
Research Article

Discriminative collaborative representation
for multimodal image classification

Dawei Sun, Shicheng Wang, Dongfang Yang and Yongfei Li

Abstract
Sparse representation has been widely researched for image-based classification. However, sparse representation clas-
sification directly treats training samples as a dictionary, so it needs a large training set and is time consuming, especially for
a large training set. To derive a small dictionary, many dictionary learning algorithms are researched. Thus, object rec-
ognition problem is transformed to optimize the sparse representation errors on the compact dictionary. The sparse
representation optimization is constraint by l0-norm, which is NP-hard problem. Though we can use l1-norm mini-
mization instead to work effectively, it is still time consuming for optimization. To make the algorithm discriminative and
simultaneously decrease the computational burden, we proposed a fast discriminative collaborative representation–based
classification algorithm. The new algorithm incorporated the within-class scatter and the linear classification error terms
into the objective function to derive a more discriminative dictionary and simultaneously added collaborative repre-
sentation mechanism to cut off the time consuming. At the end of this article, we designed two experiments to validate
our method using near-infrared and AR visible databases for multimodal face recognition. The results showed that our
algorithm outperformance sparse representation–based, collaborative representation–based, and discriminative-KSVD
classification algorithms.
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Introduction

In the past few years, sparse representation, also called

sparse coding, were widely researched by computer commu-

nity. The technology of sparse representation was used for

image denoising1,2 image analysis,3 image super resolution,4

and especially image-based classification such as face rec-

ognition,5–11 automatic target recognition,12 and traffic sign

recognition.13 Wright et al.6 used sparse representation for

classification task and proposed a sparse representation–

based classification (SRC) in face recognition task. In SRC

framework, training samples of all classes are arranged as

columns of a matrix usually called dictionary, and the query

image is considered linearly represented by the atoms of the

dictionary. Most entries of the linear representation coeffi-

cient coding vector are zeros or approximate zeros, that is,

the coefficient vectors are sparse. The minimal reconstruc-

tion errors are used for classification. However, when the

training data set is larger, SRC is time consuming for all

training samples are regarded as a dictionary.
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In order to cut down the time consuming, many

researchers proposed dictionary learning (DL) algo-

rithms3,5,11,14–18 to derive a smaller dictionary. K-SVD

algorithm14 is the representative one of DL algorithms.

An overcomplete dictionary can be learned from a training

data set by K-SVD, which works well for signal representa-

tion but not for classification tasks. To address the image

classification issue, Mairal et al.3 added a discriminative

reconstruction constraint and optimized both class discrim-

ination and sparse reconstruction components based on

K-SVD. In a study by Pham and Venkatesh,16 a dictionary

construction and joint learning algorithm was proposed for

classification task. Later, a discriminative K-SVD

(D-KSVD) was proposed for face recognition by Zhang and

Li et al.5 The classification error was incorporated into the

objective function based on extending K-SVD algorithm.

The linear classifier was utilized for obtaining the query

image’s label in D-KSVD method. Jiang et al.17 introduced

a new discriminative sparse coding error constraint to jointly

learn a single dictionary and a linear classification, the algo-

rithm is called label consistent K-SVD (LC-KSVD). The

common character of the methods mentioned above is that

a shared dictionary is learned during DL scheme. Different

from the above methods, Yang et al.18 proposed to learn a

structured dictionary. Fisher discrimination dictionary learn-

ing method, which made the coding coefficients having big

between-class scatter but small within-class scatter, was

used in the classification scheme. Xu et al.11 synthesized the

advantages of the methods mentioned above. They proposed

supervised within-class similar discriminative DL method,

which incorporates linear classification error term and

within-class representation coefficients constraint into

objective function for face recognition.

The sparsity of the sparse representation coefficients is

measured by l0-norm, which is NP-hard. Using l1-norm

minimization instead is popular. It is still time consuming,

though l1-norm minimization is more efficient. Zhang

et al.19 indicated that it was the collaborative representation

(CR) mechanism that improved the face recognition accu-

racy. Motivated by this idea, we proposed a discriminative

collaborative representation–based classification (DCRC),

which incorporated the within-class scatter and the linear

classification error terms into the objective function to

derive a more discriminative dictionary, and simultane-

ously added CR mechanism to decrease the time cost.

Besides, recently researchers proposed algorithms for mul-

tisource image classification.20,21 Liu et al.20 proposed a

joint sparse coding model to solve the room-level localiza-

tion using multiple sets. Li et al.22 proposed multimodal

fusion method for object recognition. Our algorithm is also

effective for multimodal image sets.

This article was organized as follows. In the second

section, we described the related works about classification

on sparse representation and CR, respectively. In the third

section, we described the methodology of the DCRC

algorithm. Experiments were performed in the fourth sec-

tion using different well-known databases to prove the

validity of the proposed method. The conclusions were

given in the fifth section.

Related works

Brief introduction of sparse representation–based
classification

SRC was first proposed for face recognition by Wright

et al.6 The SRC framework contains two procedures, sparse

coding and classification. Suppose the training samples

from K different classes are denoted as

D ¼ ½D1; :::;Di; :::;DK � 2 Rd�n; i ¼ 1; :::;K, where

Di 2 Rd�ni is ni training samples subset from class i, and

n ¼
PK
i¼1

ni. Given a query image z 2 Rd , SRC considers the

query image as a sparse linear combination of the training

data set, and the sparse coding can be described as follows

x ¼ arg min
x
jjz�Dxjj22; s:t: jjxjj0 � t (1)

where x is the code coefficient vector, t is a sparsity con-

stant, and l0-norm counts the number of nonzero elements

of x. This optimization is an NP-hard problem, and it is

generally transformed to an l1-norm minimization instead

x ¼ arg min
x
jjz�Dxjj22; s:t: jjxjj1 � t (2)

or

x ¼ arg min
x
fjjz�Dxjj22 þ l jjxjj1g (3)

where l is a scalar constant to balance the sparsity and

reconstruction error terms. Equation (3) is equivalent to

equation (2).

The coding vector x ¼ ½x1; :::; xi; :::; xK � is obtained,

and then we do classification via reconstruction errors

minimization:

LabelðzÞ ¼ arg min
i
riðzÞ

¼ arg min
i
jjz�Dixijj2; i ¼ 1; :::;K

(4)

where xi is the representation coefficient vector corre-

sponding to class i.

Dictionary learning model

The SRC framework directly used training data set as the

dictionary. In order to learn a smaller dictionary, DL model

was proposed. DL model used the training data set to learn

a corresponding compact dictionary D ¼ ½d1; d2; :::; dm�
2 Rd�m with m atoms (m < n). Then, DL framework was

written as follows11
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hD;Xi ¼ arg min
D;X
fjjY�DXjj2F þ ljjXjj1g

s:t: jjdjjj22 ¼ 1; j ¼ 1; 2; :::;m
(5)

where Y ¼ ½Y1; :::;Yi; :::;YK � 2 Rd�n; i ¼ 1; :::;K is

the training data set, X ¼ ½x1; x2; :::; xn� 2 Rm�n is the

sparse representation coefficients matrix of training set Y
on dictionary D, jj�jj F is the Frobenius norm, and

jjXjj1 ¼
Pn
i¼1

jjxijj1, l is a scalar constant to balance the

sparsity and reconstruction error terms as equation (3).

The first term in equation (5) denotes reconstruction

errors, so the model is suitable for signal representation

tasks but not for classification tasks. The model in equation

(5) is an unsupervised DL framework, because the labels of

the training set are not taken into account. A supervised DL

framework is designed for classification tasks via adding

discriminative terms into objective function. Xu et al.11

synthesized the methods in literature5,17,18 and proposed a

supervised DL framework called SCDDL.

Classification based on collaborative representation

The DL methods mentioned above are l1-norm minimiz-

ing optimization problem. Though there are many speed-

ing up methods proposed as reviewed in the study by

Zhang et al.,22 they are complicated and still time con-

suming. Zhang et al.19 analyzed the mechanism of SRC

and indicated that CR played an essential role for classi-

fication in SRC but not l1-norm sparsity. To collabora-

tively represent the query image z, they proposed to

utilize the regularized least square method. The CR-

based classification with regularized least square (CRC-

RLS) model is as follows

x ¼ arg min
x
fjjz�Dxjj22 þ l jjxjj22g (6)

where l is the regularization parameter. It is easy to derive

the analytical solution of equation (7) as

x ¼ Pz ¼ ðDTDþ lIÞ�1
DTz (7)

where P is a projection matrix independent of z. Matrix P
can be calculated offline, and this makes CR more

effective.

It indicates that equation (6) makes the classification

discriminative, while equation (7) makes the classifica-

tion fast. Can we combine these models to make the

classification procedure more discriminative and faster?

Discriminative collaborative
representation for image-based
classification

Drawing inspiration from literatures,5,11,17–19 we proposed

a DCRC algorithm. The DCRC method was described as

follows.

Discriminative collaborative representation–based
dictionary learning

Suppose Y ¼ ½Y1; :::;Yi; :::;YK � 2 Rd�n; i ¼ 1; :::;K is

the set of training samples from K classes. Every training

sample is a d-dimensional column vector of Y. Discrimi-

native collaborative representation–based DL is to derive a

discriminative dictionary D 2 Rd�m and a classifier

W 2 RK�m for classification. Dictionary D consists of m

atoms, and X ¼ ½X1; :::;Xi; :::;XK � 2 Rm�n is the coding

coefficients matrix of training samples on dictionary D.

The discriminative collaborative representation–based DL

model can be written as follows

hD;W;Xi ¼ arg min
D;W ;X

jjY�DXjj2F þ l1jjXjj2F þ �jjH�WXjj2Fþ

�jjWjj2F þ l2

XK

i¼1

ðjjXi �Mijj2F þ �jjXijj2FÞ

8>><
>>:

9>>=
>>;

s:t: jjdjjj22 ¼ 1; j ¼ 1; :::;m

(8)
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where jjXjj2F ¼
PK
i¼1

jjXijj2F and jj�jj F is the Frobenius norm.

Then we can rewrite equation (8) as

hD;W;Xi ¼ arg min
D;W ;X

jjY�DXjj2F þ l1

XK

i¼1

jjXijj2F þ �jjH�WXjj2Fþ

�jjWjj2F þ l2

XK

i¼1

ðjjXi �Mijj2F þ �jjXijj2FÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ arg min
D;W ;X

jjY�DXjj2F þ ðl1 þ l2�Þ
XK

i¼1

jjXijj2F þ

�jjH�WXjj2F þ �jjWjj
2
F þ l2

XK

i¼1

ðjjXi �Mijj2FÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

s:t: jjdjjj22 ¼ 1; j ¼ 1; :::;m

(9)

Here, we set � ¼ 1 as in Xu et al.11 for simplicity. Then,

equation (9) is rewritten as

hD;W;Xi ¼ arg min
D;W ;X

jjY�DXjj2F þ ðl1 þ l2ÞjjXjj2Fþ

�jjH�WXjj2F þ �jjWjj
2
F þ l2

XK

i¼1

ðjjXi �Mijj2FÞ

8>><
>>:

9>>=
>>;

s:t: jjdjjj22 ¼ 1; j ¼ 1; :::;m

(10)

where jjY�DXjj2F is the reconstruction errors term of

training data set Y on dictionary D, ðl1 þ l2ÞjjXjj2F is the

coding coefficients restriction term, �jjH�WXjj2Fþ
�jjWjj2F is the classification errors term, and

l2

PK
i¼1

ðjjXi �Mijj2FÞ is the within-class similar term as in

the study by Xu et al.11 W 2 RK�m is the linear classifier,

and H 2 RK�n is the label matrix corresponding to the

training samples. Each column of H is a vector with the

form ½0; :::0; 1; 0; :::; 0�T 2 RK , where 1 locates the training

samples to the corresponding class. Xi is the coding coeffi-

cients corresponding to class i. Mi is the same type matrix

of Xi, and each column of Mi is the mean vector of Xi.

Parameters l1, l2, �, and � are all nonnegative constants.

This framework simultaneously derives the dictionary D
and classifier W. Once the classifier is obtained, the query

image can be easily classified by the classifier.

Optimization scheme

The dictionary D and classifier W can be optimized simul-

taneously. We can synthesize D and W to derive an

extended matrix as in literature,5,11,17 and equation (10) can

be transformed to

hD;W;Xi ¼ arg min
D;W ;X

"
�

Yffiffiffiffi
�
p

H

�
�
� Dffiffiffiffi

�
p

W

�
X "2

F

þ ðl1 þ l2ÞjjXjj2F þ

�jjWjj2F þ l2

XK

i¼1

ðjjXi �Mijj2FÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(11)
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If

�
Dffiffiffiffi
�
p

W

�
is normalized column-wise, the regulariza-

tion penalty can be dropped.5 Denote

�
Yffiffiffiffi
�
p

H

�
as Y� and

denote

�
Dffiffiffiffi
�
p

W

�
as D�. Then, the objective function can

be simply written as

hD�;Xi ¼ arg min
D�;X

jjY� �D�Xjj2F þ ðl1 þ l2ÞjjXjj2Fþ

l2

XK

i¼1

ðjjXi �Mijj2FÞ

8>><
>>:

9>>=
>>;

s:t: jjd�j jj
2
2 ¼ 1; j ¼ 1; :::;m

(12)

We can alternatively update X and D�, that is, fix one of

them, and update the other.

Now, we fix the value of D� and then update X. The

function in equation (12) is turned to a coding problem

hXi ¼ arg min
X

jjY� �D�Xjj2F þ ðl1 þ l2ÞjjXjj2Fþ

l2

Xk

i¼1

ðjjXi �Mijj2FÞ

8><
>:

9>=
>;

(13)

We can derive X class by class. For example, if we want

to obtain Xi of class i, the function in equation (13) can be

written by class

hXii ¼ arg min
Xi

fjjY�i �D�Xijj2F þ ðl1 þ l2ÞjjXijj2F

þ l2jjXi �Mijj2Fg
(14)

The objective function in equation (14) is differentiable,

so we can obtain Xi via derivative of objective function and

setting to be zero. Denote f as the objective function and

then derivative

qf
qXi

¼ �2D�TY�i þ 2Xiþ
2ðl1 þ l2ÞXi þ 2l2ðXi �MiÞ

( )
(15)

Set qf
qXi

to be zero and denote the obtained variables from

the k-th to (kþ1)-th iteration using the subscripts ðkÞ and

ðk þ 1Þ. Thus, Xi can be calculated as follows

Xiðkþ1Þ ¼
l2MiðkÞ þD�TðkÞY

�
iðkÞ

1þ l1 þ 2l2

(16)

After obtaining the coding coefficient X, we fix it and

update D�. Then the function in equation (12) is reduced to

a DL problem

hD�i ¼ arg min
D�
jjY� �D�Xjj2F

s:t: jjd�j jj
2
2 ¼ 1; j ¼ 1; :::;m

(17)

The objective function in equation (17) is differentiable,

so we can derive D� as follows

D�ðkþ1Þ ¼ Y�ðkÞX
T
ðkþ1ÞðXðkþ1ÞX

T
ðkþ1ÞÞ

�1
(18)

D� ¼
�

Dffiffiffiffi
�
p

W

�
contains W and D, so we can derive

dictionary D and classifier W simultaneously via the

lemma in the study by Zhang and Li.5 Suppose

D� ¼
�

d�1; d
�
2; :::; d

�
m

w�1;w
�
2; :::;w

�
m

�
, then we can obtain D and W as

follows

D ¼ ðd1; d2; :::; dmÞ ¼
d�1
jjd�1jj2

;
d�2
jjd�2jj2

; :::;
d�m
jjd�mjj2

� �
(19)

W ¼ ðw1;w2; :::;wmÞ ¼
w�1ffiffiffiffi
�
p jjd�1jj2

;
w�2ffiffiffiffi
�
p jjd�2jj2

; :::;
w�mffiffiffiffi
�
p jjd�mjj2

� �
(20)

Classification scheme

To collaboratively represent a given test sample z on nor-

malized D with low computational burden, we utilize the

regularized least square method via equation (6). The solu-

tion of equation (6) can be analytically and easily derived

by equation (7).

The classification of z is based on its CR coefficient x,

which contains most discriminative information for classi-

fication. We can easily use the linear classifier W with x to

derive the label of the test sample z

LabelðzÞ ¼ arg max
i
ðWxÞi; i ¼ 1; 2; :::; K (21)

The maximum i-th element of Wx locates the class label

i of z.

Flow of our algorithm

The DL is proposed for one-dimensional signal processing,

while image-based classification is usually two-

dimensional signals. Therefore, an image preprocessing is

needed. First, we need to arrange the image data in a line as

a vector. The transformation makes the original data being

high-dimensional data. Thus, a dimensionality reduction

Sun et al. 5



(DR) processing is needed, for high-dimensional data lead

to the inefficiency of data processing. In our method, the

basic DR method called principal component analysis

(PCA)23 is used, for it is simple and widely used. The

procedures of DCRC are summarized in Table 1.

Experiments for multimodal databases

To verify the validity of DCRC algorithm, we design two

experiments with two databases: near-infrared database24

and AR visible database.25 We compared our algorithm

with SRC,6 CRC,19 D-KSVD17 algorithms on accurate rec-

ognition rate and time for classifying one test sample.

All the experiments were run on Matlab R2011a. The

PC is Lenovo E40-80 notebook computer with an Intel

Corel i5 2.30 GHz CPU and 8 GB RAM. The GPUs are

AMD Radeon(TM) R5 M330 and Intel(R) HD Graphics

5500 with 2 GB RAM. We also employed sparse solver

SPAMS26 to optimize a standard sparse representation.

Experiment with near-infrared database

The near-infrared database contains 50 distinct subjects and

10 different infrared images for each one. Each image is

100� 80 pixels. Figure 1 shows some images of the near-

infrared database.

With this database, we tested SRC, CRC, D-KSVD, and

our method DCRC. The samples from the database were

average divided into two groups: one group was used as

training sample and the other group was used as test sam-

ple. In order to reduce the calculation cost, we used PCA20

to reduce the dimension of the sample vector from R100�80

to R100. For the SRC and CRC methods, we used all the

training samples as the dictionary atoms (total 250 atoms).

For the D-KSVD method, we used 150 atoms for the dic-

tionary learning. For the DCRC method, we used a diction-

ary with 70 atoms, and with the parameters � ¼ 1,

l ¼ 0:001, l1 ¼ 0:001, l2 ¼ 0:1.

Table 1 shows that the proposed DCRC algorithm con-

tains two procedures: DL and classification. In the diction-

ary training procedure, the representation reconstruction

errors are quickly convergent as shown in Figure 2.

The effect on the accurate recognition rate versus dic-

tionary size is shown in Figure 3. The result shows that the

curve is boosting quickly with the increasing atoms fore-

part, and terminal recognition rates change smooth to 99%.

Dictionary size is the main factor affecting the recognition

rate. The parameters l; l1; l2 affect the recognition rate

weakly. The parameter l1 affects the sparsity, while the

parameter l2 affects the within-class errors. The coding

coefficients of one test sample for the four methods are

shown in Figure 4, and from top to bottom followed by the

coefficient of SRC, CRC, D-KSVD, and DCRC. From the

results, we can see that SRC and D-KSVD are strong

sparse, while CRC and DCRC are weak sparse.

Compared with SRC, CRC, and D-KSVD, the proposed

method DCRC has very competitive recognition rate but

with significantly lower complexity. We recorded the time

for classifying one test sample of the three methods, and the

results were shown in Table 2.

The results indicate that the proposed method DCRC has

the approximate recognition rate with the SRC, CRC, and

D-KSVD methods for this database. The recognition rates

are near the same or almost the same as each other, maybe

because the near-infrared database is without noise. SRC and

CRC directly used the training sample as a dictionary, while

D-KSVD and DCRC learned a compact dictionary from the

training set. Therefore, the latter two methods are faster for

object recognition, and DCRC is the fastest one of all. To

validate our method being competitive for recognition accu-

rate rate, we designed a new experiment in subsection

“Experiment with AR database.”

Experiment with AR database

The AR database contains images for 126 persons, with 26

images for each one. Each image is 165 � 120 pixels. This

database is widely used for face recognition. Figure 5

shows some images of the AR database. We can see that

these images are captured with different viewpoints, differ-

ent illuminations, different facial expressions, and different

disguises (sunglass and neckerchief). These interfering fac-

tors make it more difficult for face recognition. In order to

Table 1. The flow of discriminative collaborative representation
classification algorithm.

Algorithm 1. Discriminative collaborative representation
classification (DCRC)

Task: Derive the label of the test sample of z
Input: A set of n h-dimensional training samples from K classes

T ¼ ½T1; :::;Ti; :::;TK� 2 Rh�n, and test sample z
Initialize:

1. Use PCA to initialize T and get the low d-dimensional training
set Y ¼ ½Y1; :::;Yi; :::;YK� 2 Rd�n

2. Initialize constant parameters: �; l; l1; l2

3. Initialize Dð0Þ using random matrix, then Xð0Þ ¼ 1

1þl1

DT
ð0ÞY

4. Initialize labels of training samples Hð0Þ

5. Initialize Wð0Þ ¼ Hð0ÞXð0Þ
T
�
Xð0ÞXð0Þ

T þ I
��1

6. Initialize D�ð0Þ ¼
� Dð0Þffiffiffiffi

�
p

Wð0Þ

�
Dictionary Learning Procedure:

While not converged
1. Updating X via Eq. (16)
2. Updating D� via Eq. (18)
3. Normalizing D and W via Eq. (20) and Eq. (21)
end while

Output: D, W, X
Classification Procedure:

1. CR coding via Eq. (7)
2. Classification via Eq. (21)

Output: LabelðzÞ
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validate our method is still effective for samples with noise,

we designed an experiment with the AR database.

In our experiment, we chose 2600 images from 50 males

and 50 females. For each person, there are 26 samples; we

chose 20 samples for training and the other 6 samples for

testing. First, we used PCA algorithm to reduce the char-

acter vector dimension from R165�120 to R1000. For the SRC

and CRC methods, we still used all training samples as a

dictionary (2000 atoms). For the DKSVD method, we used

1600 atoms for the dictionary learning. For the DCRC

method, we used a dictionary with 100 atoms, and with the

parameters � ¼ 1, l ¼ 0:001, l1 ¼ 0:01, l2 ¼ 0:0001.

The results are given in Table 3.

The results show that the recognition rates of the four

methods decreased in different degrees compared with the

Figure 1. Samples from the near-infrared database.

Figure 2. The representative reconstruction error.

Figure 3. The accurate recognition rate versus dictionary size.

Figure 4. The coding coefficients of one test sample for SRC,
CRC, D-KSVD, and DCRC. SRC: sparse representation–based
classification; CRC: collaborative representation–based classifi-
cation; D-KSVD: discriminative-KSVD; DCRC: discriminative
collaborative representation–based classification.
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near-infrared results. The recognition rate of DCRC performs

better than that of SRC, CRC, and D-KSVD. The occurrence

of such results may be the interfering with noise. The D-

KSVD and DCRC methods have the discriminative ability,

while the SRC and CRC methods focus on representation of

raw signals. Our method is robust for face recognition. The

proposed method is the fastest one of the three methods.

Conclusions

A fast discriminative CR image classification method

DCRC was proposed in this article. It incorporated the

within-class scatter and the linear classification error terms

into the objective function, so the method had the discri-

minative ability for classification. In order to decrease the

computing time, we added CR mechanism to the objective

function. The experimental results showed that DCRC had

better recognition performance than the other three meth-

ods, and it was suitable for multimodal image (infrared or

visible) classification. The calculating speed of our method

was improved a lot.
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