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Abstract

In complex traffic scenarios, more accurate measurement
and discrimination for an automotive frequency-modulat‐
ed continuous-wave (FMCW) radar is required for intelli‐
gent robots, driverless cars and driver-assistant systems. A
more accurate range estimation method based on a local
resampling Fourier transform (LRFT) for a FMCW radar is
developed in this paper. Radar signal correlation in the
phase space sees a higher signal-noise-ratio (SNR) to
achieve more accurate ranging, and the LRFT - which acts
on a local neighbour as a refinement step - can achieve a
more accurate target range. The rough range is estimated
through conditional pulse compression (PC) and then,
around the initial rough estimation, a refined estimation
through the LRFT in the local region achieves greater
precision. Furthermore, the LRFT algorithm is tested in
numerous simulations and physical system experiments,
which show that the LRFT algorithm achieves a more
precise range estimation than traditional FFT-based
algorithms, especially for lower bandwidth signals.

Keywords Automotive Radar, FMCW, Range Estimation,
Phase Correlation, Local Resampling Fourier Transform

1. Introduction

Automotive millimetre-wave (MMW) frequency-modulat‐
ed continuous-wave (FMCW) radars are generally used in
diverse applications owing to their low cost, simplicity and
robustness in foggy, rainy, dusty and humid conditions [1,
2], and they are often configured as medium-range and
long-range radars for intelligent robots, driverless cars and
driver-assistant systems [3]. These radars have also been
used in ground and maritime surveillance tasks for the
detection and tracking of targets [4, 5].

High-performance automotive radar systems have been
available on the market at 77 GHz; furthermore, an accurate
and high-resolution target range and velocity can be
measured simultaneously, even in multi-target situations.
It is a specific task for a radar to measure a single object’s
range and radial velocity simultaneously within a single
measurement cycle. A single pulse is transmitted and
received to measure the range. A continuous wave (or
pulse-Doppler) radar is used to measure the radial velocity.
In order to measure the range and radial velocity simulta‐
neously within a single measurement cycle, waveforms
such as FMCW, mono-pulse, multiple frequency shift
keying (MFSK), frequency shift keying (FSK) and chirp
sequence (CS) [6] are usually adopted in automotive radar.
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A typical approach to measure the range and velocity is to
analyse the Fourier spectrum of the received beat signal in
FMCW radar. The convolution of the received signal and
the transmitted signals is usually used to reach the Fourier
spectrum. However, precise range measurement is possible
when caused by signal delay, which is determined by the
number of samples, the ADC sampling rate, the signal
bandwidth and the chirp period, while at the same time the
Doppler frequency estimation’s precision determines the
velocity measure’s accuracy [7]. As such, the estimated
accuracy of the range and velocity is limited.

The frequency of the beat-note signal is the basis of the
range estimation for FMCW-level radar. The instantaneous
phase of the sampled series is calculated and is then used
to estimate the frequency of a single-tone – however, phase
unwrapping is needed to eliminate any ambiguity [8]. To
achieve good performance for the ranging in a low Signal
Noise Ratio (SNR) situation, frequency estimation techni‐
ques employ the correlation algorithm between the
sampled data. Frequency estimation algorithms based on
the phase difference or the instantaneous phase have to
achieve a trade-off between the efficiency of the frequency
estimation and its accuracy. In addition, the frequency can
be estimated by other methods. In [9, 10], a spectral
estimation algorithm based on frequency interpolation for
range and velocity enhancement was employed, but the
frequency interpolation is based on a nonlinear regression,
which is sensitive to the selection of the regression function.
FFT is a traditional method for estimating the frequency of
signals; however, the duration of the observation limits the
estimation accuracy, which is considered to be its obvious
drawback. The frequency estimation accuracy can be
improved by zero-padded FFT [11], but this will increase
the computational burden and demand on memory.
Variable sweep time [12] or data oversampling strategies
[13] were also used to increase the resolution or sampling
precision, which will improve the frequency estimation’s
precision.

In this paper, we develop an LRFT method for fast and
accurate range estimation for an automotive FMCW radar.
The method uses the phase correlation technique to achieve
a higher SNR pulse compression (PC) spectrum, and then
a virtual sample transform is used in a local neighbour
around the initial rough estimation to achieve accurate,
efficient and robust range parameters. This is a newly
developed method of PC using transmitted signals and
received signals. The phase correlation-based PC spectrum
is used to estimate a rough estimation in order to construct
a virtual sample matrix. Then a small region around the
rough estimation is transformed by the inverse Fourier
transform with a matrix form to achieve a refined delta
function. Therefore, wse can estimate spectrum peak
location and the target’s range more precisely. The method
works efficiently because of the transformation in the
frequency domain by working on a small local neighbour‐
hood and operating as a fast inverse Fourier transform.

The contents of this paper are as follows: in Section 2, we
give the FMCW radar’s basic range estimation principle. In
Section 3, we describe the LRFT method and the developed
range estimation algorithm. In Section 4, experimental
results are then shown on a simulative platform and a
physical system. Finally, a conclusion is given in Section 5.

2. Overview of the FMCW radar and range measuring

A 24 GHz automotive radar is used to measure pedestrians
for the evaluation of the proposed algorithm in Section 3.
For high-accuracy measurements, the voltage-controlled
oscillator (VCO) of the radar must be stabilized with a
phase-locked loop (PLL). To minimize the influence of
multiple reflections, a parasitic patch antenna in combina‐
tion with a lens is used as the radar antenna. The radar
antenna has an overall gain of 20 dBm and an antenna
horizontal beam-width of 23° [14]. As the reference system,
the inductive measurement system IVQ-905 K-band VCO
antenna by InnoSent Corp. of Germany, which achieves a
maximum accuracy of 1 µm, is used. After the A/D con‐
version of the beat-frequency signal, the samples are sent
to a TMS320F28335 processing unit for online signal
processing. To reduce the computing time and minimize
the influence of distortion, the beat frequency at each
measurement position is calculated by a de-chirp algorithm
and the Hamming window.
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(a) InnoSent IVQ-905 antenna      (b) Radar signal processing unit 

  
Figure 1. A 24 GHz automotive radar configuration

The range and velocity of a target is estimated by the
FMCW radar transmitting a frequency-modulated contin‐
uous wave. To a stationary target, frequencies can be
described through td , the time of the transmitted signal and
received signals, as shown in Fig. 2 [15, 16], where f c is the
centre frequency, B is the modulation bandwidth of the
signal, and f 0 is the starting frequency. One half of the pulse
repetition interval (PRI - also called the chirp period) is
described by T .

There will be a Doppler shift in a received signal if it is a
moving target, which will be added to the frequency shift
caused by td . The difference between the transmitted signal
and the received signal is the beat frequency; furthermore,
the up-chirp and down-chirp beat-frequencies are denoted,
respectively, as f bu and f bd . We express f d  (the Doppler
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frequency) and f r  (the range beat-frequency) as
f r = | f bu + f bd | / 2 and f d = | f bu − f bd | / 2.

Therefore, f r  and f d  are usually obtained through a signal
processing process, and then we can estimate the radial
distance and velocity of the target using Equations (1) and
(2),

2
rCTfR

B
= (1)

2
d

c

CfV
f

= (2)

where C  is the speed of light, B is the modulation band‐
width and T  denotes the PRI, which is the chirp period.

The difference between the ideal beat-frequency in the
continuous frequency domain and that in the discrete
frequency domain in Equation (3) is called the “measure
error” of the beat frequency [17]. Here, the ideal beat-
frequency is denoted by f b

ideal , the discrete beat-frequency
by FFT is denoted by f b

FFT , and we use f err  to denote the
beat-frequency error, whose maximum error is equal to
Δ f = f s / Ns.

ideal FFT
err b bf f f= - (3)

Therefore, the steps for the range and velocity are shown
in Equations (4) and (5), respectively. At the same time, the
maximum error of the range and velocity are equal to ΔR
and Δv, respectively. When a longer chirp is chosen, the
step of the velocity will be diminished more; however, the
step of the range will be invariant because the fixed
frequency step Δ f  is equal to 1 / T  [18].

The range step ΔR is calculated as shown in Equation (4),

2 2
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FFT

CTf fCTR
B B N

D = = × (4)
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s

c c FFT

fC f Cv
f f N
D

D = = × (5)

Here,  f s is the analogue-to-digital converter (ADC)
sampling rate and N FFT  is the FFT point. The maximum PRI
is determined by Equation (6).

( )1 2 maxDT f= × (6)

In this equation, f maxD is the maximum Doppler frequency
to be detected.

3. Accurate range estimation based on the LRFT

In our work, we apply a refinement step to enhance the
range estimation after the de-chirp process in the FMCW
radar for target detection and range measuring.

Both signals are embedded in a phase space by creating
delay vectors. The signal s(t) is the discretely sampled
version of the transmitted signal, and h (t)= s(t + t0) is the
signal that has been reflected from some object. If s(t) and
h (t) are aligned in time, then the two corresponding signals
will be very close in the phase space [19]. Furthermore, the
correlation spectrum calculated through the phase space
strategy is narrower than the conventional cross correlation
method, and the target’s location may be specified with
greater precision because the peak location of the spectrum
declares the range estimation of the target. Therefore, the
correlation in the phase space - rather than in time - is
developed. The phase correlation theory is used to calculate
the spectrum [20], as shown in Equation (7), where S (u) and
H (u) are the Fourier transform signals of s(t) and h (t),
respectively, and where (*) denotes complex conjugation
and D is the dimension of t. Thus, the cross-correlation in
phase space is

Figure 2. Frequencies of the transmitted, received and beat signals for a moving target
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The inverse Fourier transform of Phs(u) is the phase
correlation spectrum, which is also called PC spectrum.
However, the range estimation’s precision is still limited by
the sample of the spectrum, and in the LRFT it is used as a
coarse estimation and then up-sampled within a very small
range around the rough estimation through the local
virtual sampling Fourier transform; therefore, the compu‐
tational burden and memory required for the LRFT
decrease sharply.

In fact, the local virtual sampling Fourier transform is not
an additional approximation technique - it simply discards
information outside the valid region, for example, the side-
lobe information, and the result is an efficient inverse
Fourier transform without any iteration [21]. We will
present the algorithm of the local virtual sampling Fourier
transform together with its theory in detail in what follows.

We define the matrix-form Fourier transform of the N  -
dimensional signal s(t) as

( ) ( )F U E s t= × (8)

where U =(u0, ..., uN B−1
)T and NB is the number of samples

in the frequency domain.
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Equation (8) is deduced from the Riemann sum of the
continuous Fourier transform, which is also called the
matrix-form Fourier transform (MFFT); however, if NB is
equal to N, Equation (8) will be the Discrete Fourier
Transform (DFT) of the signal. We define the local virtual
frequency sampling in the following according to the
definition of the MFFT.

As is well known, a discrete signal in the Fourier domain
corresponds to a continuous periodic signal in the spatial
domain; therefore, a new sampling strategy is presented to
obtain a signal with a higher resolution in the spatial
domain, which is a higher sample rate and which is used
when we transform the signal from the frequency to the
spatial domain.

Given the virtual sampled region size m (usually 1≤m <2),
the virtual sampling scale k, and the rough estimation of
the PC spectrum’s peak location tM  (which can be estimated

by the traditional FFT-based method), then the resampling
vector R is constructed in the region as

{ } , 1 / ,......,2 2 2M M M
m m mR t t k t= - - + + (10)

where 1 / k <1 is the sample step of t ' (k >1, set by the user).
The region R is the uncertainty interval of the rough range
estimation; therefore, the support of the PC spectrum is
restricted by the local virtual sampling technique. Further‐
more, the peak location’s truth might be anywhere within
R.

The construction of the base function is the most important
part of the local virtual sample in the PC spectrum, as
shown in Equation (9). The virtual sample region is set on
the basis of m after tM  is estimated. To construct the sample
vector T in the spatial domain, we resample R with a 1 / k
origin step. Next, based on the MFFT, the base function is
constructed according to the variable [T, U], as shown in
Equation (10), to transform the signal from a frequency to
the space domain.
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As such, we define the local virtual sample of the PC
spectrum Phs(u) on R as
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where T ' = (t0, t1, ⋯ tN C -1) is the resampled spatial variable
of the local virtual sample and NC  is the number of samples
in the space domain.

The conventional DFT requires that NC  (NC =k ⋅m) is equal
to N  and that du dt = N -1 (usually m is set in the region [1,
2], du is the frequency domain step and dt  is the spatial
variable step). However, NC  is always unequal to N ,
especially in the local virtual sample Fourier transform.
Therefore, neither the DFT nor the FFT can be substituted
in Equation (8).

To estimate the target range, the PC spectrum of s(t) - which
is the echo signal of the radar - and the impulse response
h(t) of the matched filter is constructed according to
Equation (2). Next, a Dirac delta function is achieved by the
inverse Fourier transformation of the PC spectrum, whose
peak location is denoted by d0, such that d0 is considered to
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be the initial rough estimate of the range through the
traditional FFT-based signal correlation algorithm. Fur‐
thermore, the PC spectrum is resampled virtually in a small
region around d0, and then we achieve high accuracy in the
local PC spectrum p(T ') through the local virtual sample
Fourier transform algorithm shown in Equation (12). The
location of its peak, denoted by Δd0, which is shown in
Equation (13), is the amended parameter of the range to
d0, and at last a more accurate estimation of the range is
achieved by Equation (14),

( )( )0 arg max 'd p TD = (13)

0 0d d d= + D (14)

where d is the estimated target range detected by the radar.
This method is the LRFT for the target range estimation.

Fig. 3(a) shows a receive-window PC spectrum achieved by
the conventional FFT method. The peak location of the
spectrum, which is shown in Fig. 3(b) in detail, corresponds
to the rough range estimation. A more accurate range
estimation cannot be achieved by this method. The virtual
sample PC spectrum is described by the red line in Fig.
3(b), and the black line is part of the traditional FFT-based
PC spectrum around its peak. From the comparison, it can
be concluded that the LRFT spectrum’s peak location is
more accurate.
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4. Experimental results and discussion

In this section, we present the experimental validation of
the algorithm’s performance on synthesis data and a
physical system, and the efficiency analysis of the LRFT for
radar range estimation is also introduced.

4.1 Experiments on synthesis data

Firstly, the precision experiments for the LRFT algorithm
are introduced. Next, our method is compared with
traditional FFT-based PC. Finally, we introduce the
computational time of the LRFT. We validate the LRFT
method in MATLAB 2009b, running on a Pentium IV 2.8
GHz Intel CPU with 1,024 Mb memory.

The range estimation precision of the LRFT is validated at
different bandwidths, and the parameters of the simulated
radar are as follows: the receive-window size is 500 m, the
scatters RCS is 1 m2, and the bandwidth changes from 10
MHz to 100 MHz. The resample step k in the LRFT is set to
10. We test the range estimate precision at each bandwidth
setting for scatter ranges from 10 m to 750 m with 25 m
steps, and we then average the range estimate error
corresponding to the bandwidth. Table 1 shows the
experimental results.

Bandwidt
h (MHz)

10 20 30 40 50 60 70 80 90 100

Range
error (m)

0.306 0.131 0.084 0.058 0.046 0.037 0.031 0.029 0.025 0.022

Table 1. Averaged estimation error of the LRFT corresponding to different
bandwidths

It can be seen in Table 1 that even if the bandwidth is narrow
- such as 10 MHz - the range is still estimated accurately.

Next, we compare the precision of our LRFT method and
the traditional FFT-based PC method. At a given band‐
width, we simulate 10 random scatters and estimate the
corresponding 10 range errors separately, and finally the
10 errors are averaged. Figure 4 shows the comparison of
the experimental results, and it is found that the range-
estimate errors of the LRFT decrease sharply at bandwidths
lower than 70 MHz compared with the FFT-based PC
method. The parameter p shown in Figure 5, which
characterizes the improvement in precision of our method,
is defined in Equation (15),

( )FFT LRFT FFTp e e e= - (15)

where eLRFT  and eFFT  describe the range estimation error of
our LRFT method and the traditional FFT-based method,
respectively.
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Figure 4. Range estimation comparison between the FFT-based method and
our LRFT method

Figure 5. The range estimation precision improvement of the LRFT
compared with the traditional FFT method

At the same time, the robustness of the LRFT is validated,
Gaussian white noise is added to the echo signals. For every
bandwidth, 50 times Monte Carlo experiments are de‐
signed with random noise of SNR from -20 dB to -5d B
tested then the range estimation errors are averaged. The
results are shown in Table 2, from which it can be seen that
the LRFT method achieves greater accuracy than the
conventional FFT-based method when disturbed by
Gaussian white noise, and from the improvement in
precision p it can be seen that the accuracy is improved by
more than 35% at the lower bandwidth.

Bandwidth (MHz) 10 20 30 40 50

FFT-based method (m) 17.5 4.2 3.5 1.9 1.4

LRFT (m) 6.5 2.3 1.5 1.2 0.8

Accuracy improvement p (%) 62.9 45.2 57.1 36.8 42.9

Table 2. Range estimation errors of the LRFT and the FFT-based method

The experiments show that we achieve a more precise
range estimation using the LRFT method, especially when
the radar works at lower bandwidths, and we can get more
than 60% improvement in precision (lower than 80 MHz)

compared with the traditional FFT-based PC method.
Furthermore, the statistical average time for each range
estimation is about 0.6 ms and 0.7 ms for the FFT-based
method and the LRFT, respectively, which concurs with the
analysis in [21] such that, compared with most FFT-based
methods, the local virtual sample technique does not
significantly increase the computational burden.

4.2 Experiments on a physical system

Our algorithm was tested on the physical radar system
described in Section 2 to validate the performance for
accurate range estimation. The parameters of our radar are
shown in Table 3 in detail.

Parameter Symbol Min. Typ. Max. Units

transmit frequencies* fc 24.000 - 24.250 GHz

varactor tuning voltage Vtune 0 - 3 V

tuning slope coarse - 640 - MHz/V

tuning slope medium - 130 - MHz/V

tuning slope fine - 40 - MHz/V

output power (EIRP) Pout - 20 - dBm

IF-amplifier
Gain - 20 - dB

Bandwidth 20 - 500k Hz

Tx - full beam width
@ -3dB

Horizontal - 23 - °

Rx - full beam width
@ -3dB

Horizontal - 55 - °

* depending on Vtune

Table 3. The detailed parameters of our 24 GHz IVQ-905 radar

We conducted an experiment in a field test for a pedestrian
detection and positioning scenario to obtain accurate
measurement results and assess our algorithm’s ranging
precision.

In this experiment, the radar has a central frequency
f c =24  GHz and a bandwidth of B = 100MHz, the sweep
time is Tsweep =  0.1 ms, and there is a three-beat frequency in
one measurement cycle. In our experiment, there is a
moving pedestrian who is running at the front of the radar,
and our proposed LRFT algorithm is used following the
received signal de-chirp process. The target measurement
scenario is shown in Fig. 6.
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To demonstrate the functionality of the algorithm, a
quantitative evaluation is performed to analyse the
precision for the ranging, and we compare the LRFT
algorithm for range enhancement, such that there is about
a 30% improvement overall.

5. Conclusion

Automotive MMW radars offer - in general - the capability
to measure extremely accurately the target range, radial
velocity and azimuth angle for all objects inside the
observation area of intelligent vehicles or mobile robots. In
this paper, a novel LRFT method for automotive MMW
radar range estimation is developed. The LRFT is a method
based on a local virtual sample of the PC spectrum in a
phase space, which uses a matrix local resample Fourier
Transform to achieve virtual resampling in a local neigh‐
bourhood of the PC spectrum and estimate the range
accurately. From the synthesis data experiments, it was
found that we can achieve more accurate estimations
compared with the traditional FFT-based method, espe‐
cially at lower bandwidths. Furthermore, physical radar
system experiments have shown the application of our
method to pedestrian detection and positioning.
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