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Abstract: In industrial hydrolysis processes the lignocellulose-degrading enzymes may have a potential application as an
alternative to chemical treatments because they produce high specificity, mild reaction conditions, no toxic chemical
hydrolysis inhibitors, and no loss of substrate due to chemical modifications. The amounts of reducing sugars released
from the degradation of wheat straw by the action of endoxylanase, peroxidase, B-xylosidase, and a-L-
arabinofuranosidase, which were produced by T. fusca BD25, were equal to 3.0%, 0.2%, 0.3%, and 0.2% hydrolysis (as
xylose equivalents) of the substrate used, respectively, after 10 h of incubation. In the same conditions, the hydrolysis rate
of endoglucanase, which was a commercial preparation from Trichoderma viride was 4.9%. However, in order, addition
of peroxidase, endoglucanase, p-xylosidase, and a-L-arabinofuranosidase preparations to the endoxylanase preparation
significantly enhanced the reducing sugar yields (1.33-, 1.52-, 1.61-, and 1.71-fold, respectively) and the hydrolysis of
wheat straw (4.3%, 12.3%, 13.5%, and 14.7%, respectively). The concentrations of phenolic-compounds as lignin-
equivalents released from wheat straw by the actions of lignocellulose-degrading enzyme preparations either acting alone
or in combinations ranged from 2.5 to 129.3 ug mL " (as p-coumaric acid equivalents). The combination of purified
lignocellulose-degrading enzymes significantly increased the degradation of straw 1.33- to 1.71-fold. The results highlight
the role of lignocellulose-degrading enzymes in the degradation of wheat straw and suggest that the use of enzyme
cocktails may significantly improve the hydrolysis of wheat straw in industrial processes.
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Thermomonospora fusca BD25 tarafindan iiretilen saflagtirilmis
lignoseliiloz-pargalayici enzimlerin bugday samanai iizerindeki
kooperatif etkileri ve parcalanma iiriinlerinin analizi

Ozet: Endiistriyel hidroliz proseslerinde kimyasal muamelelere alternatif olarak, yiiksek dzgiilliikleri, ilimli reaksiyon
kosullari, toksik kimyasal inhibitorlerin olusmamas: ve kimyasal degisimler nedeniyle substrat kayiplarina yol
a¢gmamalarindan dolayi, lignoseliiloz-pargalayici enzimlerin bir uygulama potansiyeli bulunabilir. T. fusca BD25
tarafindan tiretilen endoksilanaz, peroksidaz, 3-ksilozidaz ve a-L-arabinofuranozidaz enzimlerinin bugday samanu ile 10
saatlik inkiibasyonlar1 sonucunda serbest biraktiklari indirgenmis sekerlerin (ksiloz esdegeri olarak) miktari, kullanilan
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substratin, sirastyla, % 3,0; % 0,2; % 0,3 ve % 0,2 hidrolizine esdegerdir. Trichoderma viride'nin ticari enzim preparati olan
endoglukanaz enziminin ayni kosullardaki hidroliz oran1 ise % 4,9dur. Buna ragmen, endoksilanaz preparasyonuna
peroksidaz, endoglukanaz, B-ksilozidaz ve a-L-arabinofuranozidaz enzimlerinin ilave edilmesi ise indirgenmis
sekerlerden olugan triini (sirasiyla, 1,33; 1,52; 1,61 ve 1,71 kat) ve bugday samaninin hidrolizi (sirasiyla, % 4,3; % 12,3;
% 13,5 ve % 14,7) belirgin bir sekilde artirmistir. Lignoseliiloz-ayristirici enzimlerin tek baglarina veya bir kombinasyon
halinde, lignin-esdegeri olarak bugday samanindan serbest biraktiklar: fenolik-bilesiklerin (p-koumarik asit esdegeri
olarak) derisimleri ise 2,5 ile 129,3 ug mL " arasinda degismistir. Saflagtiriimus olan lignoseliiloz-ayristirici enzimlerin
olusturdugu kombinasyon ise bugday samaninin par¢alanmasini (ayristirilmasini) 1,33 ile 1,71-kat arasinda belirgin bir
sekilde degistirmistir. Bu sonuglar ise bugday samaninin ayristirilmasinda, lignoselilloz-ayristirici enzimlerin roliinit
ortaya ¢ikarmakta ve endiistriyel proseslerde enzim-kokteylleri kullanilarak bugday samani hidrolizinin belirgin bir

sekilde artirilabilecegini gostermektedir.

Anahtar sozciikler: Ayristirma, endoksilanaz, lignoseliiloz, peroksidaz, kagit hamuru, saman

Introduction

Plant cell walls are the major reservoir of fixed
carbon sources in nature. They have 3 major
polymers: cellulose (30%-45% w/w), hemicellulose
(25%-45% w/w), and lignin (15%-30% w/w) (1).
Lignin is composed of phenylpropane monomeric
units interconnected by a variety of carbon-carbon
and ether linkages. These phenolic compounds may
also be involved in cross-linking xylan molecules and
in linking xylan to other polysaccharides (2,3).
Therefore, lignin is the major factor responsible for
limiting the rates of lignocellulose degradation.
Nevertheless, in natural environments, lignin can be
degraded by means of extracellular enzymes
collectively called ligninases. Ligninases include lignin
peroxidases (EC 1.11.1.14), manganese peroxidases
(EC 1.11.1.13), phenol oxidases, H,O,-producing
enzymes, laccases, and [3-etherases (4-6).

A concerted action of ligninases with cellulose-
degrading enzymes and hemicellulose-degrading
enzymes systems complete the degradation of
lignocellulose. The “lignin barrier” can be disrupted
by the activity of lignin peroxidases, rendering the
structure more susceptible to hemicellulose and
cellulose attack. When xylan was selectively removed
from the delignified fiber, the cellulose was more
accessible to cellulolytic hydrolysis. However, similar
pre-treatments with endoglucanases do not render the
fiber ~more accessible to xylanases (7).
Depolymerization of xylan is largely achieved through
the action of endoxylanases, but these enzymes are
often prevented from cleaving the xylan backbone due
to the presence of substituents. Therefore, in many
cases these must be removed before extensive
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degradation of the xylan backbone can occur. The
debranching enzymes include acetylesterases, o.-L-
arabinofuranosidases, and a-glucuronidases.

The enzymes involved in the degradation of
lignocellulose, such as endoxylanases, peroxidases,
and endoglucanases, may also have applications in
biotechnology as alternatives to chemical treatments
because of the following advantages: high specificity,
mild reaction conditions, no toxic chemical hydrolysis
inhibitors (e.g. vanillin and furaldehyde), and no loss
of substrate due to chemical modifications (8). The
products of such enzymatic hydrolysis may be
converted subsequently into liquid fuels, single-cell
protein, solvents, and other chemicals by the selective
use of specific fermentative microorganisms (9). This
can also contribute to the elimination of agricultural
wastes. An additional use for xylanolytic enzymes in
particular could be for the treatment of cellulosic
pulps for the removal or partial hydrolysis of residual
xylans (9). Several studies have been undertaken
where xylans have been removed by xylanolytic
enzymes for the upgrading of dissolving pulps (9-14).
The first scientific report of pulp bleaching using
xylan-degrading enzymes was published by Viikari et
al. (10). There have since been many reports on the
efficiency of endoxylanase pre-treatment for bio-
bleaching and a number of commercial products are
now available. This concept of endoxylanase-aided
bleaching has translated into an economically viable
and environmentally friendly technology that is
presently being used in several industrial mills (11).

It has been well established that extracellular
peroxidases are an important part of the
lignocellulose-degrading mechanism in fungi. Since



the production of extracellular peroxidases is a
common  trait  amongst  lignocellulolytic
actinobacteria (formerly actinomycetes), such as
Thermomonospora (reclassified as Thermobifida) (15)
and Streptomyces, the possible involvement of this
enzyme with the xylan-degrading enzymes of T. fusca
BD25 and endoglucanase in the degradation of
lignocellulose was examined.

This paper examines the degradation of ball-
milled wheat straw by T. fusca BD25 enzymes. The
substrate was  hydrolyzed using different
combinations of purified endo-1,4-B-xylanase (1,4-p-
D-xylan xylanohydrolase, EC 3.2.1.8), lignin
peroxidase (EC 1.11.1.14), B-xylosidase (1,4-B-D-
xylan xylohydrolase; EC 3.2.1.37), and o-L-
arabinofuranosidase (EC 3.2.1.55) produced by T.
fusca BD25 and endo-1,4-B-glucanase (1,4-B-D-
glucan 4-glucanohydrolase, EC 3.2.1.4) (a commercial
preparation from T. viride). Degradation products
from the addition of lignocellulose-degrading
enzymes to ball-milled wheat straw were qualitatively
characterized by HPLC and TLC.

Materials and methods

Growth and maintenance of Thermomonospora
fusca BD25

The growth and maintenance conditions of the
bacterial strain were performed as described
previously (16,17).

Harvesting of culture supernatant fluids

Culture supernatant fluids were harvested as
described previously (18).

Biomass measurement, protein estimation, and
enzyme assays

Biomass measurement, protein estimation, and
enzyme activities were determined as described
previously (17,19). Endoxylanase and endoglucanase
activities were assayed by the detection of reducing
sugars from oat spelt  xylan and
carboxymethylcellulose, respectively. Reducing sugars
were detected by the dinitrosalicylic acid (DNS)
method by Miller (20). According to the calibration
curve, which was used to calculate the amount of
reducing sugars released from the ball-milled straw
by lignocellulose-degrading enzymes, the lower
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detection limit of the DNS method was 0.01 mg of
reducing sugars per milliliter. One unit (U) of
endoxylanase and endoglucanase activities was
defined as the amount of enzyme that released 1
mmol of reducing sugar (expressed as xylose or
glucose equivalents, respectively) per minute under
assay conditions.

B-xylosidase and  a-L-arabinofuranosidase
activities were assayed as described by Bachmann and
McCarthy (21) and MacKenzie et al. (22), respectively.
The substrates used were p-nitrophenyl-f3-D-
xylopyranoside (p-NPX, 5 mmol L"') and p-
nitrophenyl-a-L-arabinofuranoside (p-NPA, 2 mmol
L") in 100 mmol L phosphate buffer, pH 6.5, at 50
°C, respectively. One unit of enzymatic activity was
defined as the amount of enzyme that releases 1 mmol
of p-nitrophenol per minute.

Peroxidase activity was assayed using 2,4-
dichlorophenol (2,4-DCP) as the substrate. This
method was adapted from the assay described by
Ramachandra et al. (23). One unit of enzyme activity
was defined as the amount of enzyme required for an
increase an absorbance of 1 abs. unit min". Enzyme
and substrate controls were included in all assays.

Purification of lignocellulose-degrading
enzymes from T. fusca BD25

The purification procedures for endoxylanase, -
xylosidase and a.-L-arabinofuranosidase (18,19), and
peroxidase (24) from T. fusca BD25 were described
previously. Enzyme activities were determined at each
step as described previously (17).

Degradation of ball-milled wheat straw by
purified enzymes of T. fusca BD25

Purified enzyme preparations, i.e. those fractions
showing single enzyme activity and single band
produced by zymogram and SDS-PAGE analysis (18),
were assessed for their contribution to ball-milled
wheat straw degradation. The ball-milled wheat straw
was washed twice with deionized water and once with
100 mmol L' phosphate buffer, pH 7.0, to remove the
soluble reducing sugars and any freely soluble residual
lignin. The wheat straw was then dried at 70 °C
overnight. The dried ball-milled wheat straw (10 mg
mL™") was placed in flasks in the presence of sodium
azide (0.03%, w/v), H,0, (50 mmol L") and enzymes,
either solely or in combinations of endoxylanase
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(0.175 U mL™), peroxidase (0.02 U mL"), B-
xylosidase (0.41 U mL"), a-L-arabinofuranosidase
(0.053 UmL"), and endoglucanase (0.36 U mL")ina
final volume of 5 mL of phosphate buffer (100 mmol
L, pH 7.0). The amounts of enzyme used were based
upon the amount of the enzyme preparations
available. The amount of enzyme used also aimed to
reflect the production ratios of lignocellulose-
degrading enzymes in T. fusca, which are produced
naturally. Control samples were also prepared with the
same amount of denatured enzymes (achieved
through pre-incubation at 100 °C for 10 min).
Samples were incubated at 55 °C in an orbital shaker
at 150 rev min"' for 10 h. At 2 h intervals, 500 mL
samples were removed from each of the flasks and
then centrifuged at 12,000 xg for 10 min prior to
being stored at -20 °C.

The sample supernatant fluids were examined for
the release of reducing sugars (as xylose equivalents)
and lignin-equivalents, using DNS and Folin’s phenol
reagent (A ;) (25), respectively. Reducing sugars and
lignin-equivalents were calculated as a lignin
component from standard curves of xylose and p-
coumaric acid, respectively. Wheat straw contains (in
w/v) 31.93% glucan, 18.95% xylan, 0.15% mannan,
2.08% arabinan, and 0.56% galactan (26).

Preparation of xylo-oligosaccaharides and TLC
of solubilized degradation products

Preparation of xylo-oligosaccaharides and
separation of the sugars, released by lignocellulolytic
enzymes of T. fusca BD25 from ball-milled wheat
straw by TLC techniques, were performed as
described previously (18).

HPLC of solubilized degradation products

The sugars released by the lignocellulolytic
enzymes of T. fusca BD25 from ball-milled wheat
straw were separated by chromatography in a
Beckman System Gold HPLC (Beckman Coulter Ltd,
High Wycombe, UK) equipped with a reverse-phase
column of Partisil 10 PAC (4.6 mm id x 25 cm;
Capital HPLC Ltd, West Lothian, UK) and a 50 puL
sampling loop. The mobile phase consisted of
acetonitrile:water (80:20 by vol.). Sugar peaks were
screened for their refraction spectra using a 156
Refractive Index Detector (Beckman Coulter Ltd,
High Wycombe, UK) and their retention times were
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compared with the standards xylose, glucose,
arabinose, xylobiose, xylotriose, and xylotetraose (18).

Results

Degradation of ball-milled wheat straw by
lignocellulose-degrading enzymes

Ball-milled wheat straw was incubated with
purified endoxylanase, peroxidase, 3-xylosidase, and
a-L-arabinofuranosidase from T. fusca BD25 and
endoglucanase from T. viride. After a 10 h incubation,
which was the end of the linear part of reducing sugar
production, endoxylanase, on its own, liberated 0.30
mg of reducing sugar per milliliter, corresponding to
approx. 3% hydrolysis (as xylose equivalents) of the
total substrate, while incubation with peroxidase, 3-
xylosidase, and o-L-arabinofuranosidase alone
produced lower concentrations of reducing sugar
(0.02, 0.03, and 0.02 mg of reducing sugar per
milliliter, respectively). However, endoglucanase, on
its own, liberated 0.49 mg of reducing sugar per
milliliter, corresponding to approx. 4.9% hydrolysis
(as xylose equivalents) of the total substrate (Table 1).

Despite the inefticient hydrolysis by peroxidase, -
xylosidase, and a-L-arabinofuranosidase when each
enzyme was acting alone, the addition of peroxidase
and endoglucanase preparations to endoxylanase
significantly enhanced (1.52-fold) the hydrolysis
(12.3% hydrolysis, as xylose equivalents) of the
substrate used and resulted in a greater liberation of
reducing sugars (1.23 mg mL"). The addition of
peroxidase to the endoxylanase preparation also
increased the total reducing sugar yield (0.43 mg
mL™) by 1.33-fold (4.3% hydrolysis). Moreover, the
addition of p-xylosidase to the endoxylanase-
peroxidase-endoglucanase preparation increased the
total reducing sugar yield (1.35 mg mL") by 1.61-fold
(13.5% hydrolysis). Finally, the combination of
purified endoxylanase, peroxidase, endoglucanase,
B-xylosidase, and a-L-arabinofuranosidase
preparation produced the greatest reducing sugar
yield (1.47 mg mL"; 14.7% hydrolysis) and enhanced
the total reducing sugar yield by 1.71-fold.

The release of aromatic compounds as lignin-
equivalents from ball-milled wheat straw by the
lignocellulose-degrading  enzymes showed a
corresponding increase with the release of reducing



Table 1.
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Synergistic action of lignocellulose-degrading enzymes from T. fusca BD25 on reducing sugar yields and released lignin-

equivalents from ball-milled wheat straw. Ball-milled wheat straw (10 mg mL") was incubated alone or in combinations of
endoxylanase (0.175 U mL™), peroxidase (0.02 U mL™), B-xylosidase (0.41 U mL™"), a-L-arabinofuranosidase (0.053 U mL™)
and endoglucanase (0.36 U mL " from T viride) in the presence of sodium azide (0.03%, w/v) and H,0, (50 mmol L") in a final
volume of 5 mL of phosphate buffer (100 mmol L', pH 7.0) for 10 h at 55 °C at 150 rev min .

Reducing sugar yields* Released Lignin-Equivalents*

Enzyme(s) preparations Observed yield Expected yield Enhancement  Observed yield Expected yield ~ Enhancement

fold' fold'

(mg of xylose equivalents per mL) (ug of p-coumaric acid
equivalents per mL)

Endoxylanase (X) 0.30 (+£0.015) - - 23.8 (+£0.346) - -
Peroxidase (P) 0.02 (+0.010) - - 34.7 (+£0.520) - -
Endoglucanase (C) 0.49 (£0.020) - - 20.3 (£0.577) - -
B-Xylosidase (B) 0.03 (+£0.006) - - 2.5 (+0.500) - -
o-L-Arabinofuranosidase (A)  0.02 (+0.010) - - 8.2 (+1.587) - -
X+P 0.43 (+0.026) 0.32 (+0.016) 1.33" 67.0 (+1.00) 58.5 (£0.541) 114"
X+P+C 1.23 (x0.015) 0.81 (+0.018) 1.52° 99.3 (£2.082) 78.8 (£0.901) 1.26°
X+P+C+B 1.35 (£0.020) 0.84 (+0.022) 161° 110.5 (+1.803) 81.3 (+1.173) 1.36°
X+P+C+B+A 1.47 (+£0.030) 0.86 (+0.019) 1.71° 129.3 (+3.055) 89.5 (£2.050) 1.44°
Control 0.01 (£0.006) - - 2.0 (£0.500) - -

" Data presented as mean values of 3 measurements with standard deviations in brackets. The lower detection limits of the DNS method and Folin phenol
reagent were 0.01 mg of reducing sugars per milliliter and 0.67 ug of p-coumaric acid equivalents per milliliter, respectively.
" Increase in the amount of reducing sugar and lignin-equivalents released compared with the amount expected from the action of each enzyme alone

¥ P <0.05 (t-test), *P < 0.001 (t-test), P < 0.01 (t-test)

sugars (Table 1). After the 10 h incubation of ball-
milled wheat straw with endoxylanase, peroxidase,
endoglucanase, B-xylosidase and a-L-
arabinofuranosidase with each enzyme acting alone,
the release of aromatics was detected at 23.8, 34.7,
20.3, 2.5, and 8.2 mg of lignin-equivalents per
milliliter respectively (Table 1). Despite the efficient
release of aromatic compounds by the actions of
endoxylanase, peroxidase and endoglucanase with
each enzyme acting alone, the addition of peroxidase
to the endoxylanase preparation significantly
enhanced the amount of released aromatic
compounds (67 mg mL™") by 1.14-fold. In contrast,
peroxidase did not release a significant amount of
reducing sugars (0.02 mg mL") from straw; it released
34.7 mg mL" lignin-equivalents from the substrate
when acting alone.

In parallel to the reducing sugar production by
lignocellulose-degrading enzyme preparations from
straw, the addition of peroxidase to the endoxylanase-

endoglucanase preparations also increased the total
released aromatics (99.3 mg mL™) by 1.26-fold. Also
the addition of B-xylosidase to the endoxylanase-
peroxidase-endoglucanase preparation increased the
total released lignin-equivalents (110.5 mg mL™) by
1.36-fold. Finally, the combination of the purified
endoxylanase, peroxidase, endoglucanase, f-
xylosidase, and a.-L-arabinofuranosidase preparations
produced the greatest aromatic compounds yield
(129.3 mg mL") and enhanced the total released
aromatics yield by 1.44-fold. However, the (-
xylosidase and a.-L-arabinofuranosidase preparations
from T. fusca BD25 alone did not release a significant
amount of reducing sugar and aromatic compounds
from the ball-milled wheat straw (Table 1).

Identification of degradation products

Products from the hydrolysis of the ball-milled
wheat straw using the same amount of endoxylanase,
peroxidase, endoglucanase, $-xylosidase, and a-L-
arabinofuranosidase, either alone or in combinations,
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were analyzed by HPLC. Samples were also analyzed
by TLC to confirm the product patterns; the same
results were obtained (Table 2). Xylobiose and
substituted-xylotetrose (X,,) were identified as the
main saccharification products released using the
action of endoxylanase alone on ball-milled wheat
straw (Figure 1a and Table 2).

Peroxidase, B-xylosidase, and a-L-
arabinofuranosidase liberated neither small
oligosaccharides nor monosaccharides from the ball-
milled wheat straw. Despite inefficient hydrolysis of
ball-milled wheat straw by individual activities of
peroxidase, B-xylosidase, and o-L-
arabinofuranosidase, endoglucanase was able to
release glucose with an oligosaccharide different from
the corresponding control, with a retention time
identical to xylotriose (Figure 1b).

Hydrolysis of ball-milled wheat straw with the
enzyme cocktail preparation of endoxylanase-
peroxidase produced xylobiose, xylotriose, and
substituted-xylotetrose (Table 2). When the enzyme
cocktail ~ contained endoxylanase-peroxidase-
endoglucanase the hydrolysis products were glucose,
xylobiose, xylotriose and substituted-xylotetrose
(Figure 1c). In the presence of 4 purified enzymes,

Table 2.

endoxylanase, peroxidase, endoglucanase, and f3-
xylosidase, the hydrolysis products from straw were
glucose, xylobiose, xylotriose and substituted-
xylotetrose with an extra peak corresponding to
xylose (Figure 1d). Finally, the addition of a-L-
arabinofuranosidase to these 4 purified enzyme
preparations also changed the pattern of degradation
products and resulted in an extra peak corresponding
to arabinose (Figure le).

Discussion

Degradation of ball-milled wheat straw by
lignocellulose-degrading enzymes

The rates of hydrolysis of ball-milled wheat straw
by endoxylanase and endoglucanase were 3% and
4.9%, respectively, although the total percentage of
available substrate from hydrolysis (assuming a
hemicellulose and cellulose content for wheat straw
of 30% and 45%, respectively) was similar (10% and
10.9%, respectively). The yield of reducing sugars
through the degradation of straw by endoxylanase
and endoglucanase activities suggests that these
enzymes are capable of efficiently hydrolyzing the
substrate. Moreover, the enzyme cocktails of

HPLC and TLC analysis of different solubilized sugars released by the synergistic action of lignocellulose-degrading enzymes

from T. fusca BD25 on ball-milled wheat straw. Ball-milled wheat straw was incubated as described in Table 1 and the Materials

and Methods.

Sugar’ X, A G X, X, X,,

Retention time (min) 1.95 2.05 2.33 2.6 3.25 4.25
Enzyme(s) preparations Rfvalue* (100) (89.5) (85.6) (76.4) (52.4) (12.5)
Endoxylanase (X) - - - + _ +
Peroxidase (P) - - - - _ _
Endoglucanase from T. viride (C) - - - + _
-Xylosidase (B) - - - _ _ _
a-L-Arabinofuranosidase (A) - - - - _ _
X+P - - - + + +
X+P+C - - + + + +
X+P+C+B + - + + + +
X+P+C+B+A + + + + +
Control - - _ _ _

: X, xylose; A, arabinose; G, glucose; X,, xylobiose; X,, xylotriose and X,,, substituted-xylotetrose

" For HPLC separation conditions see Materials and Methods.

' R, values by TLC were determined relative to D-xylose (100). + Sugar present, - sugar absent.
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Figure 1. HPLC profiles of ball-milled wheat straw degradation by purified enzymes from T. fusca BD25. Samples of ball-milled wheat
straw (10 mg mL") were incubated in the presence of only endoxylanase (a); endoglucanase (from T. viride) (b); endoxylanase,
peroxidase, and endoglucanase (c); endoxylanase, peroxidase, endoglucanase, and B-xylosidase (d); endoxylanase, peroxidase,
endoglucanase, B-xylosidase, and a-L-arabinofuranosidase (e) and ball-milled wheat straw only; control (f). Peaks were

identified as A, arabinose; G, glucose; X, xylose; X,, xylobiose; X, xylotriose; X,,, substituted xylotetrose.
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endoxylanase-peroxidase =~ and  endoxylanase-
peroxidase-endoglucanase preparations significantly
enhanced the reducing sugar production. This
indicates either that a soluble phenolic substrate must
be formed by endoxylanase and endoglucanase before
the peroxidase can work, or that the peroxidase may
also be capable of releasing phenolic compounds from
lignocellulose polymers. The interaction between
ferulic acid esterase from Aspergillus oryzae and
endoxylanases from Trichoderma reesei has been
reported with increased production of phenolic acids
from wheat straw xylooligosaccharides (27). Similarly,
ferulic acid esterase from Penicillilum pinophilum
(28), Schizophyllium commune (29), and Streptomyces
olivochromogenes (30) has been reported with the
liberation of a significant amount of ferulic (or
coumaric) acid from wheat bran or grass cell walls
only in the presence of endoxylanase.

The presence of peroxidase, $-xylosidase, and a.-
L-arabinofuranosidase in enzyme preparation allows
for more efficient hydrolysis of ball-milled wheat
straw. An important role for peroxidase and a-L-
arabinofuranosidase in plant cell wall degradation can
be envisaged, since there is good evidence that the
arabinose side groups on the xylan chain are involved
in cross-linking between lignin and hemicellulose,
through feruloyl and p-coumaryl residues of lignin
(31). The observation in this study that the addition of
purified peroxidase and a-L-arabinofuranosidase
from T. fusca BD25 to the endoxylanase-
endoglucanase  preparation  enhances  the
saccharification of ball-milled wheat straw is in
agreement with this hypothesis and extends a
previous description of synergy between o-L-
arabinofuranosidase from Ruminococcus albus 8 and
other glucanases in the release of sugars from alfalfa
cell wall material (32). Furthermore, the synergistic
action of a-L-arabinofuranosidase and endoxylanase
from Aspergillus awamori has been reported to release
feruloyl L-arabinose and p-coumaryl L-arabinose
from oat-spelt xylan and wheat straw, with the a-L-
arabinofuranosidase alone having the ability to release
a substantial portion (42%) of feruloyl L-arabinose
from intact wheat straw arabinoxylan (33). In
addition, synergistic interactions between o-L-
arabinofuranosidase and endoxylanase in the
hydrolysis of arabinoxylan have been reported
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previously and include those between relevant
enzymes from R. albus 8 (32), T. fusca BD21 (34), and
T. fusca BD25 (18). In the case of Penicillium
capsulatum, the amount of arabinose liberated from
feruloylxylan by «-L-arabinofuranosidase was
enhanced by prior treatment of the substrate with
endoxylanase (which did not itself liberate arabinose),
and was even further enhanced by prior treatment
with endoxylanase and ferulic acid esterase (35).
Thus, not only are substituted xylooligomers better
substrates than the polymer for this o-L-
arabinofuranosidase, the preferred substrates are
arabino-xylooligomers in which the arabinose itself is
not substituted by ferulic acid.

The enhancement of released aromatic
compounds from ball-milled wheat straw by the
endoxylanase-peroxidase preparation suggests that
these enzymes may hydrolyze some of the bonds
between lignin and hemicellulose and enhance the
accessibility of the endoxylanase. These observations
suggest that the endoxylanase and peroxidase act
cooperatively on the lignocellulose polymer and are
capable of releasing reducing sugars and phenolic
compounds from the substrate. The results indicate
that a significant increase in degradation can be
achieved with the cooperative actions of
lignocellulose-degrading enzymes from T. fusca. This
enhanced activity using cooperative enzymes
confirms a potentially wider role for the enzyme
combinations in industrial applications (11,12). These
results suggest that more efficient hydrolysis of
lignocellulose by T. fusca BD25 requires the
cooperative actions of lignocellulose-degrading
enzymes.

Identification of degradation products

Xylobiose and substituted-xylotetrose were found
to be the main products released through the action of
endoxylanase alone. The absence of detectable
amounts of arabinose and xylose by the endoxylanase
activity from ball-milled wheat straw confirms the
endo-type mode of action for this enzyme, without
any exo-type or debranching arabinofuranosidase
activities on the substrate similar to those from
Microtetraspora flexuosa SIIX (36). Furthermore, no
xylose or arabinose was detected until the addition of
B-xylosidase and a-L-arabinofuranosidase, indicating



that  P-xylosidase  hydrolyzed the  xylo-
oligosaccharides into monomers while a-L-
arabinofuranosidase released arabinose from

substituted-xylan and xylo-oligosaccharides.

The addition of B-xylosidase to the endoxylanase-
peroxidase-endoglucanase cocktail resulted in the
release of xylose, glucose, xylobiose, xylotriose, and
the substituted-xylotetrose. This suggests that the (3-
xylosidase =~ enzyme  degraded the  xylo-
oligosaccharides by removing terminal xylose
residues, presumably from the non-reducing end of
the chain. Therefore, the possible inhibition effects of
xylo-oligosaccharides on the endoxylanase activity
were relieved by the action of PB-xylosidase and
resulted in a greater hydrolysis of substrate. The
activities of the 3-xylosidase were therefore consistent
with it being an exoxylanase capable of acting on
certain xylo-oligosaccharides. Synergism between
endoxylanase and B-xylosidase of T. curvata (37), T.
fusca BD21 (34), and T. fusca BD25 (18) in the
hydrolysis of insoluble xylan has been reported
previously.

Previous studies on the saccharification of wheat
straw by actinobacteria have also shown that xylose
was the major product (38), and glucose was not
detected on TLC plates, although glucose was
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