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Abstract
Background/Aims: Fetuin-A (alpha-2-HS-glycoprotein, AHSG), a liver borne plasma protein, 
contributes to the prevention of soft tissue calcification, modulates inflammation, reduces insulin 
sensitivity and fosters weight gain following high fat diet or ageing. In polycystic ovary syndrome, 
fetuin-A levels correlate with free androgen levels, an observation pointing to androgen sensitivity 
of fetuin-A expression. The present study thus explored whether the expression of hepatic 
fetuin-A is modified by testosterone. Methods: HepG2 cells were treated with testosterone and 
androgen receptor antagonist flutamide, and were silenced with androgen receptor siRNA. To 
test the in vivo relevance, male mice were subjected to androgen deprivation therapy (ADT) 
for 7 weeks. AHSG mRNA levels were determined by quantitative RT-PCR and fetuin-A protein 
abundance by Western blotting. Results: In HepG2 cells, AHSG mRNA expression and fetuin-A 
protein abundance were both up-regulated following testosterone treatment. The human alpha-
2-HS-glycoprotein gene harbors putative androgen receptor response elements in the proximal 
5 kb promoter sequence relative to TSS. The effect of testosterone on AHSG mRNA levels was 
abrogated by silencing of the androgen receptor in HepG2 cells. Moreover, treatment of HepG2 
cells with the androgen receptor antagonist flutamide in presence of endogenous ligands in the 
medium significantly down-regulated AHSG mRNA expression and fetuin-A protein abundance. 
In addition, ADT of male mice was followed by a significant decrease of hepatic Ahsg mRNA 
expression and fetuin-A protein levels. Conclusions: Testosterone participates in the regulation of 
hepatic fetuin-A expression, an effect mediated, at least partially, by androgen receptor activation. 
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Introduction

Fetuin-A or alpha-2-HS-glycoprotein (AHSG), a protein produced in the liver and released 
into plasma [1], mediates the formation of calciprotein particles thus preventing tissue 
calcification [2, 3]. Along those lines gene-targeted mice lacking fetuin-A [4] develop severe 
tissue calcification following mineral and vitamin D-rich diet [5]. Fetuin-A deficiency further 
contributes to the pathogenesis of cardiovascular calcifications in dialysis patients [6-8]. 
Vascular calcification and subsequent cardiovascular events are decisive pathophysiological 
mechanisms in renal insufficiency limiting the life span of affected patients [9-11]. 

Fetuin-A further causes insulin resistance [12, 13]. Accordingly, insulin sensitivity is 
enhanced in mice lacking fetuin-A, which are protected against weight gain under high-fat 
diet [14] and ageing [15]. Along those lines, fetuin-A may contribute to type II diabetes [16]. 
Fetuin-A has further been shown to modify the inflammatory response [17-19] and to foster 
tumor growth [20].

Total testosterone levels are a marker for aortic stiffness in men [21]. Furthermore, in 
male chronic kidney disease patients, decreased testosterone levels correlate with endothelial 
dysfunction and enhanced risk of cardiovascular events [22]. Along those lines, testosterone 
deficiency is in hemodialysis patients associated with increased vascular stiffness and mortality 
[23]. Low fetuin-A levels are in dialysis patients similarly predictive of mortality [24]. Low 
serum fetuin-A levels are further associated with higher cardiovascular disease mortality in 
older adults without diabetes, but associated with lower cardiovascular disease mortality in 
older adults with diabetes [25].

In woman suffering from polycystic ovary syndrome, a positive correlation was observed 
between serum fetuin-A levels and free androgens, an observation possibly reflecting the 
participation of androgen receptors in the regulation of fetuin-A expression [26]. 

However, to the best of our knowledge nothing is known about an influence of androgens 
on fetuin-A expression. The present study thus explored, whether fetuin-A expression in 
hepatocytes is influenced by testosterone. Physiological effects of testosterone are mediated 
by activating the androgen receptor (AR) [27, 28]. After interacting with androgen, the 
activated AR is translocated into the nucleus where it binds to androgen receptor response 
elements (AREs) present in different target genes [29, 30]. AR recognizes and binds to 15-bp 
palindromic androgen response element (ARE) sequences which consists of two hexameric 
half-site arranged as inverted repeats with a 3-bp spacer (GGTACA-nnn-TGTTCT). Near-
consensus ARE sequences have been identified in the transcriptional regulatory regions of 
androgen-responsive genes [29, 31-34]. The promoter of the alpha-2-HS-glycoprotein gene 
has thus been analyzed to possibly identify putative ARE´s. 

Materials and Methods

Cell culture and silencing of HepG2 cells
Human liver hepatocellular carcinoma (HepG2) cells [35] were routinely cultured in Dulbecco’s 

Modified Eagle Medium DMEM GlutaMAX-I containing 1 g/l glucose (Gibco, Life Technologies GmbH, 
Germany), 10% FBS (Gibco, Life Technologies GmbH, Germany), 100 U/ml penicillin and 100 µg/ml 
streptomycin (Gibco, Life Technologies GmbH, Germany). The medium was changed to 10% charcoal 
stripped FBS medium (Gibco, Life Technologies GmbH, Germany) 24 hours prior to each experiment to 
reduce the effects of endogenous ligands, unless stated otherwise. The HepG2 cells were subsequently 
transfected with 10 nM validated androgen receptor AR siRNA (ID no. s1539, Ambion, Life Technologies 
GmbH, Germany), or with 10 nM negative control siRNA (ID no. 4390843, Ambion, Life Technologies GmbH, 
Germany) using siPORT amine transfection agent (Ambion, Life Technologies GmbH, Germany) according to 
the manufacturer’s instructions. The cells were used 72 hours after transfection. The efficiency of silencing 
was verified by quantitative RT-PCR [36]. HepG2 cells were treated in charcoal stripped FBS medium for 24 
hours with 100 nM testosterone (Sigma-Aldrich, Germany) dissolved in ethanol. HepG2 cells were treated in 
normal growing medium for 24 hours with 1 µM flutamide (Sigma-Aldrich, Germany) dissolved in ethanol. 
Equal amounts of vehicle were used as control.
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Animal experiments
All animal experiments were performed according to the guidelines for the care and use of research 

animals of the German Animal Protection Law. BALB/c-nude (CAnN.Cg-Foxn1nu/Crl) male mice (Charles 
River Laboratories, Germany) were randomly divided into control and androgen deprivation therapy (ADT) 
groups at the age of nine weeks through surgical castration. Briefly, a small incision was made on the sterile 
scrotum after the initiation of anesthesia (Fentanyl: 0.05 mg/kg BW (Actavis, Germany); Midazolam: 5 mg/
kg BW (Ratiopharm, Germany); Medetomidine: 0.5 mg/kg BW (Pfizer, Germany). In the ADT group, the 
testes were removed after the spermatic vessels were tied with sterile absorbable sutures. Afterwards, 
the wound was closed with sterile absorbable sutures. The control group was sham operated with similar 
procedure without testis excision. Seven weeks post ADT, the animals were fasted and sacrificed, and the 
livers were excised for evaluation of fetuin-A. Part of the mice were used within another more complex 
imaging study applying PET and MRI with [18F]FDG as PET tracer before they were used at the end point for 
fetuin-A quantification.

Quantitative RT-PCR
Total RNA was isolated from HepG2 cells and from murine liver tissues using Trifast Reagent (Peqlab 

Biotechnologie GmbH, Germany) according to the manufacturer’s instructions. Reverse transcription of 2 
µg RNA was performed using oligo(dT)12-18 primers (Invitrogen, Life Technologies GmbH, Germany) and 
SuperScriptIII Reverse Transcriptase (Invitrogen, Life Technologies GmbH, Germany). Quantitative real-
time PCR was performed with the iCycler iQTM Real-Time PCR Detection System (Bio-Rad Laboratories 
GmbH, Germany) and iQTM SybrGreen Supermix (Bio-Rad Laboratories GmbH, Germany) according to the 
manufacturer’s instructions. The following human primers were used (5’-3’ orientation) for quantitative 
RT-PCR measurements: 

AHSG fw: TCCTTGGGGATACAAACACACC; 
AHSG rev: TACCACGGAAAACTTGCCATC; 
AR fw: GACGACCAGATGGCTGTCATT; 
AR rev: GGGCGAAGTAGAGCATCCT; 
GAPDH fw: GAGTCAACGGATTTGGTCGT; 
GAPDH rev: GACAAGCTTCCCGTTCTCAG. 
The following mouse primers were used (5’-3’ orientation) for quantitative RT-PCR measurements: 
Ahsg fw: AGGATCAGACACTTCAAAATCTAGG; 
Ahsg rev: GGTTGCAACTGTTTTATATGAGGTC; 
Gapdh fw: AGGTCGGTGTGAACGGATTTG; 
Gapdh rev: TGTAGACCATGTAGTTGAGGTCA. 
The specificity of the PCR products was confirmed by analysis of the melting curves. All PCRs were 

performed in duplicate, and mRNA fold changes were calculated by the 2-ΔΔCt method using GAPDH as 
internal reference [37, 38].

Western blot analysis
HepG2 cells were washed with PBS and lysed with ice-cold RIPA lysis buffer (Cell Signaling, USA) 

supplemented with complete protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, USA). 
After centrifugation at 10000 rpm for 5 min, protein concentration was determined by Bradford assay 
(Biorad Laboratories GmbH, Germany). Proteins were boiled in Roti Load1 protein loading buffer (Carl Roth, 
Germany) at 100°C for 10 min, separated on SDS-polyacrylamide gels and transferred to PVDF membranes. 
The membranes were incubated overnight at 4°C with rabbit anti-fetuin-A antibody (1:1000, Cell Signaling, 
USA) or rabbit anti-GAPDH antibody (1:1000; Cell Signaling, USA) and then with secondary anti-rabbit HRP-
conjugated antibody (1:1000; Cell Signaling,USA) for 1 hour at RT. For loading controls, the membranes 
were stripped in stripping buffer (Thermo Fisher Scientific, USA) at RT for 10 min. Antibody binding was 
detected with the ECL Western Blotting Substrate (Pierce, USA). Bands were quantified using Quantity One 
Software (Bio-Rad, Germany) and results are shown as the ratio of total protein to GAPDH normalized to the 
control treated group [39, 40]. 

Statistics
Data are provided as means ± SEM, n represents the number of independent experiments. All data were 

tested by ANOVA followed by post hoc analysis (Tukey test), unpaired Student t-test (normally distributed 
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data) or Mann-Whitney test (non-normally distributed data) according to Shapiro-Wilk test. Only results 
with p < 0.05 were considered statistically significant.

Results

The present study explored the impact of testosterone on fetuin-A (encoded by the alpha-2-
HS-glycoprotein gene) expression. To this end, human liver hepatocellular carcinoma (HepG2) 
cells have been treated for 24 hours with 100 nM testosterone. To avoid potential effects 
of endogenous ligands in the medium, the experiments were performed using charcoal-
stripped FBS medium. As illustrated in Fig. 1A, testosterone treatment was followed by a 
statistically significant increase of alpha-2-HS-glycoprotein (AHSG) mRNA expression. Similar 
observations were made for fetuin-A protein abundance: in HepG2 cells, fetuin-A protein 
expression was significantly increased following testosterone treatment (Fig. 1B).

Further experiments addressed the mechanisms underlying testosterone sensitive alpha-
2-HS-glycoprotein gene transcription. The physiological effects of testosterone are mediated by 
activating the androgen receptor (AR) [27, 28]. To determine whether alpha-2-HS-glycoprotein 
transcription is regulated by AR directly, we tried to identify potential androgen receptor 
response elements (AREs) in the alpha-2-HS-glycoprotein gene promoter. The nucleotide 
sequence subjected to analysis represents the proximal 5000 bp relative to the transcription 
start site (TSS) of the human alpha-2-HS-glycoprotein gene promoter. The results showed 
that there are two putative half-site AREs located in the proximal 1 kb upstream of the TSS 

Fig. 1. Up-regulation of fetuin-A expression by 
testosterone in HepG2 cells. A. Arithmetic means ± 
SEM (n = 9, arbitrary units) of alpha-2-HS-glycoprotein 
(AHSG) relative mRNA expression in HepG2 cells 
grown in charcoal stripped FBS medium and treated 
for 24 hours with vehicle alone (white bar) or with 
100 nM testosterone (black bar). B. Representative 
original Western blots and arithmetic means ± SEM 
(n = 7, arbitrary units) of normalized fetuin-A to 
GAPDH protein ratio in HepG2 cells grown in charcoal 
stripped FBS medium and treated for 24 hours with 
vehicle alone (white bar) or with 100 nM testosterone 
(black bar). *(p<0.05) indicates statistically 
significant differences from HepG2 cells treated with 
vehicle alone.
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and, in addition, five putative imperfect AREs in the proximal 5 kb upstream of the TSS of 
alpha-2-HS-glycoprotein gene promoter (Fig. 2A,B). As illustrated in Fig. 2C, alignment of the 
putative AREs identified in the promoter of alpha-2-HS-glycoprotein gene showed sequence 
similarity to the consensus ARE. Functional incomplete AREs in the proximal promoter region 
of other genes have previously been reported [32-34]. 

To further define the impact of the androgen receptor on testosterone-induced alpha-2-
HS-glycoprotein mRNA expression, RNA interference was used to suppress the endogenous 
androgen receptor (AR) gene in HepG2 cells. Silencing efficiency was verified by quantitative 
RT-PCR (Fig. 2D). As shown in Fig. 2E, AHSG mRNA expression was significantly increased 
following testosterone treatment in negative control siRNA silenced HepG2 cells, an effect 
significantly blunted in AR siRNA silenced HepG2 cells. Thus, testosterone up-regulates alpha-
2-HS-glycoprotein mRNA expression in an androgen receptor-dependent manner.

In view of the role of androgen receptor in activation of the alpha-2-HS-glycoprotein gene 
promoter, further experiments were performed to explore the effects of the androgen receptor 
antagonist flutamide on fetuin-A expression. To this end, HepG2 cells were treated for 24 

Fig. 2. Activation of the alpha-2-HS-glycoprotein gene promoter by testosterone in an androgen receptor-
dependent manner. A. Graphic representation of the putative half-site androgen response elements (white 
bars) and complete androgen response elements (grey bars) in the proximal 5000 bp DNA sequence of 
the human alpha-2-HS-glycoprotein gene promoter relative to the transcription start site (TSS). B. DNA 
sequences of the human alpha-2-HS-glycoprotein gene promoter with highlighted putative androgen 
response elements (AREs). C. Alignment of the indicated potential AREs to the consensus sequence for 
androgen receptor AR binding site. Arithmetic means ± SEM (n = 8, arbitrary units) of androgen receptor (AR, 
D) and alpha-2-HS-glycoprotein (AHSG, E) relative mRNA expression in HepG2 cells grown in charcoal stripped 
FBS medium following 72 hours silencing with 10 nM negative control siRNA (white bars) or with 10 nM 
androgen receptor siRNA (black bars) and 24 hours treatment with vehicle alone (Control, left columns) 
or with 100 nM testosterone (Testosterone, right colums). **(p<0.01), ***(p<0.001) indicate statistically 
significant differences from HepG2 cells silenced with negative control siRNA and treated with vehicle 
alone; ##(p<0.01) indicates statistically significant differences from HepG2 cells silenced with negative 
control siRNA and treated with testosterone. 
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hours with 1 µM flutamide in normal FBS medium, in the presence of endogenous ligands 
in the medium. As illustrated in Fig. 3A, flutamide treatment was followed by a significant 
decrease of AHSG mRNA expression in HepG2 cells. Furthermore, the decrease in AHSG 

Fig. 3. Down-regulation of fetuin-A expression by the 
androgen receptor antagonist flutamide in HepG2 cells. 
A. Arithmetic means ± SEM (n = 6, arbitrary units) of 
alpha-2-HS-glycoprotein (AHSG) relative mRNA levels 
in HepG2 cells grown in normal FBS medium and 
treated for 24 hours with vehicle alone (white bar) 
or with 1 µM flutamide (black bar). B. Representative 
original Western blots and arithmetic means ± SEM 
(n = 6, arbitrary units) of normalized fetuin-A to 
GAPDH protein ratio in HepG2 cells grown in normal 
FBS medium and treated for 24 hours with vehicle 
alone (white bar) or with 1 µM flutamide (black 
bar). *(p<0.05) indicates statistically significant 
differences from HepG2 cells treated with vehicle 
alone.

Fig. 4. Decreased hepatic fetuin-A expression 
following androgen deprivation therapy in male mice. 
A. Arithmetic means ± SEM (n = 4, arbitrary units) 
of alpha-2-HS-glycoprotein (Ahsg) relative mRNA 
expression in hepatic tissues from control treated 
mice (white bar) and following androgen deprivation 
therapy (ADT, black bar). B. Representative original 
Western blots and arithmetic means ± SEM (n = 10, 
arbitrary units) of normalized fetuin-A to Gapdh 
protein ratio in hepatic tissues from control treated 
mice (white bar) and following androgen deprivation 
therapy (ADT, black bar). *(p<0.05), **(p<0.01)  
indicates statistically significant differences from 
control treated mice. 
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mRNA levels was paralleled by a significant decrease of fetuin-A protein expression in HepG2 
cells (Fig. 3B). 

Additional experiments were performed to elucidate whether testosterone sensitivity 
of fetuin-A expression is relevant in vivo. To this end, male mice were subjected to androgen 
deprivation therapy (ADT) for 7 weeks. As shown in Fig. 4A, alpha-2-HS-glycoprotein (Ahsg) 
mRNA expression was significantly decreased in hepatic tissue of male mice in response to ADT 
as compared to control treated male mice. Similarly, the hepatic fetuin-A protein abundance 
was significantly decreased following ADT in male mice (Fig. 4B). 

Discussion

The present study reveals a novel action of testosterone, i.e. the up-regulation of alpha-
2-HS-glycoprotein gene transcription through activation of the androgen receptor. The 
proximal promoter of the human alpha-2-HS-glycoprotein gene harbors putative half-site 
and imperfect androgen receptor response elements (AREs) which presumably account 
for the testosterone sensitivity of alpha-2-HS-glycoprotein transcription. Functional half-
site AREs [34] and near-consensus ARE sequences [29, 31-34] have been identified in the 
transcriptional regulatory regions of androgen-responsive genes. Our results suggest that 
alpha-2-HS-glycoprotein is a direct target gene of AR in HepG2 cells, as AHSG mRNA expression 
induced by testosterone is blunted by silencing of AR. Along those lines, treatment with the 
androgen receptor antagonist flutamide down-regulated alpha-2-HS-glycoprotein mRNA 
expression and fetuin-A protein levels. Of note, following culture in charcoal stripped FBS 
medium deprived of androgen receptor ligands, flutamide did not significantly modify fetuin-A 
expression (data not shown).

Up-regulation of fetuin-A may be particularly important in disorders associated with 
excessive vascular calcification, such as chronic kidney disease (CKD) [9-11, 41]. Vascular 
calcification and mortality of patients in end-stage renal disease are fostered by low levels of 
fetuin-A [42]. Along those lines low testosterone levels are associated with poor prognosis 
of end-stage renal disease [22, 43, 44]. In view of the present observations, it is tempting 
to speculate that decreased stimulation of fetuin-A expression contributes to the negative 
effect of testosterone deficiency in end-stage renal disease. Vascular calcification is further 
fostered by advanced age [3], which is associated with declining testosterone levels [45-
49]. Even in the absence of end-stage renal disease, testosterone deficiency is associated 
with cardiovascular disease [45, 50]. Testosterone deficiency is associated with endothelial 
dysfunction, increased blood pressure, dyslipidemia, atherosclerosis and thrombosis [46]. 
To which extent reduced fetuin-A levels contribute to the risk of cardiovascular disease in the 
aging population remains, however, to be shown. Clearly, additional mechanisms contribute to 
cardiovascular disease in testosterone deficiency in the elderly [46]. Moreover, testosterone 
replacement therapy may increase the risk of cardiovascular disease [51]. Beyond that, 
fetuin-A is associated with metabolic syndrome, insulin resistance and enhanced risk of 
tumor growth [12, 52, 53]. In perivascular fat cells, fetuin-A fosters inflammatory responses 
[54].

The present observations reveal genomic regulation of fetuin-A by testosterone, an effect 
presumably mediated by the intracellular androgen receptor. Beyond that androgens activate 
the membrane androgen receptor (mAR) [55], which may, at least in theory, contribute to the 
regulation of fetuin-A expression and/or release.  Future studies will be required to decipher 
the contribution of the intracellular and the membrane androgen receptor.

In conclusion, alpha-2-HS-glycoprotein is an androgen receptor-target gene and its 
transcription is stimulated by testosterone. Thus, testosterone sensitivity of alpha-2-HS-
glycoprotein expression may contribute to the known impact of testosterone deficiency on 
cardiovascular disease. 
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receptor); AREs (androgen receptor response elements); CKD (chronic kidney disease); TSS 
(transcription start site).
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