARAMETERS OF THE FITTED CURVES 
Model of fitting function 

( ) bf x a x   
Parameters of function Benchmark test function Type 

a b 
Sphere U 2.074e+07 -1.357 

Rosenbrock U 2.081e+04 -1.134 
Quartic function U 3.731e+03 -1.286 

Ackley M 3.922e+02 -0.549 
Alpine M 1.956e+03 -0.717 
Levy M 7.462e+03 -0.835 

Rotated hyper-ellipsoid R 2.154e+08 -1.484 
Rotated Schwefel R 1.069e+08 -1.348 
Rotated Rastrigin R 1.009e+07 -1.237 

The results in Figure 3 indicate that the error value show 
exponential decreasing trends with the increasing numbers 
of iterations based on different types of the benchmark test 
functions. It means PLP-PSO-CBR won’t fall into local 
optimum until the iteration number reach to threshold. 
According to the fitted curves in Figure 3, it can be found 
the threshold is around 10000 by limiting the angulations of 
fitted curves greater than 179 degrees when the total 
iteration number is 50000. Therefore, it is not necessary to 
execute the algorithm until the final iteration. The iteration 
can be stopped after 10000 iterations and it can reduce the 
execution time of PLP-PSO-CBR greatly. 

The best model of fitting function for the relation between 
error value and number of iterations is the power function 

( ) bf x a x  , which is found by MATLAB curve fitting 

toolbox. Moreover, the coefficient of power function will 
change in a certain range for different types of benchmark 

test functions. The coefficient b ranges between -1.3 to -1.1 
when the benchmark test function is unimodal function, the 
coefficient b ranges between -0.8 to -0.5 when the 
benchmark test function is multimodal function and the 
coefficient b ranges between -1.4 to -1.2 when the 
benchmark test function is composite function. These results 
demonstrate the convergence speed of the algorithm 
depends on the types of benchmark test functions. The more 
complex benchmark test function is, the slower it 
convergence speed. 
2) Correlation analysis of convergence point and total 
iteration number 

The correlation analysis of convergence point and total 
iteration number for 9 kinds of benchmark test functions for 
PLP-PSO-CBR are shown in Figure 4. We use total iteration 
number as horizontal axis and convergence point as vertical 
axis. If the different between error value of two adjacent 
iteration numbers less than 1.00e-03, the previous iteration 
number is recorded as the convergence point. The 
convergence points of PLP-PSO-CBR for different total 
iteration number are described in Figure 4. The curves in 
Figure 4 are fitted by use of MATLAB curve fitting toolbox 
and the related parameters of the fitted curves are shown in 
Table VI. 
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Figure 4. Correlation analysis of convergence point and iteration numbers 

TABLE VI. RELATED PARAMETERS OF THE FITTED CURVES 
Model of fitting function 

1 2( )g x p x p    
Parameters of function Function Type 

p1 p2 
Sphere U 0.02074 73.85 

Rosenbrock U 0.02829 29.78 
Quartic function U 0.03043 22.98 

Ackley M 0.03414 -3.96 
Alpine M 0.03266 16.73 
Levy M 0.03329 0.85 

Rotated hyper-ellipsoid R 0.02732 47.03 
Rotated Schwefel R 0.02584 76.08 
Rotated Rastrigin R 0.02553 83.31 

The results in Figure 4 indicate that the convergence point 
show positive correlation with the total iteration numbers. 
The convergence points become higher with the increase of 
the total iteration numbers. It means the excessive setting of 
total iteration numbers won’t improve the search precision 
because error value shows exponential decline with iteration 
numbers. Thus, the total iteration number needs to be set in 
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a reasonable range and the time complexity of the algorithm 
can be reduced to some extent. 

The best model of fitting function for the relationship 
between convergence point and total iteration numbers is 
polynomial function 1( ) 2g x p x p   , which is found by 

MATLAB curve fitting toolbox. The coefficient of 
polynomial function fluctuates from 0.02 to 0.03 for 
different types of benchmark test functions, which indicates 
the relation between convergence point and total iteration 
number has less to do with the type of benchmark test 
functions. Moreover, the total iteration numbers for different 
type of benchmark test functions can be estimated according 
to the required precision. 
3) The convergence of PLP-PSO-CBR 

In this paper, the convergence of this algorithm was 
analyzed by four coefficients. We use the correlation of 
error value and iteration number, correlation of convergence 
point and total iteration number to analyze the convergence 
by different benchmark test functions. In Figure 3, we can 
find PLP-PSO-CBR presents good convergence based on 
different type of benchmark test functions, it can jump out 
of local optimal more easier and get global optimal 
regardless of the type of functions. In the meantime, we 
found the algorithm has already converged before the end of 
the iteration. Therefore, it is not necessary to execute the 
algorithm until the end of iteration and we can set the stop 
point according to the total number of iterations. It will 
reduce the execution time of algorithm greatly. In Figure 4, 
we can find the convergence point presents positive 
correlation with the total iteration numbers based on 
different types of the benchmark test functions. Thus, the 
total iteration number needs to be set in a reasonable range 
and the time complexity of the algorithm can be reduced to 
some extent. Based on these results, we not only can prove 
the algorithm has a strong convergence, but also get some 
empirical values to improve the performance of the 
algorithm. 

VI. APPLICATION 

In general, we always use convolutional neural network 
(CNN) to recognize the handwritten images/characters and 
adjust the weight of CNN by back-propagation neural 
network (BPN). In this paper, we train the handwriting 
character recognition system by MNIST database of 
handwritten digits, this dataset contains 60,000 training 
sample data and 10,000 test data. Each data size is 28pi * 28 
pi. We can use CNN and BPN to realize the recognition 
function in this system. In CCN, the first layer is the 
convolution layer, the number of convolutions is 2, the size 
of the convolution kernel is 5pi * 5pi. The activation 
function is sigmoid. The second layer is the mean pooling 
layer and the pool size is 2pi * 2pi. The third layer is the 
fully connected layer and the connection size is 288pi * 
10pi. The activation function is sigmoid. In BPN, we use the 
batch gradient descent method to test the data, the batch size 
is 100 and the learning rate is 0.5. Original system is shown 
in Figure 5.  

In addition, the application can be freely used via 
http://123.57.158.232:88/PSO/Application. Training data 
and test data which involved in this paper can be freely used 

via http://123.57.158.232:88/PSO/Application/Data. 
Furthermore, train_x is the training data that contains 60,000 
image data, train_y is the corresponding tag for the training 
data, test_x is the test data that contains 10,000 image data 
and test_y is the tag corresponding to the test data. 

 
Figure 5. Original system  

In this section, we have improved the prediction accuracy 
of handwriting character recognition system by PLP-PSO-
CBR and verified the performance of this algorithm by 
simulation results. Improved system is shown in Figure 6. 

 
Figure 6. Improved system  

In machine learning, there are two indicators measure the 
performance of the system. One is the fitting ability, the 
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other is the generalization ability. The fitting and 
generalization ability are both important for the system. We 
need to strike a balance between them to ensure the efficient 
of the system. The hardware environment for the 
experiments is Intel(R) Pentium(R) CPU G620 @ 2.60GHz, 
memory 8.00GB. The software environment is Windows 10 
and MATLAB 2012a. The parameters’ setting about 
algorithms is shown in Table VII. The training number or 
batch number is the CNN training process which uses the 
batch gradient descent method.  

TABLE VII. PARAMETER SETTINGS FOR THE ALGORITHMS 
Algorithm SPSO LFPSO/ 

LFPSO-CBR 
LPSO PLP -PSO-

CBR 
Population 50 50 50 50 
Dimension 52 52 52 52 

Iteration 500 500 500 500 
Inertia weight 0.7213 linear  

decreasing 
_

ax _

Max iter iter

M iter

  

None Power-law 
distribution

  (0, 2] 

Learning 
factor 

c1=c2=
1.1931 

c1=c2=2 Experi
ence 

Value 

Power-law 
distribution

  (0, 2] 

Limit value - 5 - - 
Repetition 10 10 10 10 
Training 
number 

600*20 600*20 600*20 600*20 

Batch number 12000 12000 12000 12000 
Dataset 60000 60000 60000 60000 

On the one hands, we can evaluate the fitting ability of 
the algorithm by Figure 7 - Figure 11. When comparing the 
PLP-PSO-CBR with other algorithms, we can find 1) It has 
a fast convergence rate, which ensures the system can find 
the global optimal in a short time. 2) It can achieve higher 
convergent accuracy, which leads to higher prediction 
accuracy in handwriting character recognition system. 3) It 
has lower initial error, which proves PLP-PSO-CBR is more 
effective for initial parameter optimization of CNN. 

 
Figure 7. CNN vs PLP-PSO-CBR 

 
Figure 8. SPSO vs LPSO-CBR 

 
Figure 9. LPSO vs PLP-PSO-CBR 

 
Figure 10. LFPSO vs PLP-PSO-CBR 

 
Figure 11. LFPSO-CBR vs PLP-PSO-CBR 

       TABLE VIII. RELATED PARAMETERS OF THE FITTED CURVES 
Algorithms Error of Prediction Rank 

PLP-PSO-CBR 4.16% 1 
LFPSO-CBR 5.92% 3 

LFPSO 6.62% 4 
LPSO 7.36% 5 
SPSO 8.83% 6 
CNN 5.21% 2 

On the other hands, we can evaluate the generalization 
ability of this system by Table VIII. We estimated the error 
of prediction in handwriting character recognition system by 
different algorithms and found the accuracy of prediction is 
significantly improved when we use PLP-PSO-CBR to 
optimize this system. In summary, we can use PLP-PSO-
CBR to perfect the handwriting character recognition system 
and improve the performance of this system significantly by 
PLP-PSO-CBR when compared with other algorithms. 

VII. CONCLUSION 

In this paper, we propose the improved PSO with power-
law parameter based on the cross-border reset mechanism. 
In this work, the parameters of algorithm meet the power-
law distribution and the pattern of particles transition 
conforms to the Lévy flight. The cross-border reset 
mechanism is designed to make the particles regain 
optimization ability when they stranded on the border. 
Results demonstrate the method which embedded the cross-
border reset mechanism into power-law PSO can enhance 
the ability to jump out of the local optimum, this method 
also able to improve the accuracy of algorithm as well. PLP-
PSO-CBR presents the best performance among other 
similar algorithms based on different benchmark test 
functions. In order to demonstrate the superiority of PLP-
PSO-CBR, we apply PLP-PSO-CBR into the handwriting 
character recognition system. According to the results, we 
can find the convergence speed of PLP-PSO-CBR is faster, 
the accuracy of PLP-PSO-CBR is higher, the initial error of 
system is lower and it can jump out of local optimal more 
easier when compared with other algorithms in this system. 

In addition, we use the MATLAB curve fitting toolbox to 
analyze the parameters in this algorithm. According to the 
relationship between error value and iterations, it shows the 
performance of algorithm will be affected by benchmark test 
functions and the error value began to stabilization after a 
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certain number of iterations. Therefore, we can set the 
termination of iterations manually and it can reduce the 
time-consuming of the algorithm to some extent. According 
to the relationship between convergence point and number 
of iterations, it shows that the convergence point will move 
backward by the increase number of iterations, this means 
we should set the number of iterations in a reasonable range. 
Furthermore, we found the correlation of convergence point 
and number of iterations has a weak relationship by different 
type of benchmark test functions and we can calculate the 
number of iterations to terminate the algorithm in advance. 
For solving the higher dimensional optimization problem, 
cooperative game theory can be introduced to reduce the 
dimensionality in the future work.  
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