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Abstract

To improve the mobility of the quadruped robot, a planar
hopping control approach is proposed based on trotting
gait. With the proposed approach, three joints of the stance
legs are active and the fourth leg is passive. A planar
kinematic model of the supporting phase is built and the
calculated positions and posture of the torso are used as
feedback for motion control. The forces and torque acting
at the CoM of the robot torso in the plane are fully control‐
lable and decoupled with the control approach based on a
virtual model. The planar motions on three axes are
controlled independently. For the hopping control, the
total energy in a hopping cycle on the vertical direction is
planned according to the desired hopping height of the
torso’s CoM and the virtual vertical stiffness of the torso is
generated using the elastic potential energy of the virtual
model. We verify the approach and its robustness using
simulation experiments and show the results at the end of
this paper.

Keywords Quadrupled Robot, Hopping Control, Active
Impedance, Energy Planning, Virtual Model Control

1. Introduction

Following billions of years of evolution, almost all terres‐
trial animals are legged and can go anywhere on land using

these legs. Compared to wheeled and tracked mobile
platforms, more agile and versatile four-legged platforms
have incomparable superiority in terms of locomotion on
complex terrain [1]. On the other hand, four-legged
platforms have fewer joints than six-legged ones and are
therefore more stable than single-legged and biped ones.
Hence, a four-legged robot is a better option for meeting
the demands of fast locomotion and transportation on
rough terrains such as those presented by forests and
mountains [2].

In the past few decades, there has been a developing boom
in the area of quadruped robots. BigDog, as one of the most
advanced quadruped robots in the world, can traverse a
range of complex terrains and represents a milestone in the
development of quadruped robots [3]. In addition to
BigDog, LS3 was introduced by Boston Dynamics (BDI) as
a prototype of a legged supporting vehicle [4]. HyQ from
the Italian Institute of Technology (IIT) is another famous
quadruped robot platform, but still being developed in the
lab [5]. Additionally, JINPOONG from the Korea Institute
of Industrial Technology (KITECH) [7] and SCalf from
Shandong University (SDU) [8] are also worth noting in the
field of quadruped robot research. These platforms are all
hydraulic and are the same size as BigDog. Many different
approaches to balancing and locomotion control have also
been developed to enable these platforms to walk and run
on rough terrain via dynamic gait.
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In order to further improve the mobility of quadruped
robots, some control approaches to genuine running gait
have been developed and realized. The duty factor in the
supporting phase β [9] of such gaits is less than 0.5. There
is no doubt that the three-part control method based on the
spring loaded inverted pendulum (SLIP) model presented
by Raibert has been successful in terms of balancing and
the dynamic locomotion control of legged robots [10]. Such
a quadruped running robot achieved a world land speed
record for legged robots (6 m/s) in the 1980s [3]. Ahmadi
and Buehler presented a stable running control approach
based on a one-legged model with hip and leg compliance
[11]. Sato and Buehler realized planar hopping control on
a one-legged robot with only one actuator [12]. Smith and
Poulakakis realized a rotary gallop on SCOUT II [13]. MIT’s
Cheetah, developed in a biomimetic robotics laboratory
(BRL), can gallop at a speed up to 22 km/h in the lab with
its compliant mechanism [14,15] and optimally scaled hip-
force planning (OSHP) [16]. Shkolnik, Levashov, Manches‐
ter and Tedrake presented their bounding approach on
rough terrain based on a planar model and the rapidly
exploring random tree (RRT) [17]. The BDI cheetah is
currently the fastest quadruped robot with a 17.6m/s
galloping gait and its improved type, WildCat, can gallop
and bound outdoors using its onboard power system [18].

However, neither running-based or one-legged models
such as SLIP, or any other approach using a planar model
can render all degrees of freedom (DoFs) for the torso
controllable.

To solve this problem, a decoupled motion control ap‐
proach is proposed based on a planar model of supporting
phase with trotting gait [1] and virtual model control
[19,20]. There is one fore stance leg and one rear stance leg
at least in the supporting phase of gait.

By planning the total energy with the desired hopping
height and the virtual elastic potential energy of the
supporting phase on vertical direction, the virtual stiffness
of the supporting phase is generated and applied to the
torso’s centre of mass (CoM) by active impedance control.
Using this approach, it will be easier to control a system
integrated with high stiffness active joints and passive
energy storage units such as the series elastic actuator
(SEA) [21].

In the simplified model, one of four joints on the stance legs
of the planar robot is passive during the supporting phase.
The planar robot loses redundancy and internal force
cannot be set. However, with the control approach, only a
small amount of torque is needed on a particular active joint
in a real robot system. If the main actuator of this joint
malfunctions, the robot can keep moving by using a smaller
standby actuator.

This paper is organized as follows: section 2 introduces a
simplified planar model and provides the kinematics of the
model. Section 3 provides a position and proposed control
method for the torso’s CoM, based on the presented model.

Section 4 presents an energy planning-based hopping
control approach and section 5 reports the experimental
results obtained from simulations. Finally, section 6
presents conclusions and suggestions for further research.

2. Planar Model for Supporting Phase

When a quadruped robot is running steadily with a trotting
gait, the planar model of the supporting phase can be
simplified as a planar five-bar linkage as shown in Figure
1, as well as two point-feet contact to the ground. If the mass
of the torso is significantly greater than the mass of the legs,
the CoM of the robot will be approximately the CoM of the
torso. The positions and pose of the CoM are described by
(xb, yb and θb) in the coordinate frame O , the origin of which
is set at the rear foot contact point to the ground; θb is the
pitch angle of the robot torso; q1, q2, q3 and q4 are the joint
angles of the supporting legs.
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Figure 1. The simplified planar model of the supporting phase,
based on trotting gait

The degree of freedom (DoF) of the planar five-linkage is
3 and to enhance the vertical supporting forces and reduce
static frictions between the feet and the ground, q1, q2 and
q4 are chosen as the active joints. For forward kinematics,
the 3-DoF pose of the torso is the function of q1, q2 and q4.

The solution of the kinematic model is divided into two
steps as shown in Figure 2.
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Figure 2. The two steps for modeling flow

Step 1. Solve the kinematics of a planar four-linkage
mechanism with lRL, lFL and ψA as variables;

Step 2. Substitute the variables in step 2 (q1, q2, q4) for the
variables in step 1 (lRL, lFL, ψA) and get a solution for the
five-bar linkage mechanism.

A basic vector equation can be obtained from step 1 as
shown in Figure 2 as follows
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OC +

−→
CB. (1)

Let lRL, lBL, lSL and lFL represent the lengths of
−→
OA,

−→
AB,

−→
OC and

−→
CB, respectively. ψRL, ψBL, ψOC and ψFL are the

vector angles of the four vectors. In the coordinate frame
O and ψBL is θb.

Unlike the three other vector angles, lSL and ψOC are
constant during the supporting phase, because no relative
motion is expected between the fore and rear supporting
feet in a stable supporting phase. When the robot trots on
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A basic vector equation can be obtained from step 1 as
shown in Figure 2 as follows
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(1)

Let lRL, lBL, lSL and lFL represent the lengths of OA
→
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→
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→

and CB
→

, respectively. ψRL, ψBL, ψOC and ψFL are the vector
angles of the four vectors. In the coordinate frame O  and
ψBL is θb.

Unlike the three other vector angles, lSL and ψOC are
constant during the supporting phase, because no relative
motion is expected between the fore and rear supporting
feet in a stable supporting phase. When the robot trots on
flat ground, ψOC can be regarded as zero; all the results
presented in this paper are based on ψOC =0, ψRL =ψO, ψBL =θb

and ψFL =π −ψC.

Thus, using the geometric method, the forward solution of
position in step 1 can be calculated as:
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where sO =sinψO, cO =cosψO, sb =sinθb, cb =cosθb and ψO is the
angle shown in Figure 2 and cannot be measured, but can
be calculated as:
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where cA =cosψA.

In step 2, the variables can be substituted as q1, q2 and q4 by
Eq. (4),
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where c1 =cosq1, c2 =cosq2, c3 =cosq3, c4 =cosq4, c2−1 =cos(q2−q1),
c4−3 =cos(q4−q3), h 1, h 2, h 3 and h 4 are the lengths of the links
of both front and rear legs.

The forward kinematics of the planar model can be
obtained by Eq. (2)-(4).
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obtaining the angular velocity of CoM. The speed form of
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By solving Eq. (6), the pitch angle speed can be obtained as:
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where s1 =sinq1, s2 =sinq2, s4 =sinq4, s2−1 =sin(q2−q1). The
Jacobin in Eq. (10) is J= J1⋅ J2 and the speed solution for the
planar model is:

b 1

b 2

b 4

= .
x q
y q

qq

æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

J
& &
& &
& &

(10)

3. Motion Control Based on Virtual Model

A gait cycle is determined by motion during the supporting
phase. In this section, a motion control approach is intro‐
duced to implement the compliant motion of the torso on
three axes, based on virtual model control and the solutions
noted in section 2.

3.1 The virtual model control based on the planar model

In  the  planar  motion  control,  xdb  and  ydb  (the  desired
torso’s  CoM  positions  along  the  x  and  y  axes  of  the
coordinate frame O) and βdb (the desired torso pitch angle
along  the  z  -axis  of  the  coordinate  frame  O)  serve  as
reference inputs. The control forces and torque f x, f y, τz
are  calculated  by  the  virtual  stiffness-damping  model,
which is shown in Figure 4.
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where s1 = sin q1, s2 = sin q2, s4 = sin q4, s2−1 =
sin (q2 − q1). The Jacobin in Eq. (10) is J = J1 · J2 and the
speed solution for the planar model is:
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3. Motion control based on virtual model

A gait cycle is determined by motion during the
supporting phase. In this section, a motion control
approach is introduced to implement the compliant
motion of the torso on three axes, based on virtual model
control and the solutions noted in section 2.

3.1. The virtual model control based on the planar model

In the planar motion control, xdb and ydb (the desired
torso’s CoM positions along the x and y axes of the
coordinate frame O) and βdb (the desired torso pitch
angle along the z-axis of the coordinate frame O) serve
as reference inputs. The control forces and torque fx, fy,
τz are calculated by the virtual stiffness-damping model,
which is shown in Figure 4.

The control law of the virtual model is shown as:


fx = ksx (xdb − x̂b)− kdx ˙̂xb

fy = ksy (ydb − ŷb)− kdy ˙̂yb

τz = ksz
(
θdb − θ̂b

)
− kdz

˙̂θb

, (11)
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Figure 4. The planar 3-DoF virtual stiffness-damping model

where xdb, ydb and θdb are the desired positions and
present the values of the torso’s CoM, x̂b, ŷb, θ̂b are the
detected positions of the torso’s CoM, and ˙̂xb, ˙̂yb and ˙̂θb
are the detected speeds of the torso’s CoM. The speed can
also be obtained by deriving the detecting position. ksx,
kdx, ksy, kdy, ksz, kdz are the virtual stiffness and damping
of the torso’s position and rotation along the x, y and z axes
of the coordinate frame O.

Of course, the control forces fx, fy and τz are all virtual
forces, serving as outputs of the virtual model controller,
not the real actuating torques on the joint. It is necessary to
receive the transformation function from the control force
space in order to actuate force space for control in practice.

However, the robot feet are not actually fixed on the
ground; here we render fx and τz as bounded with fy,
shown as follows:

fx =

{
µxy fy ksx (xdb − x̂b)− kdx ˙̂xb > µxy fy

−µxy fy ksx (xdb − x̂b)− kdx ˙̂xb 6 −µxy fy
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{
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(
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)
− kdz

˙̂θb > µzy fy

−µzy fy ksz
(
θdb − θ̂b

)
− kdz

˙̂θb 6 −µzy fy

, (12)

where the parameters µxy and µzy have to be adjusted in
the experiments according to terrain type and the ZMP
condition. In this paper, fy is a fundamental variable for
maintaining cyclical hopping; a significant fx and τz can be
avoided at the beginning and end of the supporting phase
by bounding them with fy.

It is noted that the mass of torso is far greater than the mass
of the legs discussed in section 2. Therefore, the following
assumption is made:

Assumption: The forces for driving the links of legs can
be ignored compared to forces driving the torso in the
supporting phase of the gait.

According to the above assumption, the transformation
function from control force space to actuating force space
should be the Jacobin matrix as shown below:

TJoint = JTub, (13)

where ub =
(

fx fy τz
)T is the virtual control force acting

at the CoM of the torso and TJoint =
(

τ1 τ2 τ4
)T is the joint

torques actuating on q1, q2 and q4.
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The control law of the virtual model is shown as:
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where xdb, ydb and θdb are the desired positions and present
the values of the torso’s CoM, x̂b, ŷb, θ̂b are the detected
positions of the torso’s CoM, and ẋ̂b, ẏ̂b and θ̇̂b are the
detected speeds of the torso’s CoM. The speed can also be
obtained by deriving the detecting position. ksx, kdx, ksy, kdy,
ksz, kdz are the virtual stiffness and damping of the torso’s
position and rotation along the x, y and z axes of the
coordinate frame O .

Of course, the control forces f x, f y and τz are all virtual
forces, serving as outputs of the virtual model controller,
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not the real actuating torques on the joint. It is necessary to
receive the transformation function from the control force
space in order to actuate force space for control in practice.

However, the robot feet are not actually fixed on the
ground; here we render f x and τz as bounded with f y,
shown as follows:
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where the parameters μxy and μzy have to be adjusted in the
experiments according to terrain type and the ZMP
condition. In this paper, f y is a fundamental variable for
maintaining cyclical hopping; a significant f x and τz can be
avoided at the beginning and end of the supporting phase
by bounding them with f y.

It is noted that the mass of torso is far greater than the mass
of the legs discussed in section 2. Therefore, the following
assumption is made:

Assumption: The forces for driving the links of legs can be
ignored compared to forces driving the torso in the
supporting phase of the gait.

According to the above assumption, the transformation
function from control force space to actuating force space
should be the Jacobin matrix as shown below:

T
Joint b= ,T J u (13)

where ub =( f x f y τz)T is the virtual control force acting at

the CoM of the torso and TJoint =(τ1 τ2 τ4)T is the joint
torques actuating on q1, q2 and q4.

3.2 Position control based on the virtual model

According to the description above, a virtual model based
on a force control block diagram is given in Figure 5.

3.2. Position control based on the virtual model

According to the description above, a virtual model based
on a force control block diagram is given in Figure 5.
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Figure 5. The block diagram for the motion control

pdb contains three elements, (xdb, ydbandθdb) as the
desired position of the CoM. CoM position feedback p̂b
is calculated by the forward kinematics of the planar
model via the detected joint angles q̂Joint. The virtual
control force ub is calculated by the control law of Eq.
(11) as the output of the virtual model controller. The
gravity compensation in coordinate frame O is a constant
represented as

(
0 mbg 0

)T. The final, real actuating
torque TJoint is calculated by Eq. (12) as the input of the
robot.

Because the robot feet only just make contact with the
ground, the feet may take off. When a foot takes off,
the virtual model would get unavailable and cause the
locomotion and hopping control to fail. In Figure 6, when
ZMP (zero moment point) of the robot is at ZMP1, there is
a large margin for adjusting the pitch angle and horizontal
acceleration of the robot torso by fx and τz. When ZMP
comes close to ZMP2, the stability margin becomes small.
It is very easy to make normal active force on the feet get
to zero or a positive when applying some required fx and
τz, as calculated by Eq. (11), which will cause the foot to
move off of the ground. This situation cannot be avoided
completely by Eq. (12); after all, it does not bound the
active forces of the feet directly. Therefore, ZMP getting
too close to ZMP2 when planning the accelerations of the
torso’s CoM should be avoided. In this paper, no planning
regarding the trajectory of the robot’s ZMP is presented;
however, it is shown that the longitudinal stability margin
can be adjusted in order to keep robot hopping steady by
changing a parameter of kSL; this will be further addressed
in section 4.4.

Slip is another problem that may cause the control
approach to fail. However, slip is related to the normal
supporting force and friction factors between the feet and
the ground. This is a rather complex problem for a legged
robot, the details of which are beyond the scope of this
paper. In the simulation, the friction coefficient between
the feet and the ground does not change and is set to 1.

ZMP1 ZMP2

Figure 6. Stability analysis for planar motion

4. Hopping control with energy planning

4.1. Hopping process analysis

For hopping control, a cycle is divided into two phases,
referred to as the supporting phase and swing phase,
shown in Figure 7. The definitions for symbols are shown
in Table 1. The supporting phase lasts from both feet
touching down onto the ground to one of the feet leaving
the ground. Swing phase is the time between the end of
the previous supporting phase and the next.

Hopping control should only be effected during the
supporting phase. The hopping cycle is controlled
by variable stiffness along the y-axis of the coordinate
frame O based on energy planning of the virtual model.
The supporting phase is divided into two periods, i.e.,
the compressing period and releasing period. The
compressing period lasts from the beginning of the
supporting phase to the time where the CoM of the robot
reaches the lowest position on the y-axis. During this
period, the virtual spring on the y-axis stores energy that is
also virtual. The energy of hopping motion is charged by
changing the vertical virtual stiffness. The releasing period
lasts from the end of the compressing period to the end
of the supporting phase. During this period, the virtual
spring releases the energy and transfers it to kinetic and
gravitational potential energy.
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Figure 7. Analysis of the hopping process

Since the controlling virtual forces are decoupled, the
kinetic energies and rotational kinetic energy along the x, y
and z axes can be controlled separately. This is the primary
difference from the SLIP model. The horizontal hopping
speed is controlled by fx, hopping height and hopping
cycle time are both controlled by fy and the pitch of the
torso is controlled by τz.
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pdb contains three elements, (xdb,ydb and θdb) as the desired
position of the CoM. CoM position feedback pb is calculated
by the forward kinematics of the planar model via the
detected joint angles qJoint. The virtual control force ub is
calculated by the control law of Eq. (11) as the output of the
virtual model controller. The gravity compensation in
coordinate frame O  is a constant represented as
(0 mbg 0)T. The final, real actuating torque TJoint is calcu‐
lated by Eq. (12) as the input of the robot.

Because the robot feet only just make contact with the
ground, the feet may take off. When a foot takes off, the
virtual model would get unavailable and cause the loco‐
motion and hopping control to fail. In Figure 6, when ZMP
(zero moment point) of the robot is at ZMP1, there is a large
margin for adjusting the pitch angle and horizontal
acceleration of the robot torso by f x and τz. When ZMP
comes close to ZMP2, the stability margin becomes small.
It is very easy to make normal active force on the feet get
to zero or a positive when applying some required f x and
τz, as calculated by Eq. (11), which will cause the foot to
move off of the ground. This situation cannot be avoided
completely by Eq. (12); after all, it does not bound the active
forces of the feet directly. Therefore, ZMP getting too close
to ZMP2 when planning the accelerations of the torso’s
CoM should be avoided. In this paper, no planning
regarding the trajectory of the robot’s ZMP is presented;
however, it is shown that the longitudinal stability margin
can be adjusted in order to keep robot hopping steady by
changing a parameter of kSL ; this will be further addressed
in section 4.4.

Slip is another problem that may cause the control ap‐
proach to fail. However, slip is related to the normal
supporting force and friction factors between the feet and
the ground. This is a rather complex problem for a legged
robot, the details of which are beyond the scope of this
paper. In the simulation, the friction coefficient between the
feet and the ground does not change and is set to 1.

3.2. Position control based on the virtual model

According to the description above, a virtual model based
on a force control block diagram is given in Figure 5.
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pdb contains three elements, (xdb, ydbandθdb) as the
desired position of the CoM. CoM position feedback p̂b
is calculated by the forward kinematics of the planar
model via the detected joint angles q̂Joint. The virtual
control force ub is calculated by the control law of Eq.
(11) as the output of the virtual model controller. The
gravity compensation in coordinate frame O is a constant
represented as

(
0 mbg 0

)T. The final, real actuating
torque TJoint is calculated by Eq. (12) as the input of the
robot.

Because the robot feet only just make contact with the
ground, the feet may take off. When a foot takes off,
the virtual model would get unavailable and cause the
locomotion and hopping control to fail. In Figure 6, when
ZMP (zero moment point) of the robot is at ZMP1, there is
a large margin for adjusting the pitch angle and horizontal
acceleration of the robot torso by fx and τz. When ZMP
comes close to ZMP2, the stability margin becomes small.
It is very easy to make normal active force on the feet get
to zero or a positive when applying some required fx and
τz, as calculated by Eq. (11), which will cause the foot to
move off of the ground. This situation cannot be avoided
completely by Eq. (12); after all, it does not bound the
active forces of the feet directly. Therefore, ZMP getting
too close to ZMP2 when planning the accelerations of the
torso’s CoM should be avoided. In this paper, no planning
regarding the trajectory of the robot’s ZMP is presented;
however, it is shown that the longitudinal stability margin
can be adjusted in order to keep robot hopping steady by
changing a parameter of kSL; this will be further addressed
in section 4.4.

Slip is another problem that may cause the control
approach to fail. However, slip is related to the normal
supporting force and friction factors between the feet and
the ground. This is a rather complex problem for a legged
robot, the details of which are beyond the scope of this
paper. In the simulation, the friction coefficient between
the feet and the ground does not change and is set to 1.
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Figure 6. Stability analysis for planar motion

4. Hopping control with energy planning

4.1. Hopping process analysis

For hopping control, a cycle is divided into two phases,
referred to as the supporting phase and swing phase,
shown in Figure 7. The definitions for symbols are shown
in Table 1. The supporting phase lasts from both feet
touching down onto the ground to one of the feet leaving
the ground. Swing phase is the time between the end of
the previous supporting phase and the next.

Hopping control should only be effected during the
supporting phase. The hopping cycle is controlled
by variable stiffness along the y-axis of the coordinate
frame O based on energy planning of the virtual model.
The supporting phase is divided into two periods, i.e.,
the compressing period and releasing period. The
compressing period lasts from the beginning of the
supporting phase to the time where the CoM of the robot
reaches the lowest position on the y-axis. During this
period, the virtual spring on the y-axis stores energy that is
also virtual. The energy of hopping motion is charged by
changing the vertical virtual stiffness. The releasing period
lasts from the end of the compressing period to the end
of the supporting phase. During this period, the virtual
spring releases the energy and transfers it to kinetic and
gravitational potential energy.
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Figure 7. Analysis of the hopping process

Since the controlling virtual forces are decoupled, the
kinetic energies and rotational kinetic energy along the x, y
and z axes can be controlled separately. This is the primary
difference from the SLIP model. The horizontal hopping
speed is controlled by fx, hopping height and hopping
cycle time are both controlled by fy and the pitch of the
torso is controlled by τz.
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4. Hopping Control with Energy Planning

4.1 Hopping process analysis

For hopping control, a cycle is divided into two phases,
referred to as the supporting phase and swing phase,
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shown in Figure 7. The definitions for symbols are shown
in Table 1. The supporting phase lasts from both feet
touching down onto the ground to one of the feet leaving
the ground. Swing phase is the time between the end of the
previous supporting phase and the next.

Hopping control should only be effected during the
supporting phase. The hopping cycle is controlled by
variable stiffness along the y -axis of the coordinate frame
O  based on energy planning of the virtual model. The
supporting phase is divided into two periods, i.e., the
compressing period and releasing period. The compressing
period lasts from the beginning of the supporting phase to
the time where the CoM of the robot reaches the lowest
position on the y -axis. During this period, the virtual
spring on the y -axis stores energy that is also virtual. The
energy of hopping motion is charged by changing the
vertical virtual stiffness. The releasing period lasts from the
end of the compressing period to the end of the supporting
phase. During this period, the virtual spring releases the
energy and transfers it to kinetic and gravitational potential
energy.

3.2. Position control based on the virtual model

According to the description above, a virtual model based
on a force control block diagram is given in Figure 5.

JT Robot
Virtual Model 

Controller

d/dt

Forward 
Kinematic

Joint
T

-

+

+

Gravity
Compensation

+
b
u

db
p̂

db
p̂

db
p

Joint
q̂

Figure 5. The block diagram for the motion control

pdb contains three elements, (xdb, ydbandθdb) as the
desired position of the CoM. CoM position feedback p̂b
is calculated by the forward kinematics of the planar
model via the detected joint angles q̂Joint. The virtual
control force ub is calculated by the control law of Eq.
(11) as the output of the virtual model controller. The
gravity compensation in coordinate frame O is a constant
represented as

(
0 mbg 0

)T. The final, real actuating
torque TJoint is calculated by Eq. (12) as the input of the
robot.

Because the robot feet only just make contact with the
ground, the feet may take off. When a foot takes off,
the virtual model would get unavailable and cause the
locomotion and hopping control to fail. In Figure 6, when
ZMP (zero moment point) of the robot is at ZMP1, there is
a large margin for adjusting the pitch angle and horizontal
acceleration of the robot torso by fx and τz. When ZMP
comes close to ZMP2, the stability margin becomes small.
It is very easy to make normal active force on the feet get
to zero or a positive when applying some required fx and
τz, as calculated by Eq. (11), which will cause the foot to
move off of the ground. This situation cannot be avoided
completely by Eq. (12); after all, it does not bound the
active forces of the feet directly. Therefore, ZMP getting
too close to ZMP2 when planning the accelerations of the
torso’s CoM should be avoided. In this paper, no planning
regarding the trajectory of the robot’s ZMP is presented;
however, it is shown that the longitudinal stability margin
can be adjusted in order to keep robot hopping steady by
changing a parameter of kSL; this will be further addressed
in section 4.4.

Slip is another problem that may cause the control
approach to fail. However, slip is related to the normal
supporting force and friction factors between the feet and
the ground. This is a rather complex problem for a legged
robot, the details of which are beyond the scope of this
paper. In the simulation, the friction coefficient between
the feet and the ground does not change and is set to 1.
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Figure 6. Stability analysis for planar motion

4. Hopping control with energy planning

4.1. Hopping process analysis

For hopping control, a cycle is divided into two phases,
referred to as the supporting phase and swing phase,
shown in Figure 7. The definitions for symbols are shown
in Table 1. The supporting phase lasts from both feet
touching down onto the ground to one of the feet leaving
the ground. Swing phase is the time between the end of
the previous supporting phase and the next.

Hopping control should only be effected during the
supporting phase. The hopping cycle is controlled
by variable stiffness along the y-axis of the coordinate
frame O based on energy planning of the virtual model.
The supporting phase is divided into two periods, i.e.,
the compressing period and releasing period. The
compressing period lasts from the beginning of the
supporting phase to the time where the CoM of the robot
reaches the lowest position on the y-axis. During this
period, the virtual spring on the y-axis stores energy that is
also virtual. The energy of hopping motion is charged by
changing the vertical virtual stiffness. The releasing period
lasts from the end of the compressing period to the end
of the supporting phase. During this period, the virtual
spring releases the energy and transfers it to kinetic and
gravitational potential energy.
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Figure 7. Analysis of the hopping process

Since the controlling virtual forces are decoupled, the
kinetic energies and rotational kinetic energy along the x, y
and z axes can be controlled separately. This is the primary
difference from the SLIP model. The horizontal hopping
speed is controlled by fx, hopping height and hopping
cycle time are both controlled by fy and the pitch of the
torso is controlled by τz.
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Figure 7. Analysis of the hopping process

Since the controlling virtual forces are decoupled, the
kinetic energies and rotational kinetic energy along the x,
y and z axes can be controlled separately. This is the
primary difference from the SLIP model. The horizontal
hopping speed is controlled by f x, hopping height and
hopping cycle time are both controlled by f y and the pitch
of the torso is controlled by τz.

Symbol Definition

h0 The desired minimum CoM height in the supporting phase

hs

The CoM height at the time of supporting phase transmitting to
swing phase equals height at time of swing phase transmitting to
supporting phase during stable hopping

h d The desired hopping height

v0 The horizontal velocity at the time of touchdown

v d The desired horizontal velocity

Table 1. Symbol definition of the hopping process

4.2 Hopping height and cycle control

During the supporting phase, the control law of f y is still a
virtual spring (Eq. (11)) with no damping (kdy =0). There is
no acting non-conservative force; therefore, the total energy
Ed, which includes kinetic energy Eky, gravitational
potential energy Epg and virtual elastic potential energy
Epey is constant as follows:

d ky pg pey= ,E E E E+ + (14)
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mb is the mass of the torso, g  is acceleration of gravity and
the zero potential level is set at a height of y =0.

During the compression period, the desired total energy
consists of the virtual elastic potential energy and the
gravitational potential energy at the desired minimum
CoM height point as follows:

( )2
d sy 0 b0 b 0

1= ,
2
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where, yb0 is the height of the torso at the beginning of the
compression period.

Thus, the virtual stiffness ksy in the control law can be
calculated as:
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2
y g y h

k m
y h y y h

- -

+ - -

&
(15)

When yb comes very close to h 0, ksy calculated by Eq. (15)
will become very large due to the error of the energy and
the small denominator. In such a situation, the equation for
calculating ksy is switched to Eq. (16). By doing this, ksy is
not connected to yb, but only related to the energies at the
start of the compression period.

( )
( )

2
0y b0 0

sy b2
0 b0

2
= ,

v g y h
k m

h y

- -

-
(16)

where v0y is the vertical speed of the torso at the beginning
of the compression period.
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During the release period, the desired total energy Ed is set
to the gravitational potential energy at the desired hopping
height h d as follows:

d b d= .E m gh-

The equation for virtual stiffness ksy during the release
period is:

( )
( )

2
d b b

sy b2
b s

2
= .

g h y y
k m

y h

- +

-

&
(17)

Similar to stiffness planning in the compression period,
when yb gets close to h s, the denominator of Eq. (17) is close
to zero. Thus, stiffness can be calculated with the desired
gravitational potential energy at hopping height as follows:

( )
( )

d 0
sy b2

0 s

2
= .

g h h
k m

h h

-

-
(18)

The entire hopping cycle control block diagram is illustrat‐
ed in Figure 8.

4.2. Hopping height and cycle control

During the supporting phase, the control law of fy is
still a virtual spring (Eq. (11)) with no damping (kdy =
0). There is no acting non-conservative force; therefore,
the total energy Ed, which includes kinetic energy Eky,
gravitational potential energy Epg and virtual elastic
potential energy Epey is constant as follows:

Ed = Eky + Epg + Epey, (14)

where,

Eky =
1
2

mbẏ2
b

Epg = −mbgyb

Epey =

0 yb > hs

−1
2

ksy(yb − hs)
2 yb < hs

,

mb is the mass of the torso, g is acceleration of gravity and
the zero potential level is set at a height of y = 0.

During the compression period, the desired total energy
consists of the virtual elastic potential energy and the
gravitational potential energy at the desired minimum
CoM height point as follows:

Ed = −1
2

ksy(h0 − yb0)
2 −mbgh0,

where, yb0 is the height of the torso at the beginning of the
compression period.

Thus, the virtual stiffness ksy in the control law can be
calculated as:

ksy =
ẏ2

b − 2g (yb − h0)

(yb + h0 − 2yb0) (yb − h0)
mb. (15)

When yb comes very close to h0, ksy calculated by Eq. (15)
will become very large due to the error of the energy and
the small denominator. In such a situation, the equation
for calculating ksy is switched to Eq. (16). By doing this,
ksy is not connected to yb, but only related to the energies
at the start of the compression period.

ksy =
v0y

2 − 2g (yb0 − h0)

(h0 − yb0)
2 mb, (16)

Symbol Definition

h0
The desired minimum CoM height in the supporting
phase

hs

The CoM height at the time of supporting phase
transmitting to swing phase equals height
at time of swing phase transmitting to supporting
phase during stable hopping

hd The desired hopping height
v0 The horizontal velocity at the time of touchdown
vd The desired horizontal velocity

Table 1. Symbol definition of the hopping process

where v0y is the vertical speed of the torso at the beginning
of the compression period.

During the release period, the desired total energy Ed is set
to the gravitational potential energy at the desired hopping
height hd as follows:

Ed = −mbghd.

The equation for virtual stiffness ksy during the release
period is:

ksy =
2g (hd − yb) + ẏ2

b

(yb − hs)
2 mb. (17)

Similar to stiffness planning in the compression period,
when yb gets close to hs, the denominator of Eq. (17) is
close to zero. Thus, stiffness can be calculated with the
desired gravitational potential energy at hopping height
as follows:

ksy =
2g (hd − h0)

(h0 − hs)
2 mb. (18)

The entire hopping cycle control block diagram is
illustrated in Figure 8.
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Figure 8. Block diagram of the hopping cycle control

4.3. Horizontal velocity control

The horizontal velocity of the torso is controlled by fx in
the supporting phase and maintained during the swing
phase. The control law for fx during the supporting phase
of a hopping cycle is shown as:

fx = kv (vd − ẋb) , (19)

where kv denotes the force/speed gain. Fewer hopping
cycles are taken by robot to speed up to the desired velocity
at a higher kv.

In this paper, the desired pitch angle is zero. The control
law of τz is still calculated using Eq. (11). fx and τz are still
bounded by fy as Eq. (12).

4.4. Swing foot trajectory planning

The swing time of the swing phase tf in ideal cyclical
hopping is only determined by the vertical takeoff velocity
of the torso vfy and is based on the assumption that the
air resistance and changes to the configuration of the robot
during flight can be ignored.

6 Short Journal Name, 2013, Vol. No, No:2013 www.intechopen.com

Figure 8. Block diagram of the hopping cycle control

4.3 Horizontal velocity control

The horizontal velocity of the torso is controlled by f x in
the supporting phase and maintained during the swing
phase. The control law for f x during the supporting phase
of a hopping cycle is shown as:

( )x v d b= ,f k v x- & (19)

where kv denotes the force/speed gain. Fewer hopping
cycles are taken by robot to speed up to the desired velocity
at a higher kv.

In this paper, the desired pitch angle is zero. The control
law of τz is still calculated using Eq. (11). f x and τz are still
bounded by f y as Eq. (12).

4.4 Swing foot trajectory planning

The swing time of the swing phase tf in ideal cyclical
hopping is only determined by the vertical takeoff velocity

of the torso vfy and is based on the assumption that the air
resistance and changes to the configuration of the robot
during flight can be ignored.

fy
f

2
= .

v
t

g
- (20)

With trotting gait, the swing time of a foot equals double tf

plus the time of another supporting phase. In this paper,
our research observed planar locomotion; as such, there is
only one supporting phase and one swing phase in a gait
cycle, and the swing time of each foot is tf.

However, we cannot certainly know when the foot touches
down on the ground, especially on rough terrain. However,
the rising time of the swing phase is certain once a foot of
robot leaves the ground and this takes half the time of tf.
Therefore, we let the feet swing to the desired position for
the next supporting phase during this rising time.

The trajectory of the swinging feet in the coordinate frame
fixed at the CoM of the torso is planned using a cubic curve
to avoid the mutation of acceleration, as shown in Eq. (21)

( )
( )

3 2
3 2 1 0

2
3 2 1

=
,

= 3 2

T t a t a t a t a
dT t

a t a t a
dt

ì + + +
ï
í

+ +ï
î

(21)

where a0, a1, a2 and a3 are the parameters of the swing
trajectory and they can be calculated using the measured
feet positions, velocities at the very beginning of swing, and
the final desired feet positions and velocities.

For trajectory planning, we let the step length be adjusted
by the horizon velocity of the torso at the time of taking off,
which can be shown as follows:

f BL
x SL fx= ,

2 2
t lT k væ ö

±ç ÷
è ø

(22)

where kSL is the scaling factor between the step length and
vfx, which is the measured horizon take-off velocity, the
positive half torso length for the front foot and the negative
length for the rear foot. By adjusting kSL, the CoM of the
torso can achieve a suitable workspace of kinematics, as
well as the adequate longitudinal stability margin of ZMP
in the supporting phase.

A low gain PD control is used as the swing foot position
control. Based on the assumption in section 3.1, the gain of
the PD control can be very low. Shock will not spread to the
torso, even is there is unexpected impact between the foot
and the ground.
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tf = −
2vfy

g
. (20)

With trotting gait, the swing time of a foot equals double
tf plus the time of another supporting phase. In this paper,
our research observed planar locomotion; as such, there is
only one supporting phase and one swing phase in a gait
cycle, and the swing time of each foot is tf.

However, we cannot certainly know when the foot
touches down on the ground, especially on rough terrain.
However, the rising time of the swing phase is certain once
a foot of robot leaves the ground and this takes half the
time of tf. Therefore, we let the feet swing to the desired
position for the next supporting phase during this rising
time.

The trajectory of the swinging feet in the coordinate frame
fixed at the CoM of the torso is planned using a cubic curve
to avoid the mutation of acceleration, as shown in Eq. (21)


T (t) = a3t3 + a2t2 + a1t + a0

dT (t)
dt

= 3a3t2 + 2a2t + a1

, (21)

where a0, a1, a2 and a3 are the parameters of the swing
trajectory and they can be calculated using the measured
feet positions, velocities at the very beginning of swing,
and the final desired feet positions and velocities.

For trajectory planning, we let the step length be adjusted
by the horizon velocity of the torso at the time of taking
off, which can be shown as follows:

Tx

(
tf
2

)
= kSLvfx ±

lBL
2

, (22)

where kSL is the scaling factor between the step length and
vfx, which is the measured horizon take-off velocity, the
positive half torso length for the front foot and the negative
length for the rear foot. By adjusting kSL, the CoM of the
torso can achieve a suitable workspace of kinematics, as
well as the adequate longitudinal stability margin of ZMP
in the supporting phase.

A low gain PD control is used as the swing foot position
control. Based on the assumption in section 3.1, the gain of
the PD control can be very low. Shock will not spread to
the torso, even is there is unexpected impact between the
foot and the ground.

4.5. Control flow of the hopping cycle

The entire hopping cycle control flow diagram is shown
in Figure 9 and is unidirectional. Once moving to the
next phase or period, it never falls back to the former
phase or period. It is therefore unnecessary to worry about
oscillation between two neighboring statuses.

In the control flow, a hopping cycle is divided into
a compressing period and a releasing period in the
supporting phase and swing phase. Whether the flow is in
the supporting phase or in the swing phase is determined
by the touch sensing on each foot. Once the flow moves
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lSL

|yb-hs|<Threshold

Both toes contact
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Start in Standing State
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Y

Y
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N

Toe Trajectory Planning 
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Figure 9. Control flow diagram of a hopping cycle

into the supporting phase, lSF is calculated first. Pitch
angle sensing is needed to calculate lSF.

During the supporting phase, lSF should be a constant if
there had been relatively stationary contact between the
feet and the ground. Thus, the unexpected interactions
between the feet and the ground, such as slipping, can also
be established by calculating lSF during the supporting
phase.

5. Simulation and results

To verify the performance of the proposed motion control
and hopping control approach, we built a virtual testing
system based on Webots 6.4.1, as shown in Figure 10. The
motion of the robot is constrained in a plane by two linear
motion guides. The torso length (lBL) is 0.5m and the
lengths of the leg links (h1, h2, h3, h4) are all 0.25m. To
satisfy the assumption in section 3.1, the mass of the torso
link is set to 5 kg and the mass of each leg link is set to
0.005 kg, which is significantly less than the mass of the
torso. The positions on the x and y axes, and the pitch
angle on the z-axis of the robot torso are measured using
the frame. Two force sensors located on every foot are used
for contact sensing.

The planar motion and hop of the five-linkage system is
demonstrated in the simulation. We conducted two groups
of simulated experiments to verify the effectiveness of
the proposed locomotion control and the hopping control
approach.

5.1. Simulated results in motion control

To verify the presented kinematic model, we let the robot
stand on the ground in the simulated environment and the
CoM of the robot torso track the desired sine curves on the
x, y and z axes, with the force control approach as stated
in section 3.1. The parameters in Eq. (11) are estimated by
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4.5 Control flow of the hopping cycle

The entire hopping cycle control flow diagram is shown in
Figure 9 and is unidirectional. Once moving to the next
phase or period, it never falls back to the former phase or
period. It is therefore unnecessary to worry about oscilla‐
tion between two neighboring statuses.

In the control flow, a hopping cycle is divided into a
compressing period and a releasing period in the support‐
ing phase and swing phase. Whether the flow is in the
supporting phase or in the swing phase is determined by
the touch sensing on each foot. Once the flow moves into
the supporting phase, lSF is calculated first. Pitch angle
sensing is needed to calculate lSF.

During the supporting phase, lSF should be a constant if
there had been relatively stationary contact between the
feet and the ground. Thus, the unexpected interactions
between the feet and the ground, such as slipping, can also
be established by calculating lSF during the supporting
phase.

5. Simulation and Results

To verify the performance of the proposed motion control
and hopping control approach, we built a virtual testing
system based on Webots 6.4.1, as shown in Figure 10. The
motion of the robot is constrained in a plane by two linear
motion guides. The torso length (lBL) is 0.5m and the lengths
of the leg links (h 1, h 2, h 3, h 4) are all 0.25 m. To satisfy the
assumption in section 3.1, the mass of the torso link is set

to 5 kg and the mass of each leg link is set to 0.005 kg, which
is significantly less than the mass of the torso. The positions
on the x and y axes, and the pitch angle on the z -axis of the
robot torso are measured using the frame. Two force
sensors located on every foot are used for contact sensing.
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Figure 10. The virtual testing system and simulation
environment

the desired position and single rigid body dynamics of the
torso first and then adjusted during the tests.

Parameter Unit Value
ksx N/m 15000
kdx N/(m/s) 140
ksy N/m 15000
kdy N/(m/s) 275
ksz N·m/rad 15000
kdz N·m/(rad·s−1) 130
µxy 1 0.1
µzy 1 0.1

Table 2. The parameters used in motion control

As the simulation result shows, the position along the x
and y axes, and the angular position on the z-axis are
shown in Figure 11. The blue curves are the desired values
and the red curves are measured by the linear motion
guides as the real value of the torso pose. The parameters
used here are shown in Table 2.

With a group of high impedance parameters, the desired
and measured curves are shown to almost overlap. Motion
control is also verified by this simulation experiment.
However, the motion in the experiment lacks compliance
due to the use of such high impedance parameters.

5.2. Simulated results for hopping control

In the hopping experiment, the virtual control forces fx
and fy are generated via stiffness planning and the speed
control method. What needs to be adjusted are ksz, kdz (the
parameters of τz), µxy, µzy (the parameters of the contact
bounding function), kv (the force/speed gain in Eq. (20))
and kSL (the scaling factor between the step length and the
measured horizontal take-off velocity in Eq. (22)).

The experiments were conducted with a horizontal robot
velocity (vd) of 2 m/s. Due to the impacts occurring at the
beginning of the compressing period, we used a different
µzy in the compressing period and the releasing period
to hold the pitch angle of the torso. The parameters are
shown in Table 3.

The CoM velocity and position curves of the robot torso on
three axes are shown in Figure 12. The red and blue curves
are the real values measured by the linear guides and
the feedback values calculated by the forward kinematic
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Figure 11. Position and pitch angular curves of the torso’s
CoM under locomotion control along the x, y and z axes in the
coordinate frame O with both feet contacting to the ground

Parameter Unit Value
hd m 0.746
h0 m 0.87
hs m 0.93
ksz N·m/rad 500
kdz N·m/(rad·s−1) 20
µxy 1 0.1

µzy (during Compressing Period) 1 0.1
µzy (during Releasing Period) 1 0.195

kv N/(m·s−1) 25
kSL m/(m·s−1) 0.08

Table 3. The parameters used in hopping control with a
horizontal velocity of 2 m/s

model. The calculated values are only available during the
supporting phase; we stopped refreshing the calculated
values and set them to the initial values during the swing
phase, so that the blue curves are discontinuous.

According to the velocity curves on the x-axis, the speed is
up to the desired input (2 m/s) at the ninth hopping cycle.
Due to the high values of ksz and kdz, the angular position
curves on the z-axis are not smooth, and using the lower
values will cause a more intense vibration on the z-axis.
Therefore, the values of ksz and kdz need to be adjusted
according to the requirement of the torso’s pose stability.
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Figure 10. The virtual testing system and simulation environment

The planar motion and hop of the five-linkage system is
demonstrated in the simulation. We conducted two groups
of simulated experiments to verify the effectiveness of the
proposed locomotion control and the hopping control
approach.

5.1 Simulated results in motion control

To verify the presented kinematic model, we let the robot
stand on the ground in the simulated environment and the
CoM of the robot torso track the desired sine curves on the
x, y and z axes, with the force control approach as stated in
section 3.1. The parameters in Eq. (11) are estimated by the
desired position and single rigid body dynamics of the
torso first and then adjusted during the tests.

Parameter Unit Value

k sx N/m 15000

k dx N/(m/s) 140

k sy N/m 15000

k dy N/(m/s) 275

k sz N⋅m/rad 15000

k dx N⋅m/(rad⋅s-1) 130

μ xy 1 0.1

μ zy 1 0.1

Table 2. The parameters used in motion control

As the simulation result shows, the position along the x and
y axes, and the angular position on the z -axis are shown in
Figure 11. The blue curves are the desired values and the
red curves are measured by the linear motion guides as the
real value of the torso pose. The parameters used here are
shown in Table 2.

With a group of high impedance parameters, the desired
and measured curves are shown to almost overlap. Motion
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control is also verified by this simulation experiment.
However, the motion in the experiment lacks compliance
due to the use of such high impedance parameters.

5.2 Simulated results for hopping control

In the hopping experiment, the virtual control forces f x and
f y are generated via stiffness planning and the speed
control method. What needs to be adjusted are ksz, kdz (the
parameters of τz), μxy, μzy (the parameters of the contact
bounding function), kv (the force/speed gain in Eq. (20)) and
kSL (the scaling factor between the step length and the
measured horizontal take-off velocity in Eq. (22)).

The experiments were conducted with a horizontal robot
velocity (vd) of 2 m/s. Due to the impacts occurring at the
beginning of the compressing period, we used a different
μzy in the compressing period and the releasing period to
hold the pitch angle of the torso. The parameters are shown
in Table 3.

The CoM velocity and position curves of the robot torso on
three axes are shown in Figure 12. The red and blue curves
are the real values measured by the linear guides and the
feedback values calculated by the forward kinematic
model. The calculated values are only available during the
supporting phase; we stopped refreshing the calculated
values and set them to the initial values during the swing
phase, so that the blue curves are discontinuous.
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the desired position and single rigid body dynamics of the
torso first and then adjusted during the tests.

Parameter Unit Value
ksx N/m 15000
kdx N/(m/s) 140
ksy N/m 15000
kdy N/(m/s) 275
ksz N·m/rad 15000
kdz N·m/(rad·s−1) 130
µxy 1 0.1
µzy 1 0.1

Table 2. The parameters used in motion control

As the simulation result shows, the position along the x
and y axes, and the angular position on the z-axis are
shown in Figure 11. The blue curves are the desired values
and the red curves are measured by the linear motion
guides as the real value of the torso pose. The parameters
used here are shown in Table 2.

With a group of high impedance parameters, the desired
and measured curves are shown to almost overlap. Motion
control is also verified by this simulation experiment.
However, the motion in the experiment lacks compliance
due to the use of such high impedance parameters.

5.2. Simulated results for hopping control

In the hopping experiment, the virtual control forces fx
and fy are generated via stiffness planning and the speed
control method. What needs to be adjusted are ksz, kdz (the
parameters of τz), µxy, µzy (the parameters of the contact
bounding function), kv (the force/speed gain in Eq. (20))
and kSL (the scaling factor between the step length and the
measured horizontal take-off velocity in Eq. (22)).

The experiments were conducted with a horizontal robot
velocity (vd) of 2 m/s. Due to the impacts occurring at the
beginning of the compressing period, we used a different
µzy in the compressing period and the releasing period
to hold the pitch angle of the torso. The parameters are
shown in Table 3.

The CoM velocity and position curves of the robot torso on
three axes are shown in Figure 12. The red and blue curves
are the real values measured by the linear guides and
the feedback values calculated by the forward kinematic
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Figure 11. Position and pitch angular curves of the torso’s
CoM under locomotion control along the x, y and z axes in the
coordinate frame O with both feet contacting to the ground

Parameter Unit Value
hd m 0.746
h0 m 0.87
hs m 0.93
ksz N·m/rad 500
kdz N·m/(rad·s−1) 20
µxy 1 0.1

µzy (during Compressing Period) 1 0.1
µzy (during Releasing Period) 1 0.195

kv N/(m·s−1) 25
kSL m/(m·s−1) 0.08

Table 3. The parameters used in hopping control with a
horizontal velocity of 2 m/s

model. The calculated values are only available during the
supporting phase; we stopped refreshing the calculated
values and set them to the initial values during the swing
phase, so that the blue curves are discontinuous.

According to the velocity curves on the x-axis, the speed is
up to the desired input (2 m/s) at the ninth hopping cycle.
Due to the high values of ksz and kdz, the angular position
curves on the z-axis are not smooth, and using the lower
values will cause a more intense vibration on the z-axis.
Therefore, the values of ksz and kdz need to be adjusted
according to the requirement of the torso’s pose stability.
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Figure 11. Position and pitch angular curves of the torso’s CoM under
locomotion control along the x, y and z axes in the coordinate frame O
with both feet contacting to the ground

According to the velocity curves on the x -axis, the speed
is up to the desired input (2 m/s) at the ninth hopping cycle.
Due to the high values of ksz and kdz, the angular position

0 2 4 6 8 10

0

0.5

1

1.5

2

V
el

o
ci

ty
 o

n
 X

−
ax

is
 [

m
/s

ec
]

5 5.1 5.2
1.9

2

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
o

si
ti

o
n

 o
n

 Y
−

ax
is

 [
m

]

5 5.1 5.2

0.75

0.85

0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time [sec]

A
n

g
u

la
r 

p
o

si
ti

o
n

 o
n

 Z
−

ax
is

 [
ra

d
]

5 5.1 5.2

−0.02

0.04

Figure 12. Velocity and position curves of the robot torso’s CoM
with the hopping control, velocity along the x-axis, position along
the y-axis and angular position along the z-axis in the coordinate
frame O, as shown in Figure 10. The curves drawn in red are the
values measured by the two guides, the blue curves are calculated
by the forward kinematics and the green curves are the desired
values.

The evolution of the vertical stiffness of the virtual model
is shown in Figure 13. The speed becomes higher, the
energy loss caused by the shock from the feet also becomes
higher and more energy is needed to support the buffering
period. Thus, stiffness during buffering period is bigger
than during the releasing period. When yb reaches close to
h0 and hs, the virtual stiffness calculated by Eq. (15) and
Eq. (17) will rise; for this reason, we add Eq. (16) and Eq.
(18) to avoid virtual stiffness overflow.

The torques of the four joints are shown in Figure 14.
During the swing phase, the joint torque outputs are all
very low to keep the feet positions steady. The feet are
compliant enough to touch but not crush onto the ground.
Discontinuity of the curves is caused by changes in the
stiffness between the compressing period and releasing
period in the supporting phase.
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Figure 13. The evolution of the vertical stiffness of the virtual
model during hopping with horizontal velocity at 2 m/s
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Figure 14. The torques on the four joints; joint 3 is passive during
the supporting phase and active during the swing phase

5.3. Robustness study with different leg masses

The previous simulations are based on the assumption of
the control approach presented in section 3.1 and with a
very low mass ratio of leg/torso (1:500). But what will
happen if this assumption is not satisfied? To test the
performance of the control approach in this paper with
different leg link masses, we conducted two experiments
using different mass ratios (1:50 and 1:5).
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Figure 12. Velocity and position curves of the robot torso’s CoM with the
hopping control, velocity along the x -axis, position along the y -axis and
angular position along the z -axis in the coordinate frame O , as shown in
Figure 10. The curves drawn in red are the values measured by the two
guides, the blue curves are calculated by the forward kinematics and the
green curves are the desired values.

Parameter Unit Value

h d m 0.746

h 0 m 0.87

h s m 0.93

k sz N⋅m/rad 500

k dz N⋅m/(rad⋅s-1) 20

μ xy 1 0.1

μ zy (during Compressing Period) 1 0.1

μ xy (during Releasing Period) 1 0.195

k v N/(m⋅s-1) 25

k SL m/(m⋅s-1) 0.08

Table 3. The parameters used in hopping control with a horizontal velocity
of 2 m/s
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curves on the z -axis are not smooth, and using the lower
values will cause a more intense vibration on the z -axis.
Therefore, the values of ksz and kdz need to be adjusted
according to the requirement of the torso’s pose stability.

The evolution of the vertical stiffness of the virtual model
is shown in Figure 13. The speed becomes higher, the
energy loss caused by the shock from the feet also becomes
higher and more energy is needed to support the buffering
period. Thus, stiffness during buffering period is bigger
than during the releasing period. When yb reaches close to
h 0 and h s, the virtual stiffness calculated by Eq. (15) and Eq.
(17) will rise; for this reason, we add Eq. (16) and Eq. (18)
to avoid virtual stiffness overflow.

0 2 4 6 8 10

0

0.5

1

1.5

2

V
el

o
ci

ty
 o

n
 X

−
ax

is
 [

m
/s

ec
]

5 5.1 5.2
1.9

2

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
o

si
ti

o
n

 o
n

 Y
−

ax
is

 [
m

]

5 5.1 5.2

0.75

0.85

0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time [sec]

A
n

g
u

la
r 

p
o

si
ti

o
n

 o
n

 Z
−

ax
is

 [
ra

d
]

5 5.1 5.2

−0.02

0.04

Figure 12. Velocity and position curves of the robot torso’s CoM
with the hopping control, velocity along the x-axis, position along
the y-axis and angular position along the z-axis in the coordinate
frame O, as shown in Figure 10. The curves drawn in red are the
values measured by the two guides, the blue curves are calculated
by the forward kinematics and the green curves are the desired
values.

The evolution of the vertical stiffness of the virtual model
is shown in Figure 13. The speed becomes higher, the
energy loss caused by the shock from the feet also becomes
higher and more energy is needed to support the buffering
period. Thus, stiffness during buffering period is bigger
than during the releasing period. When yb reaches close to
h0 and hs, the virtual stiffness calculated by Eq. (15) and
Eq. (17) will rise; for this reason, we add Eq. (16) and Eq.
(18) to avoid virtual stiffness overflow.

The torques of the four joints are shown in Figure 14.
During the swing phase, the joint torque outputs are all
very low to keep the feet positions steady. The feet are
compliant enough to touch but not crush onto the ground.
Discontinuity of the curves is caused by changes in the
stiffness between the compressing period and releasing
period in the supporting phase.
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Figure 13. The evolution of the vertical stiffness of the virtual
model during hopping with horizontal velocity at 2 m/s
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Figure 14. The torques on the four joints; joint 3 is passive during
the supporting phase and active during the swing phase

5.3. Robustness study with different leg masses

The previous simulations are based on the assumption of
the control approach presented in section 3.1 and with a
very low mass ratio of leg/torso (1:500). But what will
happen if this assumption is not satisfied? To test the
performance of the control approach in this paper with
different leg link masses, we conducted two experiments
using different mass ratios (1:50 and 1:5).
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Figure 13. The evolution of the vertical stiffness of the virtual model during
hopping with horizontal velocity at 2 m/s
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Figure 12. Velocity and position curves of the robot torso’s CoM
with the hopping control, velocity along the x-axis, position along
the y-axis and angular position along the z-axis in the coordinate
frame O, as shown in Figure 10. The curves drawn in red are the
values measured by the two guides, the blue curves are calculated
by the forward kinematics and the green curves are the desired
values.

The evolution of the vertical stiffness of the virtual model
is shown in Figure 13. The speed becomes higher, the
energy loss caused by the shock from the feet also becomes
higher and more energy is needed to support the buffering
period. Thus, stiffness during buffering period is bigger
than during the releasing period. When yb reaches close to
h0 and hs, the virtual stiffness calculated by Eq. (15) and
Eq. (17) will rise; for this reason, we add Eq. (16) and Eq.
(18) to avoid virtual stiffness overflow.

The torques of the four joints are shown in Figure 14.
During the swing phase, the joint torque outputs are all
very low to keep the feet positions steady. The feet are
compliant enough to touch but not crush onto the ground.
Discontinuity of the curves is caused by changes in the
stiffness between the compressing period and releasing
period in the supporting phase.

0 2 4 6 8 10
−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

Time [sec]

V
ir

tu
a
l 

v
e
rt

ic
a
l 

st
if

fn
e
ss

 [
N

/m
]

Figure 13. The evolution of the vertical stiffness of the virtual
model during hopping with horizontal velocity at 2 m/s
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Figure 14. The torques on the four joints; joint 3 is passive during
the supporting phase and active during the swing phase

5.3. Robustness study with different leg masses

The previous simulations are based on the assumption of
the control approach presented in section 3.1 and with a
very low mass ratio of leg/torso (1:500). But what will
happen if this assumption is not satisfied? To test the
performance of the control approach in this paper with
different leg link masses, we conducted two experiments
using different mass ratios (1:50 and 1:5).
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Figure 14. The torques on the four joints; joint 3 is passive during the
supporting phase and active during the swing phase

The torques of the four joints are shown in Figure 14.
During the swing phase, the joint torque outputs are all
very low to keep the feet positions steady. The feet are
compliant enough to touch but not crush onto the ground.
Discontinuity of the curves is caused by changes in the
stiffness between the compressing period and releasing
period in the supporting phase.

5.3 Robustness study with different leg masses

The previous simulations are based on the assumption of
the control approach presented in section 3.1 and with a
very low mass ratio of leg/torso (1:500). But what will
happen if this assumption is not satisfied? To test the
performance of the control approach in this paper with
different leg link masses, we conducted two experiments
using different mass ratios (1:50 and 1:5).

When each leg link mass is 0.05kg and the torso mass is 5kg,
the parameters are the same as in the simulation with a leg
link mass of 0.005kg, for except h d. Since the robot becomes
heavier, the h d is increased for a more desired input energy.
The CoM velocity and position curves of the robot torso on
three axes are shown in Figure 15. Although the horizontal
velocity error is larger than the error in the experiment with
the leg link mass at 0.005kg and the vibration of the torso
pitch becomes more severe, the robot can still hop at a speed
of 2m/s.

Parameter Unit Value

h d m 1.2

h 0 m 0.65

h s m 0.75

h sz N⋅m/rad 1100

k dx N⋅m/(rad⋅s-1) 29

μ xy 1 0.1

μ zy (during Compressing
Period)

1 0.19

μ zy (during Releasing
Period)

1 0.19

k v N/(m⋅s-1) 80

k SV m/(m⋅s-1) 0.11

Table 4. The parameters used in hopping control with a leg link mass of
0.5kg and a desired horizontal velocity (vd) of 2m/s

When the leg link mass is raised to 0.5kg, the mass ratio of
leg/torso is raised to 1:5 and the rotation of the torso pitch
angle cased by the swing leg cannot be ignored any longer
in the swing phase. We have to set the desired torso’s pitch
angle at 0.15 rad to compensate for the rotation of the torso
in the swing phase and the control parameters for doing so
are shown in Table 4. The vibration of the torso’s pitch angle
is very strong, but there is no change in the control ap‐
proach. The results of the experiment with a leg mass of
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0.5kg are shown in Figure 16. The vibration of the torso
pitch becomes much more severe than in previous experi‐
ments. Another simulation of 40 seconds shows that the
hop merges into a cyclic motion and the robot runs steadily.

When each leg link mass is 0.05kg and the torso mass is
5kg, the parameters are the same as in the simulation with
a leg link mass of 0.005kg, for except hd. Since the robot
becomes heavier, the hd is increased for a more desired
input energy. The CoM velocity and position curves of the
robot torso on three axes are shown in Figure 15. Although
the horizontal velocity error is larger than the error in
the experiment with the leg link mass at 0.005kg and the
vibration of the torso pitch becomes more severe, the robot
can still hop at a speed of 2m/s.

Parameter Unit Value
hd m 1.2
h0 m 0.65
hs m 0.75
ksz N·m/rad 1100
kdz N·m/(rad·s−1) 29
µxy 1 0.1

µzy (during Compressing Period) 1 0.19
µzy (during Releasing Period) 1 0.19

kv N/(m·s−1) 80
kSL m/(m·s−1) 0.11

Table 4. The parameters used in hopping control with a leg link
mass of 0.5kg and a desired horizontal velocity (vd) of 2m/s

When the leg link mass is raised to 0.5kg, the mass ratio of
leg/torso is raised to 1:5 and the rotation of the torso pitch
angle cased by the swing leg cannot be ignored any longer
in the swing phase. We have to set the desired torso’s
pitch angle at 0.15 rad to compensate for the rotation of
the torso in the swing phase and the control parameters for
doing so are shown in Table 4. The vibration of the torso’s
pitch angle is very strong, but there is no change in the
control approach. The results of the experiment with a leg
mass of 0.5kg are shown in Figure 16. The vibration of the
torso pitch becomes much more severe than in previous
experiments. Another simulation of 40 seconds shows that
the hop merges into a cyclic motion and the robot runs
steadily.

A demo of the experimental results can be viewed
at the following URL: http://v.youku.com/v_show/id_
XMTM1NTA2MTAyMA==.html.

6. Conclusions and Discussions

In this paper, we presented a planar hopping control
approach using a virtual model and energy planning based
on trotting gait. Using this approach, the planar motions
of the robot’s torso are decoupled and fully controllable
in the supporting phase. The proposed hopping control
approach is verified by simulated experiments. A number
of conclusions are drawn as follows.

Firstly, this approach is easy to implement using a micro
controller since computation complexity is very low. In
the hopping control, stiffness on the y-axis is generated
by the energy of the virtual model; this calculation highly
depends on kinematics and velocities and as such the
calculation is simpler than using a dynamics model, and
the controller does not require high computing capabilities
for real-time control.

Figure 15. With a leg link mass of 0.05kg, the velocity and
position curves of the robot torso’s CoM is shown during the hop.
The desired horizontal velocity (vd) is 2 m/s. The curves drawn in
red are the values measured by the two guides, the blue curves
are calculated by the forward kinematics and the green curves are
the desired values.

Secondly, gait is generated by the planned energy and
contact status of the feet, and is more adaptable to the
environment than gait planning based on time. A single
leg remains in the swing phase when the foot touches the
ground, except in the case of low stiffness or driving force.
Motion control of the foot with low stiffness in the swing
phase can effectively reduce impact when unexpected
contact occurs between the foot and ground. When the gait
is switched from the swing phase to the supporting phase,
both feet of the robot touch on the ground, and the virtual
vertical stiffness takes effect. When the gait is switched
from the supporting phase to the swing phase, one foot
takes off from the ground, the virtual vertical stiffness gets
unavailable. Therefore, gait can be aperiodic.

Thirdly, the mass of the legs will affect the performance
of the hopping control, particularly in the swing phase.
This is also a factor for other control models such as the
SLIP model. In addition, control based on the dynamics
model is too complex for calculating real-time control.
Many researchers have made significant efforts to reduce
the leg/torso mass ratio to solve this problem [5][14]. In
this paper, as the simulation demonstrates, the hopping
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Figure 15. With a leg link mass of 0.05kg, the velocity and position curves
of the robot torso’s CoM is shown during the hop. The desired horizontal
velocity (vd) is 2 m/s. The curves drawn in red are the values measured by
the two guides, the blue curves are calculated by the forward kinematics and
the green curves are the desired values.

A demo of the experimental results can be viewed at the
following URL: http://v.youku.com/v_show/id_
XMTM1NTA2MTAyMA==.html.

6. Conclusions and Discussions

In this paper, we presented a planar hopping control
approach using a virtual model and energy planning based
on trotting gait. Using this approach, the planar motions of
the robot’s torso are decoupled and fully controllable in the
supporting phase. The proposed hopping control approach
is verified by simulated experiments. A number of conclu‐
sions are drawn as follows.

Firstly, this approach is easy to implement using a micro
controller since computation complexity is very low. In the
hopping control, stiffness on the y -axis is generated by the
energy of the virtual model; this calculation highly depends

on kinematics and velocities and as such the calculation is
simpler than using a dynamics model, and the controller
does not require high computing capabilities for real-time
control.

Secondly, gait is generated by the planned energy and
contact status of the feet, and is more adaptable to the
environment than gait planning based on time. A single leg
remains in the swing phase when the foot touches the
ground, except in the case of low stiffness or driving force.
Motion control of the foot with low stiffness in the swing
phase can effectively reduce impact when unexpected
contact occurs between the foot and ground. When the gait
is switched from the swing phase to the supporting phase,
both feet of the robot touch on the ground, and the virtual
vertical stiffness takes effect. When the gait is switched
from the supporting phase to the swing phase, one foot
takes off from the ground, the virtual vertical stiffness gets
unavailable. Therefore, gait can be aperiodic.

Thirdly, the mass of the legs will affect the performance of
the hopping control, particularly in the swing phase. This
is also a factor for other control models such as the SLIP

Figure 16. With a leg link mass of 0.5kg, the velocity and position
curves of the robot torso’s CoM is shown during hopping. The
desired horizontal velocity (vd) is 2 m/s. The curves drawn in red
are the values measured by the two guides, the blue curves are
calculated by the forward kinematics and the green curves are the
desired values.

control method is available when the leg/torso mass ratio
is 1:5; however the parameters must be adjusted and the
vibration of the torso pitch angle is extremely severe in this
instance.

Finally, we used a group of high impedance parameters to
maintain the angular position of the torso’s posture. Thus,
the vibration of the torso’s pitch angle was weak during
hopping.

However, the high impedance parameters resulted in
lower posture stability and higher joint torques. ksz and
kdz were set based on the amplitude of the vibration of the
pitch angle of the torso and the output torques on joints.
The higher the ksz and kdz, the weaker the amplitude of
pitch vibration was. This also increased the output joint
torque. Thus, we set ksz and kdz as small as possible
to maintain the amplitude of the pitch vibration at less
than 0.03 rad (approximately 2 degrees). This rendered
the hopping process extremely sensitive to changes in
parameters with a higher horizontal speed. In future
research, we aim to improve the control model for the
torso’s posture, lower the impedance parameters using a

rhythmic vibration to achieve a higher running speed and
optimize these two parameters automatically.
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model. In addition, control based on the dynamics model
is too complex for calculating real-time control. Many
researchers have made significant efforts to reduce the leg/
torso mass ratio to solve this problem [5, 14]. In this paper,
as the simulation demonstrates, the hopping control
method is available when the leg/torso mass ratio is 1:5;
however the parameters must be adjusted and the vibration
of the torso pitch angle is extremely severe in this instance.

Finally, we used a group of high impedance parameters to
maintain the angular position of the torso’s posture. Thus,
the vibration of the torso’s pitch angle was weak during
hopping.

However, the high impedance parameters resulted in
lower posture stability and higher joint torques. ksz and kdz

were set based on the amplitude of the vibration of the pitch
angle of the torso and the output torques on joints. The
higher the ksz and kdz, the weaker the amplitude of pitch
vibration was. This also increased the output joint torque.
Thus, we set ksz and kdz as small as possible to maintain the
amplitude of the pitch vibration at less than 0.03 rad
(approximately 2 degrees). This rendered the hopping
process extremely sensitive to changes in parameters with
a higher horizontal speed. In future research, we aim to
improve the control model for the torso’s posture, lower
the impedance parameters using a rhythmic vibration to
achieve a higher running speed and optimize these two
parameters automatically.
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