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Abstract Fish ethology is a prospective discipline for
ocean surveys. In this paper, one ROV-based system is
established to perform underwater visual tasks with
customized optical sensors installed. One image quality
enhancement method is first presented in the context of
creating underwater imaging models combined with
homomorphic filtering and wavelet decomposition. The
underwater vision system can further detect and track
swimming fish from the resulting images with the
strategies developed using curve evolution and particular
filtering, in order to obtain a deeper understanding of fish
behaviours. The simulation results have shown the
excellent performance of the developed scheme, in regard
to both robustness and effectiveness.

Keywords Fish Ethology, ROV, Underwater Vision System,
Image Enhancement, Curve Evolution, Particle Filtering
1. Introduction

The 21st century is an era of the ‘ocean’ [1, 2]. Fish
ethology, a discipline concerned with exploring the

movement, behaviours and activities of either wild or
cultivated fish under natural conditions, has shown great
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prospects in aquaculture, fisheries, and other marine
related surveys and applications [3-8].

Traditional studies mainly focus on in situ observations
periodically conducted by marine biologists, which are
time consuming and dependent on strict knowledge and
the ability to observe, count and describe [3-8].
Underwater vision systems, either tethered to a vessel or
a shore-based facility, or operated by remotely operated
vehicles (ROV) and autonomous underwater vehicles
(AUV), have increased rapidly over the last decade [9-16].
In such a system, the optical images may easily suffer
from poor quality due to the specific imaging properties
of the light in the water [17, 18]. Many environmental
parameters can modify the optical properties of the water
[19, 20]. Therefore, the development and improvement of
underwater imaging and image quality enhancement is of
great relevance.

Efficient fish detection and tracking plays one of the most
fundamental roles in the description of fish behaviour.
Extracting the fish from the observation and tracking the
fish’s complex and
challenging due to the three dimensional and sometimes
erratic fish movements, the scene illumination changes,

trajectory can be extremely
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the morphological characteristics, the complicated
underwater environment, all kinds of shape variations,
the non rigid or articulated nature, partial and full
occlusions, the multiple viewpoints, the poor image
quality, the projection of the 3D world onto 2D images,
the real-time processing requirements, and so on [21-25].

In this paper, we set up a ROV-based underwater vision
system for a series of visual-based explorations for fish
ethology research. The framework here is derived from
the original underwater imaging model with a number
of  significant
incorporated. The rest of the paper is organized as
follows: in Section 2, the underwater vision system will
be briefly introduced, including the established ROV
system and the optical sensor. In Section 3, a novel
optical image enhancement approach will be present
based on the underwater imaging model for our work.
In section 4, our fish detection and tracking model will
be developed in detail. In Section 5, a simulation is
carried out in support of the developed scheme. Section
6 draws the conclusions.

innovations and  modifications

2. Underwater Vision System
2.1 Remotely Operated Vehicle (ROV)

In fish ethology research, the establishment of
underwater vision information collection over time
depends on a system which provides insight into fish
behaviours with reliability, accuracy and cost reduction,
which strikes a balance between the video quality and the
physical limitations (range, resolution, frame rate and

compression).

The ROV- or AUV-based system has recently become a
predominant tool due to the continuous navigation and
sampling, which achieve simultaneous observations over
large areas in the sea [9-16]. In this context, the VideoRay
Explorer ROV system is used here as the basis of our
underwater vision system, including an 8-pound
submersible, control panel, inch LCD colour
display monitor, water depth meter, auto depth feature,
compass heading readout and run time meter. Figure 1
shows the ROV employed in our
surveillance.

seven

underwater

Here we adopt the ROV-based underwater vision
system to provide real time information for the specific
fish individuals or assemblages. At the same time, they
are relatively benign, resulting in limited damage to the
habitat and are particularly suitable for monitoring
sensitive areas or threatened and endangered species.
After moving to the underwater region of interest, the
observations in such a system mainly work when the
system remains static in the sea so as to avoid the
impact of the vehicle movements. In case the position of
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the underwater camera changes, the installed sensors
can also record the related movement parameters to
adjust and compensate the observation results to some
extent.

Figure 1. ROV-based system
2.2 Optical Sensor

Poor visibility is a major limitation for underwater optical
images. The properties of the light in the water, such as
the limited range, non uniform lighting, low contrast,
diminished colours, blur imaging and so on may limit the
value of the images collected [17, 18]. Moreover, owing to
the complexity of the marine environment, the optical
properties can often be modified, so the underwater
optical images might have large temporal and spatial
variations [19, 20].

An external video monitoring device with higher
resolution and sensitivity, the Kongsberg Maritime OE14-
376 Light Ring Colour Camera, has been installed in the
ROV for composite recording missions, providing a 43.5°
diagonal angle of the view in the water and withstanding
a water depth of 3,000 meters. The camera can also be a
good choice when applied in the conditions such as
turbidity or low light level phenomena that typically
appear in sea water, with the excellent light
compensation and the unique front port design that
prevents the light of the LEDs reflecting back into the
lens.

Water has a particular property of selectively scattering
and absorbing certain wavelengths of visible light. The
blue-green spectra, the so-called transmission window of
water, have the lowest absorption rate in clear seawater,
as is shown in Figure 2 [17]. Therefore, green light LEDs
with a high brightness (Nichia Corporation, model:
NSPG300A, typical luminous intensity: 11000mcd) have
been adopted for illumination coupled with the white
light LEDs of the camera itself at an equal interval when
natural sunlight is insufficient. Figure 3 is the spectrum of
the green light LED NSPG300A.
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Figure 2. Seawater absorb spectrum
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Figure 3. Green light LED spectrum
3. Underwater Imaging Model

The Jaffe-McGlamery model is well-known in the
analysis of underwater image formation [26-28], with the
following basic assumptions:

Linear Superposition of Irradiance. The underwater
imaging propagation process at a specific point can be
decomposed into three additive linear components,

Et:Ed+Ef+Eb 1)

where Et , Ed , F £ Eb are respectively the total

irradiance, the direct component, the forward-scattered
component and the backscattering. The direct component
is the light reflected by the object surface and which
enters into the camera without scattering. The forward
scattering is the amount of randomly deviated light
reflected by the object on its way to the camera, which
enters the camera after being scattered at a small angle
and causes the image features to blur. The backscattering
is a significant fraction of the light which is reflected not
by the object but has still entered the camera due to the
suspended particles in transmission, which causes
undesirable differences of contrast and masks the details
of the scene, though visibility may indeed be augmented
with artificial lighting.
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Attenuation Modelling for Medium Light Interaction.
The light intensity in the Jaffe-McGlamery model is an
exponential decay with distance,

L(d)=L,,exp(-cd) )

where [ is the wavelength of light, d is the distance
travelled in a liquid, Ll.(d) is the light intensity of

wavelength i, Lo ; is the light intensity of wavelength I

at the light source, and C; is the attenuation coefficient at

wavelength I, respectively. The attenuation usually leads
to a hazy and poorly contrasted image background.

Besides, the Macroscopic floating particles (marine snow),
can also be considered as an unwanted signal. When
considering the magnitude, backscattering and marine snow
are the greatest degradation factors, forward scattering
comes second and the attenuation follows closely.

4. Intelligent Image Processing for Fish Ethology Research
4.1 General idea

The flow chart of our approach is shown in Figure 4,
including the underwater vision system established, the
collected underwater optical images with the fish objects,
and steps for the image enhancement, image segmentation,
and trajectory tracking. Considering the shapes of the fish
as being an object region and the others as the non-object
region, the binary level set method will be adopted as an
efficient tool to segment the fish object region away from
the others in the underwater optical images.

4.2 Image Quality Enhancement

The image quality enhancement is one of the key issues for
optimizing our understanding in fish ethology. In this paper,
we present a generic parameter-free enhancement method
with which to perform a total abstraction of the image
formation process, reduce underwater perturbations, and
correct the contrast disparities caused by the attenuation and
backscattering, without prior knowledge of the depth, the
distance and the water quality.

The colour space model of the image is first converted
into the YCbCr space so as to concentrate only on the
luminance channel which corresponds to the intensity
component. The homomorphic filtering is adopted to
correct non uniform illumination, enhance contrasts and
edges at the Wavelet
decomposition is further introduced to the homomorphic
filtering for image denoising. The wavelet base is nearly
symmetrically orthogonal with a bivariate shrinkage
exploiting interscale dependency.

sharpen the same time.
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Underwater Vision System

Underwater Images

v

Image Enhancement

J

The underwater image is first represented as the product
of the illumination and the reflectance,

Figure 4. The flow chart

I(x,y)=1i(x,y)r(x,y) ®3)

where [(x,y) is the obtained image, i(x,)) is the
illumination multiplicative factor, and 7(x,)) is the
reflectance function. When taking the logarithm of the image,

z(x,y)=Inl(x,y)=lni(x,y)+Inr(x,y) @

the Fourier transform of the log-image becomes,

Z(u,v)=Fu,v)+F.(u,v) )
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where F;(M,V) , Fr(u,v) are respectively the Fourier
transform of Ini(x, y) and Inr(x,y).

One kind of high-pass filter H (#,Vv) that merges the

property of wavelet decomposition is introduced here to
decrease the contribution of low frequencies and
amplifies the contribution of mid and high frequencies,
sharpening the edges of the fish in the image,

S(u,v)=Zu,v)H u,v)
=F(u,v)Hu,v)+F, (u,v)H (u,v)
H(u,v)=H(j,w,, )

=(r,-n) }c ; 7
1 c n
+(c\/a)h2 +o’ (Zj))

(6)

where ] is the level of the wavelet decomposition, k . is

the stopping coefficient, @), and @), are respectively the
horizontal and vertical weights, and C is a constant
between the two parameters 7, and 7; , which is

introduced to control the filter function sharpening. The
inverse transform is then taken to return to the spatial
domain.

s(x,y) =i"(x, y) +r"(x, y) )

By taking the exponent to S(X,)) we can obtain the
filtered image 1'(x, ),

I'(x,y)

— o5(xy) _ LiN(xy) i (xy) o ! ®
=e =e e —l(an’)r (an’)
i'(x,y) , r'(x,y) are respectively the
illumination and the reflectance for it. An alternative
transformation could then be performed to turn the
image back into the RGB colour space after all the

operations.

where

4.3 Fish Detection

Suppose that the entire region of the underwater optical
image [ is set to (). The idea of the fish detection
scheme is to refine the image segmentation and extract

the fish object from the entire region {2.

In general, image segmentation is a process of
partitioning images into homogenous groups [21, 23]. In
many image segmentation approaches, the use of curve
evolution algorithms has grown significantly recently [29-
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31]. There have been extensive studies on the variational
equations (PDE)
concerning the curve evolution problem. The level set
algorithms, in particular the motion by the mean
curvature proposed by Osher and Sethian [29], have been
widely used, which allows for the cusps, the corners and
the automatic topological changes [29, 32-34]. The
Mumford-Shah model [30, 35] is one of the most well-
known approaches in region-based image segmentation

methods and partial differential

implementation. Here we will try to carry out fish
detection and derive the curve evolution process for
underwater optical images with the level set and
Mumford-Shah model.

Let the region of the fish object be enclosed by Qb .In the

binary level set algorithm, the discontinuous level set
function ¢ is defined as,

I {1 if () €int(@,),

-1 if (x,y) e ext(€,). ©)

A piecewise constant function U is introduced to
approximate the grey level values for the given pixel

position (x, y) in the underwater optical image I,

which is constructed as the following sum,
G G
u=—(@+1)——=(g-1). 10
5 (¢+1) 5 (-1 (10)

where (|, C, are two constants for the description of the
grey level values, inside Qb, u(x,y) =(;, and outside

Qb' u(x’y):CZ'

One basis function ¥/, is introduced as a simple

representation,

1 1
vi=5@+Dy, =—2-1). (11

Here we take the above binary level set to minimize the
Mumford-Shah functional and segment the underwater
optical image I,

F(g.¢)

:%.[Qlu(¢,5)_1(x,y) |2dxdy+ﬁ.|.glv¢ |d)€dy (12)

where ¢ =1,¢ =1{q,¢,} and u(9,¢) =y, (9) +c,yw, () -

Considering the constraints imposed on the level set

. 2 . . . .
function @~ =1, the optical image segmentation is then

converted to the following constrained optimization
problem,
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rgi_n F(¢,¢), subject to ¢* =1. (13)

The penalty formulation can be written as,
rg}gn F(¢.¢),
F ()= &) —u, | dxd
'7(¢’C)_EIQ|M(¢’C)_uO | xay (14)

+ BV pldxdy +$ [ @ -1 dxdy

where 7] is the penalty coefficient.

The minimization process is done in order to find the

vector ¢ and the level set function ¢

5F7/85=0 and 8E7/8¢=0 . The

formulation F;7 is quadratic with respect to C . For a

that satisfy

penalty

given level set function ¢ , the minimization of F;y

satisfies,

X[ i@ (@)e dudy

(15)
= J 1Co W (P)dvdy,i =12,

For a fixed vector C, the steepest decent method in the

energy functional E7 has a PDE equation with the level

set function ¢ at time [ as follows,

_pvel VO
= (wJ

() —I(x,y»g)—;—%q o ~D)g

(16)

4.4 Fish Tracking

Fish trajectory tracking will greatly improve our
understanding of fish ethology. So far, the existing
methods of object tracking in the literature mainly focus
on classical approaches such as background subtraction,
inter-frame difference, optical flow computation, Kalman
filtering, particular filtering, mean-shift algorithms, etc.,
and the primary differences come from the type of object
representation, the feature extraction,
modelling, the shape and appearance, and the context in
which the tracking is performed [36-39]. Here we will try
to carry out fish tracking by applying the particle filtering
approach to the colour distribution of underwater optical
images.

the motion
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In principle, the Bayesian sequential estimation can seek
an optimal model for fish trajectory tracking [25]. The
general dynamic model can be considered as state
transition and state measurement,

X =/(X,U), Y =h(X,R) (17)

where 1 is the time index, X , refers to the state variable

of the fish propagated by the possibly nonlinear process

model f over time, /1 is the observation model

mapping the state variable X , to the corresponding
U , and R[ are respectively the

observation variable Yt ,

process noise and the measurement noise that are
roughly assumed to be white Gaussian noise. The state
prediction function is formulated as,

P, 1Y, )= p(X, | X, )p(X,, | ¥, )X, as)

and the state variable can be updated by the posterior
density p(X, ; |Y1:t) inferred from the prior density

p(Xt | Y;:tfl)'

— p(Yt |Xz)p(Xz | Yl:t—l)
r 1Y)

X, |Y,) (19)
where ¥, ={V.L,-,

solution to the sequential estimation problem. In most
cases, the above analytic solution cannot be well

X} constitutes the complete

determined for such a nonlinear and non-Gaussian
system. Therefore, the particle filtering performed by the
Monte Carlo simulation is usually used to approximate
the optimal Bayesian estimation recursively.

Let the posterior density function be characterized by N
random samples, here the colour distribution of the

underwater optical image is extracted as the

measurement specified by the state vector X (s

pY ()| X,)

(> L@d(X, X, )/ $)5(C(x, .y,,) - b))/ B
J=1 ' (20)

_ 2
L(d) = 1-d d<l
0 otherwise

where (xt ,yt) is the centre of the given region,
(xt’j,y,’j) is the pixel inside the region and n is the

number of pixels, C(X, M ,~) assigns the colour to the
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corresponding bin b=1,2,---,m , the distribution is
discretized into m-bins , O is the Kronecker delta

function, d (X, , X, j) represents the distance between

(xt,yt) and (xt,j’yt,j) , s=NI+w is the

parameter used to adapt the size of the region, and the
. . . n

normalization factor is B = Zj:lL(d(Xt ,Xt,j) /a)

so as to ensure the whole probability principle

S p(X ()| X,)=1.

Each colour distribution in the candidate region will be
compared with the reference target model at the origin.
The likelihood function here is defined as the Gaussian
density,

o(q(Y,, | X)) X,)

A ) 1)
=G(D},10,6%),i=1,2,---,N

where, supposing there are /N candidate samples

around the fish, ‘J(K),z |X ; ) respectively denotes the

colour distribution of the starting target and the i th
candidate in (x;,y;) at time 7, G(D(;t 10,07) is

drawn from the Gaussian density with the mean vector 0

and the deviation o ,
i 2
_lj(),t /20" )

‘ exp( i iN .
G(Q),t|0502): \/% , Do,z =D(py.q,) is

the similarity measure between the candidate colour

standard

distribution q; =q (Y | X ; ) and the target model
Do = p(Y | X, 0 ) , the weights will be also normalized to

ensure the whole probability principle.

The sample located around the maximum of the
likelihood represents the best match to both the target
model and the previous adjoining sequential changes,
state of the sample distribution
corresponds well to the maximum and consequently the

and the mean
localization of the fish is more accurate.
5. Simulation Experiment and Result Analysis

In the experiments, various underwater optical images
were collected by the VideoRay Explorer ROV-based
system with a mounted camera. At each observation site,
the environmental variables, including the ambient water
temperature, current speed at the mooring location, the
depth and the direction, as well as the survey-design
variables, such as the ROV cruising speed and direction,
the navigation and positioning, the altitude above the sea
floor, and ROV distance from the bottom, were recorded
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simultaneously. All the simulation experiments were run
on the same x86_64 Windows machine with at least 4 GB
of memory and 2+GHz processor. The execution
environment is MATLAB 7.0. Figure 5 shows the example
optical images in natural sunlight, the high brightness
green light LEDs, and the mixed LEDs respectively.

Figure 5. Example underwater optical images.

Some preprocessing was first done to decrease the noise
or complete the feature extraction in advance. The
proposed enhancement method was conducted on
underwater optical image sequences previously collected
to obtain better image quality for fish ethology research.
Figure 6 lists the resulting enhancements for the example
optical images by the wavelet filtering, the homomorphic
filtering, as well as the proposed method.

(a)Original image

(b) Wavelet filtering

»

’ & 1 s &
(c) Homomorphic filtering (d) Image enhancement proposed

Figure 6. Image quality enhancement.

Simulations were performed on 100 video clips selected
from the collection which have a fish in the scene to
perform the tracking. Figure 7 lists the fish trajectory
tracking results in our system. The mean shift method
was efficient in real time tracking, while in cases of
overlapping or appearance changes, it might sometimes
not describe the real trajectory so exactly. The particle

www.intechopen.com

filtering method adopted in our system was a powerful

and reliable tool for fish trajectory tracking.

(a)Original image sequence

g

(b) Meanshift (c) Particle Filtering

Figure 7. Fish trajectory tracking.

The optical image segmentation was carried out to detect
the fish from the underwater images. Figure 8 shows the
segmentation performance in our system for one example
optical image, and the comparison with the classical
global and adaptive threshold methods. The
segmentation results can provide fish shapes close to the
real fish object region, with detailed information mined
from the optical images, e.g., the fins.

6. Conclusions

In this paper, we have investigated the ROV-based
underwater vision system for fish ethology research and
proposed a visual exploration framework with significant
innovations and modifications to underwater image

Rui Nian, Bo He, Jia Yu, Zhenmin Bao and Yangfan Wang:
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processing. The ROV-based system has been established
installed for the
environment, and a novel image enhancement approach
has been presented here to promote the quality of the
underwater optical images by a homomorphic wavelet
filtering in the context of the Jaffe-McGlamery model. The
curve evolution concept has been introduced to provide
stable and intensive PDE for the binary level set problem,
and a fish tracking strategy has been developed based on
the particle filtering approach by adopting the colour
distribution as the measurement for the state vector
prediction. The simulation results have shown the good
performance and the effectiveness and robustness of the
developed scheme.

with optical sensors seawater

(a)Original image

(b) Curve evolution

(c) Foreground (d) Background

(e) Adaptie threshold
Figure 8. Fish detection.
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