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Abstract

Recently, a sparse representation model - called an analysis
sparse model - where the signal is multiplied by an analysis
dictionary and the outcome is assumed to be sparse, has
received increasing attention since it has potential and
extensive applications in the area of signal processing. The
performance of the analysis model significantly depends
on an appropriately chosen dictionary. Most existing
analysis dictionary learning algorithms are based on the
assumption that the original signals are known or can be
estimated from their noisy versions. Generally, however,
the original signals are unknown or need to be estimated
by using greedy-like algorithms with heavy computation.
To solve the problems, we introduce a subset pursuit
algorithm for analysis dictionary learning, where the
observed signals are directly employed to learn the analysis
dictionary. Next, a weighted split Bregman iteration
algorithm is proposed to estimate original signals by the
learned analysis dictionary. The experimental results
demonstrate the competitive performance of the proposed
algorithms compared with the state-of-art algorithms.

Keywords Sparse representation, synthesis model, analy‐
sis model, dictionary learning, image denoising

1. Introduction

Sparse representation has become a well-known topic in a
wide range of fields, such as image processing [1], com‐
pressed sensing [2], sensor networks [3], robotics [4, 5, 6, 7,
8], and more. A popular model for sparse representation is
the synthesis model. In this model, a signal x∈R M  is
represented as x=Da, where D∈R M ×N  is a possibly over-
complete dictionary (N ≥M ) and a∈R N  is the coefficient
vector which is assumed to be sparse, i.e., ∥a∥0 = L ≪N ,
where the ℓ0 quasi-norm ⋅ 0 counts the number of non-
zero components in its argument. In the synthesis model,
the signal x can be described as a linear combination of only
a few columns (i.e., atoms) of D. In the past decade, the
synthesis model has been extensively studied [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12]. In robotics, face recognition is used to
satisfy person identification tasks and sparse representa‐
tion-based classification can deal with facial recognition
very well. The basic idea is to combine the sub-dictionaries
which are learned from various classes’ images and then
represent the query image using a small number of atoms
indicating the class of the image [5]. Sparse representation-
based classification can also be applied to action recogni‐
tion for human-robot interaction [6, 7] and object
classification for robot perception [8].
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Recently, an alternative form of the sparse representation
model called the ’analysis model’ was proposed in [13, 14,
15, 16, 17, 18, 19, 20, 21]. In this model, an analysis diction‐
ary (or analysis operator) Ω∈R P×M  (P ≥M ) is sought in
order to transform the signal vector x to a high-dimensional
space, i.e., Ωx=z, where the analysis coefficient vector
z∈R P  is the analysis representation of x and is assumed to
be sparse, i.e., ∥z∥0 ≪P , while the total number of the
zeros of z characterizes co-sparsity [13]. In the model, the
signal x is described by the zero elements of z - in other
words, zero entries in z define a subspace that the signal x
belongs to as opposed to the few non-zero entries of a in
the synthesis model.

Similar to the synthesis model, the performance of the
analysis model relies on the sparse representation of the
signals with an appropriately chosen dictionary and a
signal recovery method. Compared to the extensive studies
of synthesis dictionary learning, however, the problem of
analysis dictionary learning (ADL) has received much less
attention, with only a few algorithms proposed recently
[15, 16, 17, 18, 20, 21]. Based on the fact that a row of Ω is
orthogonal to a subset X j of signals X, where
X= x1,x2,...,xK ∈R M ×K , a sequential minimal eigenvalue
algorithm has been proposed for ADL [15]. Once X j is
found, the corresponding j -th row of the dictionary can be
updated with the eigenvector associated with the smallest
eigenvalue of the Gram matrix of X j. However, the com‐
putational cost of this ADL method increases considerably
if P  becomes larger. In fact, the original signals X cannot be
accurately observed. In[17, 16], a projected sub-gradient
algorithm is proposed for analysis operator learning and
an augmented Lagrangian (AL) algorithm is utilized to
recover the signals X. In this algorithm, however, a uni‐
formly normalized tight frame is also employed as a
constraint on the dictionary to avoid the trivial solution.
This constraint limits the possible Ω to be learned. In [18],
the analysis K-SVD (AK-SVD) algorithm was proposed for
ADL using the observed signals Y= y1,y2,...,yK ∈R M ×K

measured in the presence of additive noise as

= +Y X V (1)

where V= v1,v2,...,vK ∈R M ×K  is a zero-mean white-
Gaussian additive noise matrix. The optimization scheme
in the AK-SVD algorithm is based on a two-phase alternat‐
ing iterative approach. In the first phase, the optimal
backward greedy (OBG) algorithm is applied to estimate X
while keeping Ω fixed. In the second phase, Ω is updated
by using the estimation of X. The AK-SVD algorithm is
effective but the phase of pre-estimate X leads to a compu‐
tationally slow process. The learning over-complete
sparsifying transform (LOST) algorithm was proposed for
ADL by directly using noisy signal Y [20]. It is noted in the
LOST algorithm that the null dictionary matrix can also
lead to a trivial solution to the optimization problem. To

eliminate such a trivial solution, the full-rank constraint on
Ω is employed in [20], but the ill-conditioned ΩT Ω may
degrade the performance of the LOST algorithm.

In this paper, we introduce a subset pursuit algorithm to
learn the analysis dictionary by directly employing the
observed data to compute the approximate analysis sparse
representation of the original signals [22]. The algorithm
eliminates the need for estimating the original signals as
otherwise required in the algorithms mentioned above.
According to the absolute values of the analysis sparse
representation, the observed data can be assigned into
multiple subsets which are then used to update the analysis
dictionary. To improve the performance of the signal
recovery with the learned dictionary, a weighted split
Bregman iterative (WSBI) algorithm is proposed to recon‐
struct the original signals in the analysis model, where the
ℓ1 minimization has been replaced by the weighted ℓ1

minimization to promote the sparsity of the analysis
representation of x. The simulations’ results demonstrate
the competitive performance of the proposed algorithm
compared with those of the state-of-art algorithms, such as
AK-SVD [18], the noise-aware analysis operator learning
algorithm (NAAOLA) [16, 17], and the LOST [20] and OBG
[18] algorithms.

The paper is organized as follows. In Section 2, the analysis
model and subset pursuit algorithm for ADL are described.
In Section 3, the WSBI algorithm is proposed to reconstruct
the original signals. Some experimental results are shown
in Section 4, before concluding the paper in Section 5.

2. Subset pursuit algorithm for analysis dictionary
learning

In this section, we present a subset pursuit algorithm for
ADL by directly using the observed data without having to
pre-estimate X (as done in [18]). More specifically, we
exploit the analysis representation of Y to obtain the subset
Y j rather than using the estimation of X to determine Y j.

2.1 The analysis model

The analysis model can be described as follows: for a signal
x∈R M  and a fixed redundant analysis dictionary Ω∈R P×M

(P >M ), the co-sparsity l  of the analysis model is

0
=l P - xW (2)

The quantity l  denotes the number of zeros in the vector
Ωx, which implies that l  rows in Ω are orthogonal to the
signal x, and these rows define the co-support Λ, i.e.,
ΩΛx =0, where ΩΛ is a sub-matrix of Ω that contains the
rows from Ω indexed by Λ. In this case, the signal x is said
to be l  -co-sparse and characterized by its co-support Λ. It
is clear that the dimension of the subspace that signal x
resides in is r =M − l . Generally, we can assume that X has
the same co-rank M − r  related to the dictionary Ω.
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2.2 Subset pursuit algorithm

Suppose we measure a signal of the form

=   = 1,2,...,i i i i K+y x v (3)

where vi is a zero-mean white-Gaussian additive noise
vector with a bounded ℓ2 norm - say vi 2≤σ - where σ
denotes the noise level. According to Eq.(2), the task of ADL
can be formed as

0
min ixW (4)

This problem is NP-complete [2, 23]. Just like in the
synthesis case, one might replace the ℓ0 quasi-norm with
the ℓ1 norm

1
min ixW (5)

where ⋅ 1 is the ℓ1 norm that sums the absolute values
of a vector. In general, if the noise vi is stationary and
bounded, the analysis model Eq.(5) has an approximate
analysis model

1
min iyW (6)

Proof: Using Eq.(6), the analysis model is therefore written
as

=i iz yW (7)

where zi = z1iz2i ⋅ ⋅ ⋅ zPi
T ∈R P×1 is the analysis representa‐

tion of yi. Considering a single row ωj
T  in the analysis

dictionary Ω, Eq.(7) can be rewritten as

= T
ij j iz yw (8)

Accordingly, the absolute value of z ji is

= =T T T
ji j i j i j iz +y x vw w w (9)

We know that |ω j
T xi +ω j

T vi | ≤ |ω j
T xi | + |ω j

T vi | . In
general, the absolute values of z ji have a small value when
ω j is orthogonal to the signal xi, i.e., ω j

T xi =0. Thus, the
analysis sparse representation of yi can be used to deter‐
mine whether ω j

T  is orthogonal to xi. ■

Therefore, we can compute the analysis sparse representa‐
tion of the observed data yi to find whether ω j

T  is orthog‐
onal with the signal xi, rather than using x̂i which otherwise
has to be estimated from yi. Because the co-rank is assumed
to be M − r  - which implies that M − r  rows in Ω may be

orthogonal to the data yi - we can regard M − r  smallest
values in |Ωyi |  as zeros. The Λi : = { j | |ω j

T yi | ≈0}, which
is the co-support of yi, can be obtained by the locations of
the zero entries in Ωyi. As such, yi can be assigned into the
sub-set Y j,∀ j∈Λi. After Y j is found, ωj is updated as
follows [18]:

2

2 2
ˆ =   s.t.  = 1arg min T

j j j j
j

Y
w

w w w (10)

For the optimization problem, ω j can be updated using the
eigenvector associated with the smallest eigenvalue of
Y jY j

T . This algorithm is described in the Algorithm 1 table.
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Therefore, we can compute the analysis sparse
representation of the observed data yi to find whether
ω

T
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which otherwise has to be estimated from yi. Because
the co-rank is assumed to be M − r, which implies that
M − r rows in Ω may be orthogonal to the data yi, we
can regard M − r smallest values in |Ωyi| as zeros. The
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be obtained by the locations of the zero entries in Ωyi.
Then yi can be assigned into the sub-set Yj, ∀j ∈ Λi. After
the Yj is found, the ωj is updated as follow [11]:
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∥

∥
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2
= 1 (10)

For the optimization problem, the ωj can be updated using
the eigenvector associated with the smallest eigenvalue of
YjY

T
j . This algorithm is described in the Algorithm 1 table.

Algorithm 1: SP-ADL

Input: Observed data Y ∈ RM×K , the initial dictionary
Ω0 ∈ RP×M, the co-rank M − r and the number of
iterations T
Output: Dictionary Ω

Initialization: Set Ω := Ω0, Let Y′ be the
column-normalized version of Y, where Y′ =
[y′

1,..., y′
K ] ∈ RM×K

For t = 1, ..., T do
For i = 1, ..., K do

• Compute zi = Ωy′
i, select M − r numbers of

∣

∣

∣
zji

∣

∣

∣

which have the smallest values and find the cosupport
Λi

• Assign corresponding yi into Yj, ∀j ∈ Λi

End for
For j = 1...P do

Update ωj with Eq.(10)

End for
End for

3. The WSBI algorithm for recovering original signals
based on analysis model

In the analysis model, the estimation of x can be obtained
from its noise version y by solving the optimization
problem

arg min
x

‖Ωx‖1 subject to ‖y − x‖2
2 ≤ ε (11)

where ε is an estimated upper bound on the noise

power ‖v‖2
2. The OBG algorithm [11] and some

pursuit methods [18], such as analysis iterative hard
thresholding (AIHT), analysis hard thresholding pursuit
(AHTP), analysis subspace pursuit (ASP) and analysis
compressive sampling matching pursuit (ACoSaMP) have
been proposed to solve the optimization problem. Due
to the use of the greedy-like methods, the estimation of
x is computationally slow and also becomes unreliable
with the increase of noise in y. In [10], the augmented
Lagrangian (AL) method is applied to estimate the original
signal x. Indeed, the AL method is identical with the
split Bregman iteration (SBI) algorithm [19], however, the
simulation results demonstrate that the performance of the
AL algorithm is limited [10]. To solve the signal recovery
problem, a weighted split Bregman iterative algorithm is
proposed, where the ℓ1 minimization is replaced by the
weighted ℓ1 minimization. To begin with the section, we
introduce the SBI algorithm and the WSBI is proposed
subsequently.

3.1. Split Bregman iterative algorithm

Recovering x in the analysis model is based on the
optimization problem Eq. (11) and the constrained
optimization problem can be transformed into a
unconstrained optimization problem with the Lagrange
multiplier µ. This leads to the following optimization
problem

arg min
x

(

‖Ωx‖1 +
µ

2
‖y − x‖2

2

)

(12)

Set z = Ωx, the Eq. (12) can be written as

arg min
z,x

(

‖z‖1 +
µ

2
‖y − Ωx‖2

2

)

subject to z = Ωx (13)

For simpleness, we set E (z, x) = ‖z‖1 +
µ
2 ‖y − Ωx‖2

2,
then Eq. (13) can be transformed to the following problem

arg min
z,x

E (z, x) subject to z = Ωx (14)

The Lagrange method can also be used to transform
the constrained optimization problem (14) to an
unconstrained one as following

arg min
z,x

(

E (z, x) +
η

2
‖z − Ωx‖2

2

)

(15)

where η is Lagrange multiplier. In order to apply split
Bregman iteration algorithm, we introduce the Bregman
distance which is defined as [20]

D
qt

E (z, x, zt, xt) = E(z, x)− E(zt, xt)−
〈

qt
z, z − zt

〉

−
〈

qt
x, x − xt

〉

(16)

where (qt
z, qt

x) = ∂E(zt, xt), 〈·〉 stands for the inner
product operator and t is the number of iteration. The
unconstrained optimization problem (15) is equivalent to
the following problem

arg min
z,x

(

D
qt

E

(

z, x, zt, xt
)

+
η

2
‖z − Ωx‖2

2

)

(17)

The variates in Eq. (17) are separable and the Split
Bregman iterative algorithm can be used to solve the
problem (17) as [19]

xt+1 = arg min
x

(µ

2
‖y − x‖2

2 +
η

2

∥

∥zt − Ωx − bt
∥

∥

2

2

)

(18)
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3. The WSBI algorithm for recovering original signals
based on the analysis model

In the analysis model, the estimation of x can be obtained
from its noise version y by solving the optimization
problem

2

1 2
 subject to arg min e- £

x
x y xW (11)

where ε is an estimated upper bound on the noise power
v 2

2. The OBG algorithm [18] and some pursuit methods,
such as analysis iterative hard thresholding (AIHT),
analysis hard thresholding pursuit (AHTP), analysis
subspace pursuit (ASP)and analysis compressive sampling
matching pursuit (ACoSaMP), have been proposed to solve
the optimization problem [24]. Due to the use of the greedy-
like methods, the estimation of x is computationally slow
and also becomes unreliable with any increase of noise in
y. In [17], the AL method is applied to estimate the original
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signal x. Indeed, the AL method is identical to the split
Bregman iteration (SBI) algorithm [25]; however, the
simulation results demonstrate that the performance of the
AL algorithm is limited [17]. To solve the signal recovery
problem, a WSBI algorithm is proposed whereby the
weighted ℓ1 minimization would lead to a more accurate
solution than that obtained by the ℓ1 minimization [26]. To
begin with in the next section, we introduce the SBI
algorithm, while the WSBI is proposed subsequently.

3.1 Split Bregman iterative algorithm

Recovering x in the analysis model is based on the optimi‐
zation problem Eq.(11), and the constrained optimization
problem can be transformed into an unconstrained optimi‐
zation problem with the Lagrange multiplier μ. This leads
to the following optimization problem:

2

1 2
arg min

2
mæ ö

+ -ç ÷
è øx

x y xW (12)

Setting z=Ωx, Eq.(12) can be written as

2

1 2
,

 subject to =arg min
2
mæ ö

+ -ç ÷
è øz x

z y x z xW W (13)

For simplicity, we set E (z,x)= z 1 +
μ
2 y−Ωx 2

2, and as

such Eq.(13) can be transformed into the following prob‐
lem:

( )
,

,  subject to =arg min E
z x

z x z xW (14)

The Lagrange method can also be used to transform the
constrained optimization problem (14) into an unconstrain‐
ed one as follows,

( ) 2

2
,

,arg min
2

E hæ ö
+ -ç ÷

è øz x
z x z xW (15)

where η is Lagrange multiplier. In order to apply the SBI
algorithm, we introduce the Bregman distance which is
defined as [27]

( , , , ) = ( , ) ( , ) ,

,

t t t t t t t
E

t t

D E E- - -

- -

q
z

x

z x z x z x z x q z z

q x x
(16)

where (qz
t ,qx

t )=∂E (zt ,xt), ⋅  stands for the inner product
operator and t  is the number of iterations. The unconstrain‐
ed optimization problem (15) is equivalent to the following
problem:

( ) 2

2
,

, , ,arg min
2

t t t
ED hæ ö

+ -ç ÷
è ø

q

z x
z x z x z xW (17)

The variates in Eq.(17) are separable and the SBI algorithm
can be used to solve the problem (17) as [25]

221
2 2

= arg min
2 2

t t tm h+ æ ö
- + - -ç ÷

è øx
x y x z x bW (18)

21 1
1 2

= arg min
2

t t tbh+ +æ ö
+ - -ç ÷

è øz
z z z xW (19)

1 1 1=t t t t+ + ++ -b b x zW (20)

Generally, the initial values of x, z and b are equal to zero
vectors. The convergence of the SBI algorithm has been
proved in [25], and it stops when the stopping criterion, i.e.,

xt+1−xt
2

xt
2

≤ρ, is met, where ρ >0 is an arbitrary small

constant. The SBI algorithm is summarized in the Algo‐
rithm 2 table.

zt+1 = arg min
z

(

‖z‖1 +
η

2

∥

∥

∥
z − Ωxt+1 − bt

∥

∥

∥

2

2

)

(19)

bt+1 = bt + Ωxt+1 − zt+1 (20)

Generally, the initial values of x, z and b are equal to zero
vectors. The the convergence of the SBI algorithm has been
proved in [19], and it stops when the stopping criterion,

i.e.,
‖xt+1−xt‖

2

‖xt‖2
≤ ρ, is met, where ρ > 0 is an arbitrary

small constant. The SBI algorithm is summarized in the
Algorithm 2 table.

Algorithm 2: SBI

Input: Observed signals y ∈ RM, the analysis dictionary
Ω ∈ RP×M, µ, η

Output: Estimated original signal x̂ ∈ RM

Initialization: Set x, z and b equal to zero vectors
Repeat

xt+1 = arg min
x

(

µ
2 ‖y − x‖2

2 +
η
2

∥

∥zt − Ωx − bt
∥

∥

2
2

)

zt+1 = arg min
z

(

‖z‖1 +
η
2

∥

∥z − Ωxt+1 − bt
∥

∥

2

2

)

bt+1 = bt + Ωxt+1 − zt+1

until
‖xt+1−xt‖

2

‖xt‖2
≤ ρ

End

3.2. Weighted split Bregman iterative algorithm

To improve the performance of the SBI algorithm, the
ℓ1 minimization can be replaced by the weighted ℓ1

minimization based on the synthesis model [21]. In
this subsection, the WSBI algorithm has been introduced
for analysis sparse representation. The WSBI algorithm
is based on the weighted ℓ1 minimization which can
promote sparsity and improve the performance of sparse
representation. The optimization problem (12) can be
transformed to the new form as

arg min
x

(

‖Ωx‖w,1 +
µ

2
‖y − x‖2

2

)

(21)

In Eq. (21), the ‖ · ‖w,1 is the weighted ℓ1 norm, i.e.,

‖z‖w,1 = ∑
P
i=1 wi |zi|, where wi and zi are the i-th

element of the weighting coefficient vector w and signal z,
respectively. The iteration algorithm for the problem (21)
is similar to the problem (12) as

xt+1 = arg min
x

(µ

2
‖y − x‖2

2 +
η

2

∥

∥zt − Ωx − bt
∥

∥

2

2

)

(22)

zt+1 = arg min
z

(

‖z‖w,1 +
η

2

∥

∥

∥
z − Ωxt+1 − bt

∥

∥

∥

2

2

)

(23)

bt+1 = bt + Ωxt+1 − zt+1 (24)

The initial values of x, z and b are equal to zero vectors
and the weighting coefficients are equal to one. Then the

weighting coefficients are updated by wi = 2δ
δ+|zi |

, where

δ is standard deviation of z [22]. In order to solve the
least squares problem (22), the first-order derivative of cost
function in Eq. (22) is set to zero, then x is updated by

xt+1 =
(

µI + ηΩ
T

Ω

)−1 (

µy + ηΩ
T
(

zt − bt
)

)

(25)

In each iteration, z can be obtained by thresholding
(

Ωxt+1 + bt
)

as

zt+1
i =











(Ωxt+1 + bt)i −
wi
η , (Ωxt+1 + bt)i >

wi
η ;

0, −wi
η <(Ωxt+1 + bt)i <

wi
η ;

(Ωxt+1 + bt)i +
wi
η , (Ωxt+1 + bt)i < −wi

η .

(26)
Stopping criterion of the WSBI algorithm is the same as
that of the SBI algorithm. The proposed WSBI algorithm is
summarized in the Algorithm 3 table.

Algorithm 3: WSBI

Input: Observed signals y ∈ RM, the analysis dictionary
Ω ∈ RP×M, µ, η and kmax

Output: Estimated original signal x̂ ∈ RM

Initialization: Set x, z and b equal to zero vectors, the
weighting coefficients equal to one
While k < kmax do

Repeat

xt+1 = arg min
x

(

µ
2 ‖y − x‖2

2 +
η
2

∥

∥zt − Ωx − bt
∥

∥

2
2

)

zt+1 = arg min
z

(

‖z‖w,1 +
η
2

∥

∥z − Ωxt+1 − bt
∥

∥

2

2

)

bt+1 = bt + Ωxt+1 − zt+1

until
‖xt+1−xt‖

2

‖xt‖2
≤ ρ

End

wi =
2δ

δ+|zi |

k = k + 1
End

4. Computer simulations

In this section two categories of experiment results are
presented. In the first part, we present experiments on
synthetic data to show the ability of the proposed SP-ADL
algorithm to recover a dictionary that has be used to
produce the set of training data, and then consider the real
images and a piecewise-constant (PWC) image denoising
problems. In the second part, the image denoising
performances of the proposed WSBI algorithm are also
tested on the real images and a PWC image based on the
learned dictionary. In these experiments, Ω0 ∈ RP×M is
the initial dictionary in which each row is orthogonal to a
random set of M − 1 training data and is also normalized
[11].

4.1. Experiments for the SP-ADL algorithm

4.1.1. Recovering the ground-truth analysis dictionary

In the experiments, we use the same experiment protocol
as in [11]. Ω ∈ R50×25 is generated with random Gaussian
entries and the training data set consists of K = 50000
signals each co-rank l = 21 with both the noise-free setup
and a noise setup (σ = 0.04, SNR = 25dB). If min
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) < 0.01, a row ω

T
i in the true dictionary Ω is

regarded as recovered, where ω̂
T
i is an atom of the trained

dictionary. The co-rank is considered to be known. Using
the SP-ADL algorithm to recover the true dictionary Ω,
the results are presented in Fig. 1 and Fig. 2. It can be
observed from Fig. 1(a) and Fig. 2(a) that the SP-ADL
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3.2 Weighted split Bregman iterative algorithm

To improve the performance of the SBI algorithm, the ℓ1

minimization can be replaced by the weighted ℓ1 minimi‐
zation based on the synthesis model [28]. In this subsection,
the WSBI algorithm has been introduced for analysis sparse
representation. The WSBI algorithm is based on the
weighted ℓ1 minimization, which can promote sparsity and
improve the performance of sparse representation. The
optimization problem (12) can be transformed into a new
form as

2

,1 2
arg min

2
mæ ö

+ -ç ÷
è øw

x
x y xW (21)

In Eq.(21), ∥ ⋅∥w,1  is the weighted ℓ1 norm, i.e.,

z w,1 =∑i=1
P wi | zi | , where wi and zi are the i -th elements

of the weighting coefficient vector w and signal z, respec‐
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tively. The iteration algorithm for the problem (21) is
similar to the problem (12) as
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The initial values of x, z and b are equal to zero vectors and
the weighting coefficients are equal to one. Next, the
weighting coefficients are updated by wi =2δ / (δ + | zi |),
where δ is a standard deviation of z [29]. In order to solve
the least squares problem (22), the first-order derivative of
the cost function in Eq.(22) is set to zero and then x is
updated by
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In each iteration, z can be obtained by thresholding
(Ωxt+1 + bt) as
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The stopping criterion of the WSBI algorithm is the same
as that of the SBI algorithm. The proposed WSBI algorithm
is summarized in the Algorithm 3 table.

zt+1 = arg min
z

(
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η

2

∥

∥

∥
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∥

∥

∥

2

2

)

(19)

bt+1 = bt + Ωxt+1 − zt+1 (20)

Generally, the initial values of x, z and b are equal to zero
vectors. The the convergence of the SBI algorithm has been
proved in [19], and it stops when the stopping criterion,

i.e.,
‖xt+1−xt‖

2

‖xt‖2
≤ ρ, is met, where ρ > 0 is an arbitrary

small constant. The SBI algorithm is summarized in the
Algorithm 2 table.

Algorithm 2: SBI

Input: Observed signals y ∈ RM, the analysis dictionary
Ω ∈ RP×M, µ, η

Output: Estimated original signal x̂ ∈ RM

Initialization: Set x, z and b equal to zero vectors
Repeat

xt+1 = arg min
x

(

µ
2 ‖y − x‖2

2 +
η
2
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∥zt − Ωx − bt
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)

zt+1 = arg min
z

(

‖z‖1 +
η
2

∥

∥z − Ωxt+1 − bt
∥

∥

2

2

)

bt+1 = bt + Ωxt+1 − zt+1

until
‖xt+1−xt‖

2

‖xt‖2
≤ ρ

End

3.2. Weighted split Bregman iterative algorithm

To improve the performance of the SBI algorithm, the
ℓ1 minimization can be replaced by the weighted ℓ1

minimization based on the synthesis model [21]. In
this subsection, the WSBI algorithm has been introduced
for analysis sparse representation. The WSBI algorithm
is based on the weighted ℓ1 minimization which can
promote sparsity and improve the performance of sparse
representation. The optimization problem (12) can be
transformed to the new form as

arg min
x

(

‖Ωx‖w,1 +
µ

2
‖y − x‖2

2

)

(21)

In Eq. (21), the ‖ · ‖w,1 is the weighted ℓ1 norm, i.e.,

‖z‖w,1 = ∑
P
i=1 wi |zi|, where wi and zi are the i-th

element of the weighting coefficient vector w and signal z,
respectively. The iteration algorithm for the problem (21)
is similar to the problem (12) as

xt+1 = arg min
x

(µ

2
‖y − x‖2
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∥
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(22)

zt+1 = arg min
z
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η
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)

(23)

bt+1 = bt + Ωxt+1 − zt+1 (24)

The initial values of x, z and b are equal to zero vectors
and the weighting coefficients are equal to one. Then the

weighting coefficients are updated by wi = 2δ
δ+|zi |

, where

δ is standard deviation of z [22]. In order to solve the
least squares problem (22), the first-order derivative of cost
function in Eq. (22) is set to zero, then x is updated by

xt+1 =
(

µI + ηΩ
T

Ω

)−1 (

µy + ηΩ
T
(

zt − bt
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)

(25)

In each iteration, z can be obtained by thresholding
(

Ωxt+1 + bt
)

as
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(26)
Stopping criterion of the WSBI algorithm is the same as
that of the SBI algorithm. The proposed WSBI algorithm is
summarized in the Algorithm 3 table.

Algorithm 3: WSBI

Input: Observed signals y ∈ RM, the analysis dictionary
Ω ∈ RP×M, µ, η and kmax

Output: Estimated original signal x̂ ∈ RM

Initialization: Set x, z and b equal to zero vectors, the
weighting coefficients equal to one
While k < kmax do

Repeat

xt+1 = arg min
x

(

µ
2 ‖y − x‖2

2 +
η
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∥
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)

zt+1 = arg min
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bt+1 = bt + Ωxt+1 − zt+1

until
‖xt+1−xt‖

2

‖xt‖2
≤ ρ

End

wi =
2δ

δ+|zi |

k = k + 1
End

4. Computer simulations

In this section two categories of experiment results are
presented. In the first part, we present experiments on
synthetic data to show the ability of the proposed SP-ADL
algorithm to recover a dictionary that has be used to
produce the set of training data, and then consider the real
images and a piecewise-constant (PWC) image denoising
problems. In the second part, the image denoising
performances of the proposed WSBI algorithm are also
tested on the real images and a PWC image based on the
learned dictionary. In these experiments, Ω0 ∈ RP×M is
the initial dictionary in which each row is orthogonal to a
random set of M − 1 training data and is also normalized
[11].

4.1. Experiments for the SP-ADL algorithm

4.1.1. Recovering the ground-truth analysis dictionary

In the experiments, we use the same experiment protocol
as in [11]. Ω ∈ R50×25 is generated with random Gaussian
entries and the training data set consists of K = 50000
signals each co-rank l = 21 with both the noise-free setup
and a noise setup (σ = 0.04, SNR = 25dB). If min

i
(1 −

∣

∣

∣
ω̂

T
i ωj

∣

∣

∣
) < 0.01, a row ω

T
i in the true dictionary Ω is

regarded as recovered, where ω̂
T
i is an atom of the trained

dictionary. The co-rank is considered to be known. Using
the SP-ADL algorithm to recover the true dictionary Ω,
the results are presented in Fig. 1 and Fig. 2. It can be
observed from Fig. 1(a) and Fig. 2(a) that the SP-ADL
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4. Computer simulations

In this section, two categories of the experimental results
are presented. In the first  part,  we present experiments
on synthetic data to show the ability of the proposed SP-
ADL algorithm to recover a dictionary that has been used
to produce the set of training data, and we then consid‐
er the real images and a piecewise-constant (PWC) image
de-noising  problem.  In  the  second  part,  the  image  de-
noising  performances  of  the  proposed  WSBI  algorithm
are also tested on real images and a PWC image based
on  the  learned  dictionary.  In  these  experiments,
Ω0∈R P×M  is the initial dictionary in which each row is
orthogonal to a random set of M −1 training data and is
also normalized [18].

4.1 Experiments for the SP-ADL algorithm

4.1.1 Recovering the ground-truth analysis dictionary

In the experiments, we use the same experiment protocol
as in [18]. Ω∈R 50×25 is generated with random Gaussian
entries and the training dataset consists of K =50000 signals
for each co-rank l =21 with both a noise-free setup and a
noisy setup (σ =0.04,SNR =25 dB). If min

i
(1− |ω̂ i

Tω j |)<0.01,

a row ωi
T  in the true dictionary Ω is regarded as recovered,

where ω̂ i
T  is an atom of the trained dictionary. The co-rank

is considered to be known. Using the SP-ADL algorithm to
recover the true dictionary Ω, the results are presented in
Fig. 1 and Fig. 2. It can be observed from Fig. 1(a) and Fig.
2(a) that the SP-ADL algorithm is convergent after 300
iterations, and 90% of the rows in the true dictionary Ω are
reconstructed for the noise-free setup and 78% for the noisy
one. Compared with the state-of-art algorithms, i.e., the
AK-SVD, NAAOLA and LOST algorithms, their parame‐
ters are set the same as those in the original works, and it
can be seen from Fig. 1(b) -(d) that these algorithms are
convergent after 100, 200 and 300 iterations for the AK-
SVD, NAAOLA and LOST algorithms, respectively1.
Therefore, these algorithms have different iteration
numbers. After 100, 200 and 300 iterations for the AK-SVD,
NAAOLA and LOST algorithms, it is observed from Fig.
2(b)-(d) that 92%, 40% and 66% of the rows in the true
dictionary Ω are recovered for the noise-free setup and 84%,
2% and 64% for the noisy one, respectively. The experi‐
mental results demonstrate that the recovery percentage of
the SP-ADL algorithm is relatively higher than those of the
NAAOLA and LOST algorithms but is slightly lower than
that of the AK-SVD algorithm. However, the running time
in each iteration of the AK-SVD algorithm is significantly
higher than that of the SP-ADL algorithm. The total
runtime of our algorithm for 300 iterations is about 3,297
and 3,276 seconds for the noise-free and the noisy cases
respectively. In contrast, the AK-SVD algorithm takes

1 The terms used to measure the convergence of these algorithms are slightly different in these original works.
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about 30,030 and 30,380 seconds respectively for only 100
iterations (Computer OS: Windows XP, CPU: Pentium(R)
Dual-Core T4300 @ 2.10 GHz; RAM 1.96 GB). The main
reason is that X does not need to be estimated for our
algorithm in each iteration, as opposed to the AK-SVD
algorithm.

algorithm is convergent after 300 iterations, and 90% of
the rows in the true dictionary Ω are reconstructed for the
noise-free setup and 78% for the noisy one. Compared
with the the state-of-art algorithms, i.e., the AK-SVD,
NAAOLA and LOST algorithms, their parameters are set
the same as these in the original works, it can be seen from
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Figure 1. The convergent curves of the ADL algorithms.

4.1.2. Image deoising

Using the test set consisting of four images commonly
used in denoising (Lena, House, Peppers and PWC), we
compare the image denoising performance of the SP-ADL
algorithm with these of the AK-SVD, NAAOLA and LOST
algorithms. In this experiment, the denoising performance

1 The terms used to measure the convergence of these algorithms are
slightly different in these original works.
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Figure 2. The recovery percentage curves of the ADL algorithms.

is evaluated by the peak signal to noise ratio (PSNR)

defined as PSNR = 10log10

(

2552KM

∑
K
i=1 ∑

M
j=1 (x̂ij−xij)

2

)

(dB),

where xij and x̂ij are the ijth pixel value in noisy and
denoising images respectively.

In this experiment, a training set of 20,000 image
patches each of 7 × 7 pixels, obtained from four images
contaminated by noise with different noise level σ, varying
from 5 to 20, is employed for ADL by using the SP-ADL,
AK-SVD, NAAOLA and LOST algorithms respectively.
The dictionary of size 63 × 49 is learned from the training
data and the co-rank is assumed as l = 7. The examples of
the learned analysis dictionaries are shown in Fig.3. Based
on the learned dictionaries, the OBG algorithm is utilized
to recover the images from their noise versions. The
parameters of the OBG algorithm are set the same as these
in [11]. In the NAAOLA algorithm, the parameters are
set the same as the original works except that λ=3 (σ=5),
λ=1 (σ=10, 15) and λ=0.5 (σ=20), and α=10−11, λ =
η = 105 and q = 20 in the LOST algorithm. The
results, averaged over 5 trials, are presented in Table 1. It
can be observed from Table 1 that the SP-ADL algorithm
outperforms the NAAOLA and LOST algorithms. The
denoising performance of the SP-ADL algorithm is better
than the AK-SVD algorithm if the noise leave is increased.

4.1.3. Compare with the synthesis model

In this experiment, the K-SVD algorithm, which is a
state-of-art synthesis dictionary learning algorithm, is
applied for image denoising. The parameters of the K-SVD
algorithm are set the same as those in [23]. The synthesis
dictionary D ∈ R49×256 is learned from the same training
data used in analysis dictionary learning. The examples
of the learned synthesis dictionaries are shown in Fig. 4.
Employing the learned dictionary D, the original images
are reconstructed by using the OMP algorithm [23]. The
results, averaged over 5 trials, are presented in Table 1,
from which we can see the image denoising performance
of the K-SVD algorithm is better than that of the analysis
methods. When the noisy level σ = 5, however, the
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algorithm is convergent after 300 iterations, and 90% of
the rows in the true dictionary Ω are reconstructed for the
noise-free setup and 78% for the noisy one. Compared
with the the state-of-art algorithms, i.e., the AK-SVD,
NAAOLA and LOST algorithms, their parameters are set
the same as these in the original works, it can be seen from
Fig. 1(b)-(d) that these algorithms are convergent after
100, 2000, and 300 iterations for the AK-SVD, NAAOLA
and LOST algorithms, respectively1. Therefore, these
algorithms have different iteration numbers. After 100,
2000, and 300 iterations for the AK-SVD, NAAOLA and
LOST algorithms, it is observed from Fig. 2(b)-(d) that
92%, 40% and 66% of the rows in the true dictionary Ω

are recovered for the noise-free setup and 84%, 2% and
64% for the noisy one, respectively. The experiment results
demonstrate that the recovery percentage of the SP-ADL
algorithm is relatively higher than these of the NAAOLA
and the LOST algorithms but is little lower than that of
the AK-SVD algorithm. However, the running time in
each iteration of the AK-SVD algorithm is significantly
higher than that of the SP-ADL algorithm. The total
runtime of our algorithm for 300 iterations is about 3297
and 3276 seconds for the noise-free and the noise cases,
respectively. In contrast, the AK-SVD algorithm takes
about 30030 and 30380 seconds respectively for only 100
iterations (Computer OS: Windows XP, CPU: Pentium(R)
Dual-Core T4300 @ 2.10GHz; RAM 1.96GB). The main
reason is that X does not need to be estimated for our
algorithm in each iteration, as opposed to the AK-SVD
algorithm.
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4.1.2. Image deoising

Using the test set consisting of four images commonly
used in denoising (Lena, House, Peppers and PWC), we
compare the image denoising performance of the SP-ADL
algorithm with these of the AK-SVD, NAAOLA and LOST
algorithms. In this experiment, the denoising performance

1 The terms used to measure the convergence of these algorithms are
slightly different in these original works.
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Figure 2. The recovery percentage curves of the ADL algorithms.

is evaluated by the peak signal to noise ratio (PSNR)

defined as PSNR = 10log10

(

2552KM

∑
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j=1 (x̂ij−xij)
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(dB),

where xij and x̂ij are the ijth pixel value in noisy and
denoising images respectively.

In this experiment, a training set of 20,000 image
patches each of 7 × 7 pixels, obtained from four images
contaminated by noise with different noise level σ, varying
from 5 to 20, is employed for ADL by using the SP-ADL,
AK-SVD, NAAOLA and LOST algorithms respectively.
The dictionary of size 63 × 49 is learned from the training
data and the co-rank is assumed as l = 7. The examples of
the learned analysis dictionaries are shown in Fig.3. Based
on the learned dictionaries, the OBG algorithm is utilized
to recover the images from their noise versions. The
parameters of the OBG algorithm are set the same as these
in [11]. In the NAAOLA algorithm, the parameters are
set the same as the original works except that λ=3 (σ=5),
λ=1 (σ=10, 15) and λ=0.5 (σ=20), and α=10−11, λ =
η = 105 and q = 20 in the LOST algorithm. The
results, averaged over 5 trials, are presented in Table 1. It
can be observed from Table 1 that the SP-ADL algorithm
outperforms the NAAOLA and LOST algorithms. The
denoising performance of the SP-ADL algorithm is better
than the AK-SVD algorithm if the noise leave is increased.

4.1.3. Compare with the synthesis model

In this experiment, the K-SVD algorithm, which is a
state-of-art synthesis dictionary learning algorithm, is
applied for image denoising. The parameters of the K-SVD
algorithm are set the same as those in [23]. The synthesis
dictionary D ∈ R49×256 is learned from the same training
data used in analysis dictionary learning. The examples
of the learned synthesis dictionaries are shown in Fig. 4.
Employing the learned dictionary D, the original images
are reconstructed by using the OMP algorithm [23]. The
results, averaged over 5 trials, are presented in Table 1,
from which we can see the image denoising performance
of the K-SVD algorithm is better than that of the analysis
methods. When the noisy level σ = 5, however, the
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4.1.2 Image de-noising

Using a test set consisting of four images commonly used
in de-noising (Lena, House, Peppers and PWC), we
compare the image de-noising performance of the SP-ADL

algorithm with those of the AK-SVD, NAAOLA and LOST
algorithms. In this experiment, the de-noising performance
is evaluated by the peak signal-to-noise ratio (PSNR),

defined as PSNR=10log10( 2552KM
∑i=1

K ∑ j=1
M (x̂ ij − xij)2 ) (dB), where xij

and x̂ ij are the ij th pixel values in the noisy and de-noising
images respectively.

In this experiment, a training set of 20,000 image patches
each of 7×7 pixels, obtained from four images contaminat‐
ed by noise with different noise levels σ, varying from 5 to
20, is employed for ADL by using the SP-ADL, AK-SVD,
NAAOLA and LOST algorithms, respectively. The diction‐
ary of size 63×49 is learned from the training data and the
co-rank is assumed as l =7. The examples of the learned
analysis dictionaries are shown in Fig.3. Based on the
learned dictionaries, the OBG algorithm is utilized to
recover the images from their noise versions. The parame‐
ters of the OBG algorithm are set the same as those in [18].
In the NAAOLA algorithm, the parameters are set the same
as the original works except that λ=3(σ=5), λ=1(σ=10,15) and
λ=0.5(σ=20), and α=10−11, λ =η =105 and q =20 in the LOST
algorithm. The results, averaged over five trials, are
presented in Table 1. It can be observed from Table 1 that
the SP-ADL algorithm outperforms the NAAOLA and
LOST algorithms. The de-noising performance of the SP-
ADL algorithm is better than the AK-SVD algorithm if the
noise level is increased.

(a) Lena (b) House (c) Peppers (d) PWC

(e) Lena (f) House (g) Peppers (h) PWC

(i) Lena (j) House (k) Peppers (l) PWC

(m) Lena (n) House (o) Peppers (p) PWC

Figure 3. The learned analysis dictionaries of size 63× 49 by using
the SP-ADL, AK-SVD, NAAOLA and LOST algorithms on the four

images with noise level δ = 5. The SP-ADL algorithms’ results show

on the top row, followed by AK-SVD, NAAOLA and LOST algorithms.

image denoising performance of the SP-ADL and AK-SVD
algorithms outperform the the K-SVD algorithm for the
images of Peppers and PWC. The results show that the
analysis method provides a better modeling platform as
the synthesis method.

(a) Lena (b) House (c) Peppers (d) PWC

Figure 4. The learned synthesis dictionaries of size 49 × 256 by

using the K-SVD algorithm on the four images with noise level δ =
5.

4.2. Experiments for the WSBI algorithm

We employ the SP-ADL algorithm to learn the analysis
dictionary, and then the learned dictionaries are utilized
to recover the signals by using the WSBI, SBI and OBG
algorithms. In the WSBI algorithm, the parameters are set
as η = 0.1, ρ = 10−4, kmax = 2 and µ = 0.3(σ = 5), 0.1(σ =
10), 0.05(σ = 15), 0.03(σ = 20). The parameters of the SBI
algorithm are the same as these in the WSBI algorithm.
In the OBG algorithm, the parameters are set as these
originally suggested in [11]. The results, averaged over 5
trials, are presented in Table 2 and Table 3.

From Table 2, it can be seen that the image denoising
performance of the WSBI algorithm is better than that of

Table 1. Image denoising results (PSNR dB)

σ Noisy Method Lena House Peppers PWC

SP-ADL 38.39 38.87 37.80 44.45
AK-SVD 38.45 39.17 37.97 45.42

5 34.15 NAAOLA 37.36 37.04 35.93 37.28
LOST 38.16 38.50 37.47 42.42
K-SVD 38.63 39.60 37.75 43.63

SP-ADL 35.07 35.19 33.87 37.61
AK-SVD 34.84 35.34 33.83 38.40

10 28.13 NAAOLA 32.73 32.61 31.12 31.61
LOST 34.75 34.77 33.61 36.43
K-SVD 35.53 36.08 34.83 39.26

SP-ADL 33.20 33.16 31.65 33.53
AK-SVD 32.57 32.98 31.28 32.23

15 24.61 NAAOLA 30.87 30.82 29.22 29.48
LOST 32.88 32.82 31.38 32.58
K-SVD 33.66 34.38 33.31 35.59

SP-ADL 31.90 31.88 30.05 30.53
AK-SVD 31.42 31.53 29.77 29.59

20 22.11 NAAOLA 29.65 29.22 27.40 27.24
LOST 31.64 31.47 29.84 29.93
K-SVD 32.29 33.14 32.20 32.87

Table 2. Image denoising results (PSNR dB)

σ Noisy Method Lena House Peppers PWC

WSBI 38.12 38.78 37.35 42.28
5 34.15 SBI 37.66 38.28 36.95 40.38

OBG 38.39 38.87 37.80 44.45

WSBI 34.89 35.24 33.60 36.49
10 28.13 SBI 34.46 34.83 33.25 35.04

OBG 35.08 35.18 33.87 37.61

WSBI 33.13 33.50 31.54 32.75
15 24.61 SBI 32.94 33.15 31.26 31.46

OBG 33.20 33.16 31.65 33.53

WSBI 32.00 32.18 30.13 29.57
20 22.11 SBI 31.82 31.90 29.91 28.75

OBG 31.90 31.88 30.05 30.53

Table 3. Image denoising results (Time sec.)

σ Noisy Method Lena House Peppers PWC

WSBI 688 126 157 11
5 34.15 SBI 48 9 10 5

OBG 3374 727 847 616

WSBI 491 93 119 18
10 28.13 SBI 45 8 9 6

OBG 2500 536 712 583

WSBI 354 69 107 94
15 24.61 SBI 40 7 10 7

OBG 2022 442 603 526

WSBI 325 61 93 96
20 22.11 SBI 37 7 10 9

OBG 1680 378 526 525

the SBI algorithm. The simulation results demonstrate
that the image denoising performance can be improved
by using the weighted ℓ1 minimization. From Table 2,
The experimental results show that the image denoising
performance of the WSBI algorithm is similar to that of the
OBG algorithm. However, the running time of the WSBI
algorithm is far less than that of the OBG algorithm as
shown in Table 3.
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Figure 3. The learned analysis dictionaries of size 63×49 using the SP-ADL,
AK-SVD, NAAOLA and LOST algorithms on the four images with a noise
level δ=5. The SP-ADL algorithms’ results are shown on the top row followed
by the AK-SVD, NAAOLA and LOST algorithms.
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4.1.3 Comparison with the synthesis model

In this experiment, the K-SVD algorithm - which is a state-
of-art synthesis dictionary learning algorithm - is applied
for image de-noising. The parameters of the K-SVD
algorithm are set the same as those in [30]. The synthesis
dictionary D∈R 49×256 is learned from the same training
data used in ADL. The examples of the learned synthesis
dictionaries are shown in Fig. 4. Employing the learned
dictionary D, the original images are reconstructed using
the OMP algorithm [30]. The results, averaged over five
trials, are presented in Table 1, from which we can see that
the image de-noising performance of the K-SVD algorithm
is better than that of the analysis methods. When the noise
level σ =5, however, the image de-noising performance of
the SP-ADL and AK-SVD algorithms outperforms the K-
SVD algorithm for the images of Peppers and the PWC. The
results show that the analysis method provides a better
modelling platform than the synthesis method.
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(i) Lena (j) House (k) Peppers (l) PWC
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Figure 3. The learned analysis dictionaries of size 63× 49 by using
the SP-ADL, AK-SVD, NAAOLA and LOST algorithms on the four

images with noise level δ = 5. The SP-ADL algorithms’ results show

on the top row, followed by AK-SVD, NAAOLA and LOST algorithms.

image denoising performance of the SP-ADL and AK-SVD
algorithms outperform the the K-SVD algorithm for the
images of Peppers and PWC. The results show that the
analysis method provides a better modeling platform as
the synthesis method.
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Figure 4. The learned synthesis dictionaries of size 49 × 256 by

using the K-SVD algorithm on the four images with noise level δ =
5.

4.2. Experiments for the WSBI algorithm

We employ the SP-ADL algorithm to learn the analysis
dictionary, and then the learned dictionaries are utilized
to recover the signals by using the WSBI, SBI and OBG
algorithms. In the WSBI algorithm, the parameters are set
as η = 0.1, ρ = 10−4, kmax = 2 and µ = 0.3(σ = 5), 0.1(σ =
10), 0.05(σ = 15), 0.03(σ = 20). The parameters of the SBI
algorithm are the same as these in the WSBI algorithm.
In the OBG algorithm, the parameters are set as these
originally suggested in [11]. The results, averaged over 5
trials, are presented in Table 2 and Table 3.

From Table 2, it can be seen that the image denoising
performance of the WSBI algorithm is better than that of

Table 1. Image denoising results (PSNR dB)

σ Noisy Method Lena House Peppers PWC

SP-ADL 38.39 38.87 37.80 44.45
AK-SVD 38.45 39.17 37.97 45.42

5 34.15 NAAOLA 37.36 37.04 35.93 37.28
LOST 38.16 38.50 37.47 42.42
K-SVD 38.63 39.60 37.75 43.63

SP-ADL 35.07 35.19 33.87 37.61
AK-SVD 34.84 35.34 33.83 38.40

10 28.13 NAAOLA 32.73 32.61 31.12 31.61
LOST 34.75 34.77 33.61 36.43
K-SVD 35.53 36.08 34.83 39.26

SP-ADL 33.20 33.16 31.65 33.53
AK-SVD 32.57 32.98 31.28 32.23

15 24.61 NAAOLA 30.87 30.82 29.22 29.48
LOST 32.88 32.82 31.38 32.58
K-SVD 33.66 34.38 33.31 35.59

SP-ADL 31.90 31.88 30.05 30.53
AK-SVD 31.42 31.53 29.77 29.59

20 22.11 NAAOLA 29.65 29.22 27.40 27.24
LOST 31.64 31.47 29.84 29.93
K-SVD 32.29 33.14 32.20 32.87

Table 2. Image denoising results (PSNR dB)

σ Noisy Method Lena House Peppers PWC

WSBI 38.12 38.78 37.35 42.28
5 34.15 SBI 37.66 38.28 36.95 40.38

OBG 38.39 38.87 37.80 44.45

WSBI 34.89 35.24 33.60 36.49
10 28.13 SBI 34.46 34.83 33.25 35.04

OBG 35.08 35.18 33.87 37.61

WSBI 33.13 33.50 31.54 32.75
15 24.61 SBI 32.94 33.15 31.26 31.46

OBG 33.20 33.16 31.65 33.53

WSBI 32.00 32.18 30.13 29.57
20 22.11 SBI 31.82 31.90 29.91 28.75

OBG 31.90 31.88 30.05 30.53

Table 3. Image denoising results (Time sec.)

σ Noisy Method Lena House Peppers PWC

WSBI 688 126 157 11
5 34.15 SBI 48 9 10 5

OBG 3374 727 847 616

WSBI 491 93 119 18
10 28.13 SBI 45 8 9 6

OBG 2500 536 712 583

WSBI 354 69 107 94
15 24.61 SBI 40 7 10 7

OBG 2022 442 603 526

WSBI 325 61 93 96
20 22.11 SBI 37 7 10 9

OBG 1680 378 526 525

the SBI algorithm. The simulation results demonstrate
that the image denoising performance can be improved
by using the weighted ℓ1 minimization. From Table 2,
The experimental results show that the image denoising
performance of the WSBI algorithm is similar to that of the
OBG algorithm. However, the running time of the WSBI
algorithm is far less than that of the OBG algorithm as
shown in Table 3.
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Figure 4. The learned synthesis dictionaries of size 49×256 using the K-SVD
algorithm on the four images with the noise level δ=5

σ Noisy Method Lena House Peppers PWC

SP-ADL 38.39 38.87 37.80 44.45

AK-SVD 38.45 39.17 37.97 45.42

5 34.15 NAAOLA 37.36 37.04 35.93 37.28

LOST 38.16 38.50 37.47 42.42

K-SVD 38.63 39.60 37.75 43.63

SP-ADL 35.07 35.19 33.87 37.61

AK-SVD 34.84 35.34 33.83 38.40

10 28.13 NAAOLA 32.73 32.61 31.12 31.61

LOST 34.75 34.77 33.61 36.43

K-SVD 35.53 36.08 34.83 39.26

SP-ADL 33.20 33.16 31.65 33.53

AK-SVD 32.57 32.98 31.28 32.23

15 24.61 NAAOLA 30.87 30.82 29.22 29.48

LOST 32.88 32.82 31.38 32.58

K-SVD 33.66 34.38 33.31 35.59

SP-ADL 31.90 31.88 30.05 30.53

AK-SVD 31.42 31.53 29.77 29.59

20 22.11 NAAOLA 29.65 29.22 27.40 27.24

LOST 31.64 31.47 29.84 29.93

K-SVD 32.29 33.14 32.20 32.87

Table 1. Image de-noising results (PSNR dB)

4.2 Experiments for the WSBI algorithm

We employ the SP-ADL algorithm to learn the analysis
dictionary and then the learned dictionaries are utilized to
recover the signals by using the WSBI, SBI and OBG
algorithms. In the WSBI algorithm, the parameters are set
as η =0.1, ρ =10−4, kmax =2 and μ =0.3(σ =5),. 0.1(σ =10),
0.05(σ =15),0.03(σ =20) The parameters of the SBI algorithm
are the same as those in the WSBI algorithm. In the OBG
algorithm, the parameters are set as those originally
suggested in [18]. The results, averaged over five trials, are
presented in Table 2 and Table 3.

σ Noisy Method Lena House Peppers PWC

WSBI 38.12 38.78 37.35 42.28

5 34.15 SBI 37.66 38.28 36.95 40.38

OBG 38.39 38.87 37.80 44.45

WSBI 34.89 35.24 33.60 36.49

10 28.13 SBI 34.46 34.83 33.25 35.04

OBG 35.08 35.18 33.87 37.61

WSBI 33.13 33.50 31.54 32.75

15 24.61 SBI 32.94 33.15 31.26 31.46

OBG 33.20 33.16 31.65 33.53

WSBI 32.00 32.18 30.13 29.57

20 22.11 SBI 31.82 31.90 29.91 28.75

OBG 31.90 31.88 30.05 30.53

Table 2. Image de-noising results (PSNR dB)

σ Noisy Method Lena House Peppers PWC

WSBI 688 126 157 11

5 34.15 SBI 48 9 10 5

OBG 3374 727 847 616

WSBI 491 93 119 18

10 28.13 SBI 45 8 9 6

OBG 2500 536 712 583

WSBI 354 69 107 94

15 24.61 SBI 40 7 10 7

OBG 2022 442 603 526

WSBI 325 61 93 96

20 22.11 SBI 37 7 10 9

OBG 1680 378 526 525

Table 3. Image de-noising results (Time sec.)

From Table 2, it can be seen that the image de-noising
performance of the WSBI algorithm is better than that of
the SBI algorithm. The simulation results demonstrate that
the image de-noising performance can be improved using
weighted ℓ1 minimization. The WSBI algorithm is equiva‐
lent to the SBI algorithm when the weights are one, so the
first outer iteration of the WSBI algorithm performs the
same as the SBI algorithm. As such, WSBI algorithm is
inevitably slower than the standard SBI algorithm, as
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shown in Table 3. From Table 2, the experimental results
show that the image de-noising performance of the WSBI
algorithm is similar to that of the OBG algorithm. However,
the running time of the WSBI algorithm is far less than that
of the OBG algorithm, as shown in Table 3.

5. Conclusion

For the analysis sparse representation model, we present a
new algorithm for ADL and for recovering the original
signal. The analysis dictionary is learned directly from the
observed noisy data using the SP-ADL algorithm, and then
the learned dictionary is utilized to recover the original
signal using the WSBI algorithm where the ℓ1 minimization
is replaced by the weighted ℓ1 minimization. As with the
synthesis sparse representation, the analysis sparse
representation model can also be applied in wide fields,
especially face, gesture and action recognition in robotics.

6. Acknowledgements

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61162014, 61210306074)
and the Natural Science Foundation of Jiangxi (Grant No.
20122BAB201025, 20151BAB207005).

7. References

[1] M Aharon, M Elad, and A Bruckstein. K-svd: An
algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on
Signal Processing, 54(11):4311–4322, 2006.

[2] Donoho and L David. Compressed sensing. IEEE
Transactions on Information Theory, 52(4):1289–1306,
2006.

[3] J Liang, M Zhang, X Zeng, and G Yu. Distributed
dictionary learning for sparse representation in
sensor networks. IEEE Transactions on Image
Processing, 23(6):2528 – 2541, 2014.

[4] B Argall, S Chernova, M Veloso, and B Browning.
A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469–483, 2009.

[5] D Zhong, P Zhu, J Han, and S Li. An improved
robust sparse coding for face recognition with
disguise. International Journal of Advanced Robotic
Systems, 9:126, 2012.

[6] A Boyali and N Hashimoto. Block-sparse represen‐
tation classification based gesture recognition
approach for a robotic wheelchair. In Intelligent
Vehicles Symposium Proceedings, IEEE, pages 2209–
2215, September 2014.

[7] R Sean, G Ilaria, M Giorgio, and O Francesca. Keep
it simple and sparse: real-time action recognition.
The Journal of Machine Learning Research, 14(1):2617–
2640, 2013.

[8] Z Kira. Transfer of sparse coding representations
and object classifiers across heterogeneous robots.

In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1133–1138, June 2014.

[9] K Engan, S Aase, and J Husoy. Method of optimal
directions for frame design. In IEEE International
Conference on Acoustics, Speech, and Signal Process‐
ing, volume 5, pages 2443–2446, 1999.

[10] K Skretting and K Engan. Recursive least squares
dictionary learning algorithm. IEEE Transactions on
Signal Processing, 58(4):2121–2130, 2010.

[11] W Dai, T Xu, and W Wang. Simultaneous codeword
optimization (simco) for dictionary update and
learning. IEEE Transactions on Signal Processing,
60(12):6340–6353, 2011.

[12] M Yaghoobi, T Blumensath, and M Davies. Diction‐
ary learning for sparse approximations with the
majorization method. IEEE Transactions on Signal
Processing, 57(6):2178–2191, 2009.

[13] M Elad, P Milanfar, and R Rubinstein. Analysis
versus synthesis in signal priors. Inverse problems,
23(3):947–968, 2007.

[14] S Nam, M Davies, M Elad, and R Gribonval.
Cosparse analysis modeling - uniqueness and
algorithms. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 5804–
5807, 2011.

[15] B Ophir, M Elad, N Bertin, and M Plumbley.
Sequential minimal eigenvalues: An approach to
analysis dictionary learning. In European Signal
Processing Conference, pages 1465–1469, 2011.

[16] M Yaghoobi, S Nam, R Gribonval, and M Davies.
Noise aware analysis operator learning for approx‐
imately cosparse signals. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
pages 5409–5412, 2012.

[17] M Yaghoobi, S Nam, R Gribonval, and M Davies.
Constrained overcomplete analysis operator
learning for cosparse signal modelling. IEEE
Transactions on Signal Processing, 61(9):2341–2355,
2013.

[18] R Rubinstein, T Peleg, and M Elad. Analysis k-svd:
A dictionary-learning algorithm for the analysis
sparse model. IEEE Transactions on Signal Process‐
ing, 61(3):661–677, 2013.

[19] S Ravishankar and Y Bresler. Learning sparsifying
transforms. IEEE Transactions on Signal Processing,
61(5):1072–1086, 2013.

[20] S Ravishankar and Y Bresler. Learning overcom‐
plete sparsifying transforms for signal processing.
In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3088–3092, 2013.

[21] Y Zhang, H Wang, W Wang, and S Sanei. K-plane
clustering algorithm for analysis dictionary learn‐
ing. In IEEE International Workshop on Machine
Learning for Signal Processing, pages 1–4, 2013.

8 Int J Adv Robot Syst, 2015, 12:149 | doi: 10.5772/61543



[22] Y Zhang, H Wang, T Yu, and W Wang. Subset
pursuit for analysis dictionary learning. In European
Signal Processing Conference, pages 1–5, 2013.

[23] J Tropp. Just relax: convex programming methods
for identifying sparse signals in noise. IEEE Trans‐
actions on Information Theory, 52(3):1030–1051, 2006.

[24] R Giryes, S Nam, M Elad, R Gribonval, and M
Davies. Greedy-like algorithms for the cosparse
analysis model. Linear Algebra and its Applications,
441:22–60, 2013.

[25] J Cai, S Osher, and Z Shen. Split bregman methods
and frame based image restoration. Multiscale
modeling & simulation, 8(2):337–369, 2009.

[26] E Candes, M Wakin, and S Boyd. Enhancing
sparsity by reweighted l1 minimization. Journal of
Fourier Analysis and Applications, 14(5-6):877–905,
2008.

[27] W Yin, S Osher, D Goldfarb, and J Darbon. Bregman
iterative algorithms for l1-minimization with
applications to compressed sensing. SIAM Journal
on Imaging Sciences, 1(1):143–168, 2008.

[28] Y Zhao and D Li. Reweighted l1-minimization for
sparse solutions to underdetermined linear sys‐
tems. SIAM Journal on Optimization, 22(3):1065–
1088, 2012.

[29] S Arberet, P Vandergheynst, R Carrillo, J Thiran,
and Y Wiaux. Sparse reverberant audio source
separation via reweighted analysis. IEEE Transac‐
tions on Audio, Speech, and Language Processing, 21(7):
1391–1402, 2013.

[30] M Elad and M Aharon. Image denoising via sparse
and redundant representations over learned
dictionaries. IE EE Transactions on Image Processing,
15(12):3736–3745, 2006.

9Ye Zhang, Tenglong Yu and Wenquan Zhang:
Analysis Sparse Representation Based on Subset Pursuit and Weighted Split Bregman Iteration Algorithm


