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Abstract
Tanshinone IIA, an antimicrobial, antioxidant, antianaphylactic, antifibrotic, vasodilating,
antiatherosclerotic, organo-protective and antineoplastic component from the rhizome of
Salvia miltiorrhiza, is known to trigger apoptosis of tumor cells. Tanshinone IIA is effective
in part through mitochondrial depolarization and altered gene expression. Erythrocytes lack
mitochondria and nuclei but may undergo eryptosis, an apoptosis-like suicidal cell death
characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine
exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca?* activity, ATP
depletion and ceramide formation. The present study explored, whether tanshinone IIA elicits
eryptosis. Cytosolic Ca?*-concentration was determined from Fluo3-fluorescence, cell volume
from forward scatter, phosphatidylserine exposure from binding of fluorescent annexin V,
hemolysis from hemoglobin concentration in the supernatant, ATP concentration utilizing
luciferin—luciferase and ceramide formation utilizing fluorescent anticeramide antibodies.
Clearance of circulating erythrocytes was estimated by CFSE-labeling. A 48 h exposure to
tanshinone IIA (10 puM) significantly increased cytosolic Ca?*-concentration, decreased ATP
concentration (25 uM), increased lactate concentration (25 uM), increased ceramide formation
(25 pM), decreased forward scatter, increased annexin-V-binding and increased (albeit to a
much smaller extent) hemolysis. The effect of 25 pM tanshinone IIA on annexin-V binding was
partially reversed in the nominal absence of Ca?*. Labelled tanshinone IIA-treated erythrocytes
were more rapidly cleared from the circulating blood in comparison to untreated erythrocytes.
The present observations reveal a completely novel effect of tanshinone IIA, i.e. triggering of
Ca? entry, ATP depletion and ceramide formation in erythrocytes, events eventually leading
to eryptosis with cell shrinkage and cell membrane scrambling.
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Introduction

Tanshinone 1A (MW 294) [1] from the rhizome of Salvia miltiorrhiza [2, 3] is an
active ingredient of Danshen, a well-known traditional Chinese medicine used for multiple
therapeutic purposes [3] including cardiovascular diseases, such as coronary heart disease
and stroke [4-6] as well as antitumor activity [7]. Efficacy of tanshinone IIA has been
demonstrated both in vitro and in vivo [3, 8].

Tanshinone possesses antimicrobial [9, 10], antioxidant [11, 12], antianaphylactic [13],
antifibrotic [14], vascular [5, 15, 16], antiatherosclerotic [17], cardioprotective [11, 12, 18,
19], pulmonary protective [20-22], renoprotective [23],bone protective [24], neuroprotective
[12, 25-27] and antineoplastic [28-31] activities.

The antineoplastic effect of tanshinone I1A results from induction of apoptosis, as shown
in cells derived from ovarian cancer [29], prostate cancer [28, 30] and acute promyelocytic
leukemia [31]. Beyond that tanshinone may induce hepatic stellate cell apoptosis [32] On the
other hand, tanshinone I1A has been shown to inhibit apoptosis of cardiomyocytes [11, 33].
The effect of tanshinone IIA involves mitochondria [34], altered gene expression [35], Ca*
mobilisation and Ca?* influx [36].

Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, leads
to cell membrane scrambling and cell shrinkage [37]. As erythrocytes lack mitochondria and
nuclei, eryptosisis independent from mitochondrial dysfunction and altered gene expression.
Instead, eryptosis is triggered by Ca?* entry through Ca?"-permeable cation channels [38,
39]. Ca* activates Ca?**-sensitive K* channels [40] with subsequent exit of KCl together
with osmotically obliged water and thus cell shrinkage [41]. In addition, Ca** triggers cell
membrane scrambling with subsequent exposure of phosphatidylserine at the cell surface
[42]. Ca** further triggers cell membrane scrambling [37]. The cell is sensitized to the
eryptotic effects of Ca?* by ceramide [43], which is generated by acid sphingomyelinase [44].
Eryptosis is further triggered by energy depletion [45]. Moreover, erythrocyte cell membrane
scrambling may be triggered by caspases [46, 47], which are activated by oxidative stress but
are not required for the effect of Ca** on cell membrane scrambling [42]. Erythrocyte survival
may further be modulated by kinases involved in the signaling of apoptosis, such as p38
MAPK and CK1 [48, 49].

The present study explored, whether tanshinone IIA influences cytosolic Ca?* activity,
cell volume and cell membrane scrambling of human erythrocytes and thus the programmed
cell death of erythrocytes.

Materials and Methods

Erythrocytes, solutions and chemicals

Leukocyte-depleted erythrocytes were kindly provided by the blood bank of the University of
Tiibingen. The study is approved by the ethics committee of the University of Tiibingen (184/2003V).
Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 125
NaCl, 5 KCl, 1 MgSO0,, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl,;
pH 7.4 at 37°C for 48 h with or without 1, 10 or 25 pM tanshinone IIA (purity > 98%/TLC, Enzo Alexis).
Where indicated, extracellular glucose was removed or tanshinone IIA (Enzo, Lorrach, Germany) added
at the indicated concentrations. In Ca**-free Ringer solution, 1 mM CaCl, was substituted for 1 mM glycol-
bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA).

FACS analysis of annexin-V-binding and forward scatter

After incubation under the respective experimental condition, 50 pl cell suspension were washed in
Ringer solution containing 5 mM CaCl, and then stained with fluorescein-isothiocyanate (FITC)-conjugated
Annexin-V (1:200 dilution; ImmunoTools, Friesoythe, Germany) in this solution at 37°C for 20 min under
protection from light. In the following, the forward scatter (FSC) of the cells was determined, and annexin
V fluorescence intensity was measured in FL-1 with an excitation wavelength of 488 nm and an emission
wavelength of 530 nm on a FACS calibur (BD, Heidelberg, Germany).
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Measurement of intracellular Ca®*

After incubation 50 pl suspension erythrocytes were washed in Ringer solution and then loaded with
Fluo-3/AM (Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl, and 2 pM Fluo-3/AM. The
cells were incubated at 37°C for 30 min and washed twice in Ringer solution containing 5 mM CaCl,. The
Fluo-3/AM-loaded erythrocytes were resuspended in 200 pl Ringer. Then, Ca?*-dependent fluorescence
intensity was measured in fluorescence channel FL-1 in FACS analysis.

Determination of intracellular ATP concentration

For determination of intracellular erythrocyte ATP, 90 pl of erythrocyte pellets were incubated for 48
h at 37°C in Ringer solution with or without tanshinone IIA (final hematocrit 5%). Additionally, erythrocytes
were also incubated in glucose depleted Ringer solution as a positive control. All manipulations were then
performed at 4°C to avoid ATP degradation. Cells were lysed in distilled water, and proteins were precipitated
by addition of HCIO, (5%). After centrifugation, an aliquot of the supernatant (400 ul) was adjusted to pH
7.7 by addition of saturated KHCO, solution. After dilution of the supernatant, the ATP concentrations of the
aliquots were determined utilizing the luciferin-luciferase assay kit (Roche Diagnostics) on a luminometer
(Berthold Biolumat LB9500, Bad Wildbad, Germany) according to the manufacturer’s protocol. ATP
concentrations are expressed in mmol/] cytosol of erythrocytes.

Determination of lactate generation

For the determination of lactate formation, 200 pl of erythrocyte pellets were incubated for 48 h
at 37°C in Ringer solution with or without 25 uM tanshinone IIA (final hematocrit 20%). After 48 h, the
samples were centrifuged (3 min at 400 g, room temperature) and the supernatant was collected. Total
lactic acid content in the supernatant was measured by a commercial lactate assay kit (Bioassay systems)
according to the manufacturer’s instructions.

Determination of ceramide formation

For the determination of ceramide, a monoclonal antibody-based assay was used. After incubation with
and without tanshinone IIA, cells were stained for 1 h at 37°C with 1 pg/ml anti-ceramide antibody (clone
MID 15B4, Alexis, Griinberg, Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution
of 1:5. The samples were washed twice with PBS-BSA. Subsequently, the cells were stained for 30 min with
polyclonal fluorescein-isothiocyanate (FITC)-conjugated goat anti-mouse IgG and IgM specific antibody
(Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed
by repeated washing with PBS-BSA. The samples were then analysed by flow cytometric analysis in FL-1.
As shown previously [44], the monoclonal antibody-based assay yields similar results as the biochemical
determination of ceramide utilizing a diacylglycerol-kinase assay (Amersham Biosciences).

Measurement of hemolysis

For the determination of hemolysis the samples were centrifuged (3 min at 400 g, room temperature)
after incubation, and the supernatants were harvested. As a measure of hemolysis, the hemoglobin (Hb)
concentration of the supernatant was determined photometrically at 405 nm. The absorption of the
supernatant of erythrocytes lysed in distilled water was defined as 100% hemolysis.

Confocal microscopy and immunofluorescence

For the visualisation of eryptotic erythrocytes, 4 pl of erythrocytes, incubated in respective
experimental conditions, were stained with FITC-conjugated Annexin-V (1:100 dilution; ImmunoTools,
Friesoythe, Germany) in 200 pl Ringer solution containing 5 mM CaCl,. Then the erythrocytes were washed
twice and finally resuspended in 50 pl of Ringer solution containing 5 mM CaCl,. 20 ul were mounted with
Prolong Gold antifade reagent (Invitrogen, Darmstadt, Germany) onto a glass slide, covered with a coverslip
and images were subsequently taken on a Zeiss LSM 5 EXCITER confocal laser scanning microscope (Carl
Zeiss Microlmaging, Oberkochen, Germany) with a water immersion Plan-Neofluar 63/1.3 NA DIC.

Measurement of the in vivo clearance of fluorescence-labeled erythrocytes

Following treatment with or without tanshinone IIA, erythrocytes (obtained from 200 pl blood)
were fluorescence-labeled by staining with 5 uM carboxyfluorescein-diacetate-succinimidyl-ester (CFSE)
(Molecular Probes, Leiden, Netherlands) in PBS and incubated for 30 min at 37°C. After washing twice in
PBS containing 1% FCS the pellet was resuspended in Ringer solution (37°C), and 100 pl of the CFSE-labeled
erythrocytes were injected into the tail vein of the recipient mouse. After 36 h, blood was retrieved from the
tail veins of the mice, and CFSE-dependent fluorescence intensity of the erythrocytes was measured in FL-1
as described above. The percentage of CFSE-positive erythrocytes was calculated in % of the total labeled
fraction determined 5 min after injection.
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Fig. 1. Effect of tanshinone IIA on erythrocyte cytosolic Ca?* concentration. A. Original histogram of Fluo3
fluorescence in erythrocytes following exposure for 48 h to Ringer solution without (-, black line) and
with (+, red line) presence of 25 pM tanshinone IIA. B. Arithmetic means * SD (n = 13) of the geo means
(geometric mean of the histogram in arbitrary units) of Fluo3 -fluorescence in erythrocytes exposed for 48 h
to Ringer solution without (white bar) or with (black bars) 1-25 uM tanshinone IIA. *** (p < 0.001) indicates
significant difference from the absence of tanshinone IIA (paired ANOVA).
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Fig. 2. Effect of tanshinone IIA on erythrocyte forward scatter. A. Original histograms of forward scatter of
erythrocytes from 9 patients following exposure for 48 h to Ringer solution without (black lines) and with
(red lines) presence of 25 uM tanshinone IIA. B. Arithmetic means * SD (n = 13) of the erythrocyte forward
scatter following incubation for 48 h to Ringer solution without (white bar) or with (black bars) 1-25 uM
tanshinone IIA. *** (p < 0.001) indicates significant difference from the absence of tanshinone IIA (paired
ANOVA).

Statistics

Data are expressed as arithmetic means + SD. Statistical analysis was made using paired ANOVA with
Tukey’s test as post-test, as appropriate. n denotes the number of different erythrocyte specimens studied.
Since different erythrocyte specimens used in distinct experiments are differently susceptible to eryptotic
effects, the same erythrocyte specimens have been used for control and experimental conditions.

Results

To determine cytosolic Ca?* concentration, Fluo 3-fluorescence was determined in FACS
analysis. As shown in Fig. 1, treatment of human erythrocytes with tanshinone IIA resulted
in an increase of Fluo3-fluorescence reflecting an increase of cytosolic Ca?* concentration.
The effect of tanshinone IIA on Fluo3-fluorescence reached statistical significance at a
tanshinone IIA concentration of 10 uM.
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Fig. 3. Confocal images of PS-exposing
erythrocytes with or without tanshinone
IIA treatment. Confocal microscopy of
FITC-dependent fluorescence (upper
panels) and light microscopy (lower
panels) of human erythrocytes stained
with FITC-conjugated Annexin-V Fluos
following 48 h incubation in Ringer
solution without (left panels) and with
(right panels) 25 uM tanshinone IIA.
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Ca* is known to activate erythrocyte Ca?* sensitive K* channels and an increase of
cytosolic Ca** concentration is expected to trigger exit of KCl which, osmotically, obliges
water to follow, an effect resulting in cell shrinkage. To determine the effect of tanshinone
[1A on cell volume, forward scatter was determined in FACS analysis. As illustrated in Fig. 2,
tanshinone IIA treatment was indeed followed by a decrease of forward scatter. The effect
of tanshinone IIA on forward scatter reached statistical significance at a tanshinone I1A
concentration of 10 puM.

Ca* is further known to trigger cell membrane scrambling with phosphatidylserine
exposure at the cell surface. Phosphatidylserine exposing erythrocytes were identified
utilizing annexin -V-binding. The fluorescent annexin-V-positive erythrocytes were
visualized by confocal imaging. As shown in Fig. 3, a 48 h exposure to 25 pM tanshinone II1A
was followed by the appearance of annexin-V-positive erythrocytes, an observation pointing
to the triggering of cell membrane scrambling.

Quantification of annexin-V-binding was accomplished by FACS analysis. As
demonstrated in Fig. 4A and 4B, a 48 h treatment with tanshinone IIA increased the
percentage of annexin V binding erythrocytes, an effect reaching statistical significance at
10 uM tanshinone IIA.

For determination of hemolysis hemoglobin release into the supernatant was quantified
in erythrocytes exposed for 48 h to Ringer solution without or with 1-25 uM tanshinone
[1A. As illustrated in Fig. 4B, tanshinone IIA treatment was followed by hemolysis, an effect
reaching statistical significance at 10 pM tanshinone IIA. The percentage of hemolytic
erythrocytes remained, however, by far smaller than the percentage of annexin -V-binding
erythrocytes.

Further experiments aimed to define the causal role of Ca% in the triggering of cell
membrane scrambling by tanshinone IIA. Erythrocytes were exposed to tanshinone I1A
either in the presence or in the nominal absence of extracellular Ca?. As shown in Fig. 4C,
the effect of tanshinone IIA on annexin-V-binding was blunted, but not fully abolished in the
nominal absence of Ca?*. Instead, the annexin-V-binding was in the nominal absence of Ca*
but presence of tanshinone 1A significantly lower than the respective value in the presence
of both Ca?* and tanshinone IIA, but at the same time significantly higher than the respective
value in the absence of tanshinone IIA in both, the presence or absence, of Ca*. The effect of
tanshinone IIA on cell membrane scrambling is thus in part due to an increase of intracellular
Ca? activity.
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Fig. 4. Effect of tanshinone IIA on phosphatidylserine exposure and hemolysis. A. Original histogram of
annexin-V-binding of erythrocytes following exposure for 48 h to Ringer solution without (-, black line)
and with (+, red line) presence of 25 uM tanshinone IIA. B. Arithmetic means + SD (n = 13) of erythrocyte
annexin- V-binding following incubation for 48 h to Ringer solution without (white bar) or with (black bars)
presence of 1-25 uM tanshinone IIA. For comparison, arithmetic means * SD (n = 7) of the percentage of
hemolysis is shown as grey bars. * (p < 0.05), ** (p < 0.01), *** (p < 0.001) indicates significant difference
from the absence of tanshinone IIA (paired ANOVA). C. Arithmetic means * SD (n = 4) of the percentage of
annexin-V-binding erythrocytes after a 48 h treatment with Ringer solution without (white bar) or with
(black bars) 25 uM tanshinone IIA in the presence (left bars, +Ca?*) and absence (right bars, -Ca?*) of calcium.
*#* (p < 0.001) indicates significant difference from the absence of tanshinone IIA (paired ANOVA), ### (p <
0.001) indicates significant difference from the respective values in the presence of Ca*.
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Fig. 5. Effect of tanshinone IIA on erythrocyte cytosolic ATP content and lactic acid release. A. Arithmetic
means * SD (n = 4) of the ATP concentration after a 48 h incubation in Ringer solution without (white bar)
or with (black bars) tanshinone IIA at the indicated concentrations, or in glucose-depleted Ringer solution
(grey bar, minus glucose). ** (p < 0.01), *** (p < 0.001) indicates significant difference from control (absence
of tanshinone IIA and presence of glucose) (paired ANOVA). B. Tanshinone I1A-sensitive lactic acid formation
in erythrocytes. Arithmetic means + SD (n= 6) of lactic acid formation in erythrocytes following incubation
for 48 h in the absence (white bar) or presence (black bar) of 25 pM tanshinone IIA. * (p < 0.05) indicates
significant difference from the absence of tanshinone Il A (paired two-tailed t-test).

Furtherexperiments were performed to possiblyidentify further mechanismsunderlying
the stimulating effect of tanshinone IIA on cell membrane scrambling. Known triggers of
eryptosis include energy depletion. Accordingly, the effect of tanshinone IIA treatment
on cytosolic ATP concentration was determined. As illustrated in Fig. 5a, the cytosolic ATP
concentration was significantly lower in erythrocytes incubated for 48 h in Ringer containing
tanshinone IIA than in erythrocytes exposed for 48 h in Ringer without tanshinone IIA. The
effect oftanshinone I1A reached statistical significance at 25 pM tanshinone 1A concentration.
For comparison, the ATP concentration was determined in erythrocytes exposed to glucose-
free Ringer. As shown in Fig. 53, glucose depletion was followed by a more profound decrease of
ATP concentration than the treatment with tanshinone IIA.
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Fig. 6. Effect of tanshinone
IIA on ceramide formation. A.
Original histograms of ceramide
abundance in erythrocytes from ————— 50, [ 0HM Tanshinone
5 patients following exposure for M.25uM Tanshinons
48 h to Ringer solution without
(black lines) and with (red lines)
presence of 25 pM tanshinone
[IA. B. Arithmetic means * SD (n
= 5) of ceramide abundance in
erythrocytes following incubation
for 48 h to Ringer solution without
(white bar) or with (black bar)
presence of 25 pM tanshinone IIA. 1|00 Anti-Ceramide FITC- 104
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As the cytosolic ATP concentration was decreased by tanshinone IIA, the production of
lactic acid was examined. As shown in Fig. 5b, the concentration of lactic acid in the supernatant
of erythrocytes incubated for 48 h in Ringer containing 25 pM tanshinone 1A was significantly
higher than in erythrocytes exposed for 48 h in Ringer without tanshinone IIA.

Cell membrane scrambling is further known to be triggered by ceramide. Accordingly,
FITC-labelled anticeramide antibodies were employed to analyse the effect of tanshinone
IIA on ceramide abundance in the erythrocyte cell membrane. As shown in Fig. 6, tanshinone
ITIA (25 pM) treatment indeed significantly increased ceramide abundance indicating that
tanshinone IIA stimulates ceramide formation.

To elucidate whether tanshinone IIA influenced the in vivo life span of erythrocytes,
erythrocytes were isolated from blood drawn from wild type mice, treated with tanshinone
IIA (25 uM) for12 h, labeled with the fluorescent dye CFSE, and subsequently injected into the
tail vein of the same mice. The clearance of CFSE-labeled erythrocytes from the circulation
was determined 36 h after reinjection. As a result tanshinone II A treatment significantly (p <
0.05) accelerated the clearance of erythrocytes from circulating blood. The percentage of CSFE
labelled erythrocytes remaining in circulating blood after 36 h was 56 * 15 % (n = 3) without
treatment and 13 + 1 % (n = 3) with tanshinone IIA treatment.

Discussion

The present observations reveal a completely novel effect of tanshinone IIA, i.e. the
stimulation suicidal erythrocyte death or eryptosis, which is characterized by cell membrane
scrambling and cell shrinkage. The concentrations triggering eryptosis are within the range
of tanshinone IIA plasma concentrations presumably approached in vivo. In mice, a dosages
of 3 - 100 mg/kg tanshinone IIA have been administrated [12, 22, 50-55]. Following the
application of 8 mg/kg, the plasma concentration increased up to some 3 uM [1]. The
eryptosis is paralleled by hemolysis, which affects, however, only a comparably small percentage
of erythrocytes.

The effect of tanshinone IIA on cell membrane scrambling is partially due to increase of
cytosolic Ca? activity, which is known to trigger erythrocyte membrane scrambling [42, 46,
56]. According to indirect evidence, tanshinone IIA rather decreases Ca?* entry into vascular
smooth muscle cells. The channels involved remained elusive. In erythrocytes, Ca®* entry
presumably involves TRPC6 [38].
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The incomplete inhibition of tanshinone IIA -induced cell membrane scrambling under
Ca*-depleted conditions prompted us to search for the effect of tanshinone on further
mechanisms known to trigger eryptosis. Those mechanisms include energy depletion
[45]. As a result, tanshinone IIA indeed decreases cytosolic ATP concentration. This effect is
again moderate and contributes to but does not fully account for the strong stimulation of cell
membrane scrambling. Erythrocyte ATP generation is dependent on glycolysis and the effect
of tanshinone IIA on cytosolic ATP levels could have reflected an interference with glycolytic
flux. Tumor cells gain their energy mainly from glucose degradation [57] and in theory impaired
glycolysis could contribute to the known [28-31, 58] antineoplastic effect of tanshinone.
However, lactic acid production was increased following incubation with 25 uM tanshinone
[1A. Thus, glycolytic flux appears to be enhanced by tanshinone IIA treatment and the substance
presumably decreases cytosolic ATP levels by increasing ATP utilization.

Cell membrane scrambling is further stimulated by ceramide [43, 59]. Again, tanshinone
[1A moderately increases ceramide abundance, an effect contributing to but not fully accounting
for the stimulation of cell membrane scrambling.

Beyond its effect of cell membrane scrambling Ca®* activates Ca?* sensitive K* channels
[40, 60] with resulting K* exit, cell membrane hyperpolarisation, Cl- exit and thus cellular loss
of water [41]. Tanshinone IIA indeed decreases the forward scatter, an observation pointing
to cell shrinkage. In nucleated cells tanshinone has been shown to activate several types of K*
channels [16, 20, 61], which would similarly hyperpolarize the cell membrane, increase the
electrical driving force for Cl" exit and thus result in cellular KCI loss. On the other hand,
tanshinone has been shown to downregulate aquaporins [21], which would impede water
fluxes and thus cell volume changes.

Signaling involved in the effects of tanshinone IIA in nucleated cells further includes
Akt-GSK-3B [19, 22, 30, 62], p38 kinase [6, 29], NFkB [35], calreticulin [63], caspase 12 [63]
and GADD153 [63], inhibition of mitochondria permeability transition [34], cytochromes
P450 1A1 and 1A2 [64], CYP3A2 and CYP2C11 [65], nitric oxide [5, 36], prostaglandin E2,
CD40 [66] and matrix metalloproteinase-2 (MMP-2) activity [66]. At least in theory, some of
those mechanisms may contribute to the stimulation of eryptosis. In any case, most of the
effect of tanshinone I1A on eryptosis is explained by Ca?* entry, ceramide formation and ATP
depletion.

Tanshinone I1A sensitivity may be enhanced in clinical disorders associated with increased
eryptosis-susceptibility of erythrocytes [37], such as iron deficiency [67], phosphate depletion
[68], Hemolytic Uremic Syndrome [69], sepsis [70], sickle cell disease [71], malaria [72-
76], APC gene mutation [77] Wilson’s disease [76] and possibly metabolic syndrome [78].
Tanshinone IIA may further potentiate the eryptotic effect of other eryptosis triggering
xenobiotics [48, 72, 79-92]. Accelerated eryptosis may lead to anemia [37] and adherence of
phosphatidylserine-exposing erythrocytes to the vascular wall with the respective impairment
of microcirculation [93-97]. Eryptotic erythrocytes are further known to stimulate blood
clotting [93, 98, 99].

The present observations may be relevant not only for erythrocytes but similarly
effective in nucleated cells. To the best of our knowledge, an effect of tanshinone on ceramide
formation has never been reported, but possibly, ceramide similarly participates in the
effects of tanshinone IIA on apoptosis, as ceramide is well known to trigger apoptosis in a
variety of cells [100]. In nucleated cells, tanshinone influences apoptosis in part by inhibition
of mitochondria permeability transition [34], a mechanism, which cannot be operative
in erythrocytes. In nucleated cells, tanshinone IIA is further partially effective through
inhibition of the transcription factor NFxB [35]. Again, transcription cannot contribute to
suicidal death of mature, nuclei lacking erythrocytes. Interestingly, though, NFkB inhibitors
Bay 11-7082 and Parthenolide similarly trigger eryptosis [85], an effect which may, however,
not be related to NFkB inhibition.
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In conclusion, the present study reveals a completely novel effect of tanshinone 114, i.e. the

Ca?*entry, ATP depletion despite enhanced glycolysis, and ceramide formation in erythrocytes,
which collectively stimulate cell membrane scrambling and cell shrinkage followed by clearance
of the affected erythrocytes from circulating blood.
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