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Abstract This paper presents a new profile shape 
matching stereovision algorithm that is designed to 
extract 3D information in real time. This algorithm 
obtains 3D information by matching profile intensity 
shapes of each corresponding row of the stereo image 
pair. It detects the corresponding matching patterns of 
the intensity profile rather than the intensity values of 
individual pixels or pixels in a small neighbourhood.  
This approach reduces the effect of the intensity and 
colour variations caused by lighting differences. As with 
all real-time vision algorithms, there is always a trade-off 
between accuracy and processing speed. This algorithm 
achieves a balance between the two to produce accurate 
results for real-time applications. To demonstrate its 
performance, the proposed algorithm is tested for human 
pose and hand gesture recognition to control a smart 
phone and an entertainment system. 
 
Keywords Profile Shape Matching, Real-Time 
Stereovision, Human Pose and Gesture Estimation, 
Resource-Limited Systems 
 

1. Introduction 
 
Stereovision has been the focus of computer vision 
research for several decades. Many new algorithms have 
been proposed in efforts to obtain better accuracy or 
higher processing speed. Generally, stereovision 
algorithms can be classified into sparse and dense 
algorithms [1]. Algorithms that output a sparse disparity 
map are usually feature-based methods and can produce 
accurate 3D information with limited density, which is 
not suitable for applications requiring dense-disparity 
information. As computational power has increased, 
dense-disparity methods have become popular in recent 
years and benefit more contemporary applications that 
demand dense output [1]. 
 
Scharstein and Szeliski proposed a method and 
infrastructure for quantitative evaluation of the accuracy 
of a dense stereovision algorithm [2]. This evaluation 
method provides a precise single number to determine 
the accuracy and has helped motivate researchers to  
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develop more accurate stereovision algorithms [3]. 
López-Valles [4] proposed calculation of the depth of the 
moving elements present in a video sequence by studying 
the correspondence of right and left image objects with a 
similar motion history, and achieved promising results. 
However, better accuracy almost always means more 
complicated computations. One stereovision algorithm 
may obtain highly accurate results, but the accompanying 
increased computational complexity limits its use for 
applications that require real-time performance. 
 
To meet the requirements of many contemporary 
applications, e.g., autonomous robotic platforms, 
Simultaneous Localization and Mapping (SLAM), or 
Human-Computer Interaction (HCI), some researchers 
focus on improving and optimizing the existing 
algorithms to generate 3D information in real time. Many 
of these attempts rely on hardware that is able to run 
processes in parallel, such as multi-core systems and 
single-instruction multiple data (SIMD) instructions.  
These approaches take advantage of the parallelizable 
nature of stereovision algorithms to achieve good results 
in real time. Other developed algorithms for embedded 
systems include Field-Programmable Gate Array (FPGA), 
Digital Signal Processor (DSP), Application-Specific 
Integrated Circuit (ASIC), and low-power multi-core 
processors. Most of these have successfully accelerated 
the processing speed for stereovision applications.  
 
With the wide use of light-weight, low-power, and 
passive-vision sensors, many stereovision applications 
require the algorithm to be implemented on resource-
limited systems including mobile phones, entertainment 
game consoles, security systems, and unmanned aerial 
vehicles. Darabiha et al. [5] implemented a stereo depth 
measurement algorithm on a reconfigurable board with 
four Xilinx Virtex2000E FPGAs. Gehrig et al. [6] proposed 
a real-time implementation of a semi-global algorithm for 
automotive applications on a power-limited 
reconfigurable hardware platform with a Xilinx Virtex-4 
FPGA. Tippetts et al. [7] implemented vision algorithms 
on an FPGA to provide additional information to 
supplement the insufficient data provided by a standard 
inertial measurement unit for micro-unmanned aerial 
vehicles. Samarawickrama implemented vision 
algorithms on FPGAs and evaluated their performance 
[8]. These systems usually have limited computational 
resources, e.g., constraints on weight, size, power, 
memory, and cost, which pose a big challenge to 
stereovision algorithm development due to 
computational complexity. Although advances in 
processing hardware technologies have been able to 
provide increasing computational power for systems with 
limited resources, studies on the trade-off between the 
accuracy and required resources continue to make 
contributions in advancing stereovision technology. 

A new profile shape matching stereovision algorithm that 
uses simple computations and little computational 
resources is presented in this paper. The proposed 
algorithm extracts image intensity values from the same 
image rows of the stereo image pair and matches the 
intensity profile shape row by row. This approach 
reduces the effect of intensity and colour differences 
caused by lighting variations [3]. The algorithm produces 
a dense disparity map after it iterates through each row 
of the images. Once the disparity map is generated, a 
disparity range can be selected to remove objects and 
background features that are out of the desired distance 
range in front of the cameras. In other words, object 
detection is not based on an object’s colour, intensity, or 
texture, but is determined by its distance from the 
cameras. Applications such as obstacle detection, human 
gesture recognition, and motion estimation can all benefit 
from isolating objects of interest from the background. 

 
The proposed algorithm can be implemented in an 
embedded system, which requires simple computation 
processes for real-time performance and is valuable for 
resource-limited systems that require 3D information. 
This algorithm is proved to be capable of performing 
human pose and hand gesture recognition in real time. 
We present our literature review in Section 2. The 
proposed algorithm is explained in detail in Section 3. 
Experiment results on human pose and hand gesture 
estimation are discussed in Section 4. A conclusion is 
given in Section 5. 

2. Background 

2.1 Stereo vision 

According to the way they assign disparities to pixels, 
dense disparity stereo matching algorithms can be 
categorized into local and global methods. Global 
methods assign a disparity value to each pixel according 
to the information on the whole image. Global methods 
are able to produce very accurate results but are time 
consuming and computationally demanding. Local 
methods determine the disparity of each pixel depending 
on the information on its neighbouring pixels. They are 
usually fast and able to produce decent results. These 
characteristics enable local methods to extract disparity 
map from image pairs in real time. Although global 
algorithms have produced the most accurate disparity 
maps in the past, many local algorithms have been 
developed in recent years that achieve competitive 
accuracy [9].  
 
There have been significant efforts to increase the runtime 
performance of global techniques by reducing iterations 
or simplifying energy functions. For example, Bleyer and 
colleagues have developed algorithms that minimize 
global energy functions, such as Segm+visib [10], 
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WarpMat [11], and PatchMatch [12]. However, global 
methods are not suitable for real-time implementation, 
especially for resource-limited systems, because of their 
slow processing speed. Most existing real-time and near 
real-time stereovision algorithms are local methods.  
 
Stereovision processing speed is often measured in 
million disparity evaluations per second, or Mde/s. 
Zhang et al. [13] proposed an adaptive correlation 
window approach able to achieve 6.328 Mde/s on a 
Pentium IV 3.0 GHz processor. Kosov et al. [14] applied a 
full approximation scheme to a multi-level adaption 
technique to minimize an energy function in RealtimeVar. 
Tippetts et al. [3] proposed a profile shape matching 
algorithm using intensity gradients to group and match 
shapes for each disparity level. This algorithm is able to 
process 640×480 images with a disparity range of 25 at 
33f/s on one core of a standard CPU. 
 
Research work has also been conducted using FPGA, 
ASIC, and DSP to implement a stereovision algorithm for 
real-time applications. Darabiha et al. [5] presented an 
FPGA-based stereo depth measurement algorithm which 
generates 8-bit sub-pixel disparities on 256×360 images at 
30 f/s. Gehrig et al. [15] proposed a real-time 
implementation of a stereo-matching algorithm which 
processes 680×400 images at 25 f/s. Ambrosch and 
Kubinger [16] provided a realization of a stereo-matching 
algorithm as an Intellectual Property core designed for 
the deployment in FPGAs and ASICs. Jin et al. [17] 
proposed an FPGA implementation of a Census-based 
stereovision algorithm able to process 640×480 frames at 
230 f/s. Gong et al. [18] employed a GPU to accelerate 
their algorithm, which can produce dense disparity maps 
for the Tsukuba image pair at a rate of 16 f/s.  
 
In our previous work [3], a stereovision algorithm based 
on intensity profile shape matching was proposed for 3D 
human gesture analysis and obstacle detection. This 
algorithm does not require complex computations and is 
sufficient for certain tasks that require 3-D information. In 
this paper, we present an improved version for real-time 
applications for resource-limited systems. Comparison 
results show the proposed algorithm obtains higher 
accuracy and performs 1.14 times faster than the original 
method in [3]. 

2.2 Human gesture and motion estimation 

Computer-vision-based human gesture and motion 
estimation techniques are capable of providing the user 
with a more natural and intuitive way to communicate 
with a computer by using a set of video cameras and 
computing hardware to interpret human gestures and 
finger motion. The non-obstructive nature of the resulting 
vision-based interface has led to a burst of recent 
activities in this research area [19].  

Gavrila [20] proposed grouping human motion analysis 
methods into 2D and 3D approaches. Aggarwal and Cai 
[21] classified the research in this field into three 
categories: body structure analysis, tracking, and 
recognition. The essential part of body structure analysis 
is pose estimation, which can be split into model-based 
and model-free, depending upon whether a priori 
information about the object shape is provided. Wang 
and Singh [22] separated the process of computational 
analysis of human movement into a tracking phase and a 
motion analysis phase. Tracking is performed for hands, 
heads and full bodies. Poppe [23] reviewed the taxonomy 
of vision-based human motion analysis. Turaga et al. [24] 
provided an overview of methods to perform machine 
recognition of human activities.  
 
In this paper, we use a new profile shape matching 
stereovision algorithm for real-time human pose and 
hand gesture recognition to control a smart phone or a 
hand-held device. Testing results demonstrate that the 
proposed stereovision algorithm achieves a balance 
between the accuracy and processing speed to produce 
accurate results in real time for human pose and hand 
gesture recognition. 
 
3. Profile shape matching algorithm 

3.1 Algorithm overview 

Figure 1 shows a Gaussian-filtered Tsukuba stereo image 
pair. Figure 2 shows the Gaussian-filtered row intensities 
from the Tsukuba stereo image pair in Figure 1(a) and 
Figure 1(b). It can be observed that the profiles of the two 
rows share a similar pattern that can be used to determine 
their disparity. Upon further examination, one profile 
actually contains spans that are not found in the other [3]. 
Examples of these subtle differences representing 
discontinuities in the disparity map are highlighted in 
Figure 3. The proposed algorithm assumes that all points 
included in an intensity profile shape, bounded by 
discontinuities, correspond to the same depth plane. 
Similar assumptions are found in [25-27]. It also assumes 
that a point can only match one unique corresponding 
point in the other image. This is known as the uniqueness 
constraint. The new stereovision algorithm developed in 
this work is based on these unique assumptions.  
 

Figure 1. Gaussian-filtered Tsukuba stereo image pair; (a) is the 
left image and (b) is the right image 
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Figure 2. Row profiles extracted along the white line in Figure 
1(a) and Figure 1(b) 
 

 
Figure 3. Red rectangle highlights the discontinuity between two 
superimposed profiles 
 
The proposed algorithm consists of five steps (see Figure 
4). A Gaussian filter is applied to both the left and the 
right images. The purpose of this step is to reduce noise 
and smooth the intensity profile to increase profile shape 
matching accuracy. Then the proposed algorithm selects 
candidate points for matching in the left image, based on 
the intensity changes between two neighbouring pixels. A 
voting mechanism is employed to identify the 
corresponding point in the right image for each candidate 
point. After a process of profile shape growing, all pixels 
are assigned a shape label. The final process of vertical 
smoothing is performed to include the information 
contained in the image columns. 
 

 
Figure 4. Overview of the proposed algorithm 

3.2 Candidate point selection 

After the images are smoothed, the algorithm selects 
points to match based on the intensity changes between 
two neighbouring pixels. The selected points are called 
candidate points.  There are two requirements for a pixel 
to be selected as a candidate point. First, the absolute 
intensity difference between the respective point and the 
next pixel is calculated. The absolute intensity difference 
will only be added to the accumulated change if it is 
greater than or equal to the minimum step threshold 

(MST). Second, a pixel will only be selected as a candidate 
point when its accumulated intensity difference is greater 
than or equal to the accumulated change threshold (ACT).   
 
Figure 5 shows a couple of examples of the candidate 
point selection process where the MST and ACT are set to 
2 and 5, respectively. Starting from the left pixel, the 
absolute intensity difference between the two adjacent 
pixels is 4. It is added to the total change (initialized to 0) 
because it is greater than 2 (the MST). The second pixel 
has an absolute intensity difference of 1, so it is ignored. 
The third pixel has an absolute intensity difference of 2, 
so it is added to the total change to make 6 (4+2=6). The 
third pixel is selected as a candidate point because the 
total change is greater than 5 (the ACT). Once a candidate 
point is selected, the process repeats from the next point 
with the total accumulative change reset to 0. The 
absolute intensity differences (arrows) highlighted in red 
are ignored because they are smaller than the MST. The 
two circled points are selected as candidate points 
because their total changes are greater than the ACT. This 
selection process reduces the possibility of selecting 
candidate points from flat surfaces and selects more 
candidate points from surfaces with abundant variances.  
 

 
Figure 5. Example of the candidate point selection process with 
MST set to 2 and ACT set to 5 

3.3 Candidate point matching 

For each candidate point in the left image, its 
corresponding candidate point in the right image is 
identified with a voting mechanism in Step 3. Every 
candidate point in the left image is treated as a starting 
point for searching and is expanded over a span of a 
certain length, l . The slope a

xS  between two consecutive 
pixel points is defined in Equation (1): 
 

   1
a a a
x x xS I I −= −                                 (1) 

 

where x is the row pixel index, a
xI is the intensity value of 

the point indexed by x , and a is either L (the left image) 
or R (the right image). 
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We define a disparity range with a lower bound LB and 
an upper bound UB , and repeat the same process for 
every pixel point in the right image which lies within the 
desired range, i.e., ,L L

i iP LB P UB − −  , where L
iP is the 

pixel index of the i-th candidate point of the left image. 
The proposed algorithm compares the slope R

yS  around 

the points within the desired range of the right image 
against the slope L

xS  around the candidate points of the 
left image.  
 
Two parameters, f  and f zc , are defined for candidate 
point matching. If the two compared slopes have the 
same sign and their absolute difference is less than the 
Same-Sign Threshold f , then they are considered 
matching patterns and the vote count is incremented. 
When L

xS and R
yS have different signs but their absolute 

difference is less than the Zero-Crossing Threshold, f zc , 
the two slopes can also be regarded as matching patterns 
and the vote count is incremented. The value of zcf is 
positive and less than f . The point of a span with the 
largest count of vote is selected as corresponding to the 
candidate point. This candidate point matching process is 
summarized in Algorithm 1.  

for 1i = to number of selected candidate points in the left 
image do 

_ max_ 0current vote =  
for L

ij P LB= −  to L
ij P UB= −  do 

0vote =  
for ,L R

i jx P l y P l= − = − to ,L R
i jx P l y P l= + = +  do 

if 
L
xS and 

R
yS  have the same sign and 

L R
x yS S f− <

 then 
Increment vote  

end
if L

xS and R
yS  have different signs and  

L R zc
x yS S f− < then 

Increment vote  
end

end
 if _ max_vote current vote>  then

_ max_current vote vote=  
      Corresponding point in the right image R

jP=  

 end
end

end

Algorithm 1. Looking for corresponding points in the right 
image for each row 
 
The employed voting mechanism finds matching patterns 
according to the gradient rather than the intensity value. 

It also ensures the slopes have similar orientation by 
testing their signs. This unique voting mechanism is 
robust even if the input image pair includes noise. 
 
An example of finding matching candidate points is 
shown in Figure 6. The same profile shown in Figure 5 is 
used as the left profile. In this example, the Zero-Crossing 
Threshold and the Same-Sign Threshold are set to 1 and 2, 
respectively. The algorithm starts by comparing the two 
circled points in Figure 6(a). It computes and compares 
the slopes near these two points. The highlighted slopes 
in the left profile are 2 and 3. The first highlighted slope 
in the right profile is 3, and the difference between the 
two first slopes from the left and the right profiles is less 
than the Same-Sign Threshold (set to 2). As a result, it 
receives one vote. However, the two-second slopes from 
the left and right profiles are not matched since the 
difference is greater than the Zero-Crossing Threshold. 
This process continues along the right profile. No match 
is found until the penultimate point, as shown in Figure 
6(b). The differences of the left and right slopes are both 
less than the Same-Sign Threshold, and the vote is the 
highest in the right profile. Therefore, these are 
considered the best match. The disparity value of the mth 
point pair is defined as the difference of their row pixel 
indices. 

 

 
(a) 

 
(b) 

Figure 6. An example of finding the corresponding point in the 
right profile with a Zero-Crossing Threshold of 1 and a Same-
Sign Threshold of 2; (a) receive one vote; (b) receive two votes 
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3.4 Profile shape growing 

Although candidate points are matched in the previous 
step, the majority of pixels of the current image row are 
still not included in any pattern. In Step 4, the patterns in 
the current row will expand from the matched points to 
cover every pixel using an increasing threshold. This 
process is summarized in Algorithm 2.  
 
Let a

mq and a
mp denote the beginning index and the end 

index of the span expanded from the mth point pair, 
respectively, and say a can be L (left image) and R (right 
image). The slopes at a

mq and a
mp  can be obtained with 

Equation (1), and denoted as 
m

a
qS and 

m

a
pS , respectively. 

We also define two threshold sets, T and zcT , for the 
matching process. The elements of these two threshold 
sets, nt T∈  and zc zc

nt T∈ , are increased in iterations.  
 
The absolute difference between 

m

L
qS  and 

m

R
qS  (or 

m

L
pS  and

m

R
pS ) is compared against the thresholds in each iteration. 

When one of the slopes of 
m

L
qS  and 

m

R
qS  (or 

m

L
pS  and

m

R
pS ) 

is zero, or if they have the same sign and their difference 
is less than nt , then the same shape label is assigned to 
these two neighbouring points. If 

m

L
qS  and 

m

R
qS  (or 

m

L
pS  

and
m

R
pS ) have different signs, the threshold zc

nt is used to 
evaluated the difference. The following list shows all the 
conditions under which the neighbouring points of L

mq  
and R

mq  (or L
mp  and R

mp ) can be considered to be part of 
the same pattern: 

(c-1) One of the slopes of 
m

L
qS  and 

m

R
qS  (or 

m

L
pS  and

m

R
pS

) is zero; 
(c-2) 

m

L
qS  and 

m

R
qS  (or 

m

L
pS  and

m

R
pS ) have the same sign 

and their difference is less than nt ; 
(c-3) 

m

L
qS  and 

m

R
qS  (or 

m

L
pS  and

m

R
pS ) have different 

signs, but the absolute difference is less than zc
nt . 

 
The values of zc

nt  and tn are set by the user to make the 
algorithm robust to noise. Because a slope pair with the 
same sign is more likely from the same pattern, while a 
slope pair with different signs is less likely from the same 
pattern, we set the value of zc

nt  to be smaller than the 
value of tn .  
 
A similar process takes place for 

m

L
pS and

m

R
pS . This 

process only assigns a shape to the points that have not 
been included into any shape. Thus, the span ,a a

m mq p    
grows longer with the increasing of the thresholds until 
all pixels are assigned with a shape label.
 
 

__________________________________________ 

for nt in threshold set T  do 
0error =  

for 1m = to number of matched point pairs do 
while 0error ==  do 

     if (c-1) or (c-2) or (c-3) is satisfied 
         decrease q  
     else 
         1error =  
     end
 end

0error =  
 while 0error == do 
     if (c-1) or (c-2) or (c-3) is satisfied 
         increase p  
     else 
         1error =  
     end

end
end

end
 

Algorithm 2. Matching patterns for each row 
 

3.5 Vertical smoothing 

The final step of the proposed algorithm is a vertical 
smoothing process. Since the matching process is a row-
wise operation, the information contained in the image 
columns is not considered in the previous steps of the 
process. The vertical smoothing process accumulates the 
five pixels above and below the target pixel according to 
the disparity value. The target pixel is then modified to 
take the disparity value with the greatest number of votes. 
This 11-pixel voting scheme produces the final disparity 
map. 

3.6 Discussion 

The proposed algorithm selects a candidate point when 
the accumulated change is greater than the accumulated 
change threshold. Every selected point expands a span 
with l pixel width. A total of ( )3 1l× −  subtractions and 

2× (l −1) comparisons are needed for comparing slopes in 
two spans. Let maxd denote the desired disparity range, 
and maxd iterations are needed for determining a best 
match. In the worst-case scenario, we assume all 
differences between pixels are greater than the 
accumulated change threshold, i.e., every point is 
assumed to be a candidate point. The number of 
operations per pixel is ( ) max3 1l d× − × plus 2× (l −1) + dmax

 

comparisons.  
 
Compared with our previous version of the profile shape 
matching algorithm, presented in [3], this improved  
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version does not need to sort the selected vertices and 
start the matching process with the vertex that has the 
highest intensity value in a row. Additionally, the 
proposed algorithm needs fewer thresholds than the 
original version. Depending on the amount of selected 
points, it may need fewer subtractions and 
comparisons in total, on some images. In other words, 
it can achieve higher accuracy and close or even faster 
running speeds. 
 
4. Testing and results 
 
The new stereovision algorithm was first tested on a 
Tsukuba stereo image pair to evaluate its accuracy. It was 
also tested for human pose and hand gesture recognition 
to demonstrate its real-time performance. For human 
pose recognition, the disparity map obtained with the 
proposed algorithm was first used as a mask to isolate the 
human body from the background. Human pose was 
then estimated by analysing the relative 3D positions of 
the joints of a human skeleton model. For hand gesture 
recognition, after locating the fingertips, the depth and 
the relative finger positions in the region of interest were 
used to estimate the hand gesture to control a smart 
phone. 

4.1 Algorithm parameters 

A brute force method was applied to find the optimal 
combination of parameters for different applications. An 
optimal combination of parameters was selected to 
generate the disparity map with high accuracy and fast 
processing speed. Kernel sizes from 5×5 to 25×25 with 
standard deviation values from 1 to 10 with 0.5 intervals 
for Gaussian filter were tested. There are a total of seven 
parameters from Step 2 to Step 4 of the proposed 
algorithm: MST, ACT, l , f  , zcf , nt , and zc

nt . The brute 
force approach was used to determine the best 
combination of these seven parameters. The combination 
of parameters that generates the best result in Tsukuba 
and human pose estimation was a 9×9 kernel size with a 
standard deviation value of 3; the rest of the parameters 
are listed in Table 1. 

 
Tsukuba Human pose estimation 

MST 5 0.5 
ACT 30 10 

l 5 10 
f 1 5 

zcf 0.4 0 

nt 1, 5, 8 0.4, 0.8, 1.5, 2 
zc
nt 0.4 0.3, 0.4 

Table 1. The parameters that generate the best result in Tsukuba 
and human pose estimation 

4.2 Hardware  

The profile shape matching algorithm was implemented 
in C++ without any manual code optimization and 
executed on a machine with an AMD Phenom II 2.8 GHz 
processor. The stereo camera system for human gesture 
estimation is shown in Figure 7. This system uses two 
PointGrey Flea®2 CCD cameras. The two cameras were 
adjusted manually so that their optical axes were close to 
parallel. The images were used in our algorithm without 
rectification to prove the algorithm’s robustness. The 
resolution of both input images was 640×480. The 
Gaussian filter, morphological operation, Haar face 
detection, flood fill algorithm, linear regression, and 
convex hull algorithm were implemented using the 
OpenCV library.  
 

 
Figure 7. The stereo camera system for human pose estimation 

4.3 Accuracy measurement 

The metric used for accuracy measurement is called bad 
matching pixel measurement [2]. This computes the 
disparity difference between the obtained disparity map 
and the ground truth in the same pixel index. A pixel is 
regarded as a bad matching pixel if its disparity error is 
greater than a threshold, dδ , which is called the disparity 
error tolerance and set by the user to evaluate the quality 
of the computed correspondences [2]. The percentage of 
bad matching pixels is calculated as 
 

( ) ( )( )
,

1 , ,C T d
x y

B d x y d x y
N

δ= − >                  (2) 

 
where N is the total number of pixels, ( ),Cd x y is the 

value of a pixel point in the obtained disparity map, and 
( ),Td x y is the disparity value of a pixel point in the 

ground truth image. 
 
The accuracy measurement computes the percentage of 
bad matching pixels in two cases: all and nonocc. In the 
first case, the disparity difference is calculated in the 
whole image except the black boundary, as shown in 
Figure 8(a). The second case computes the difference of 
the non-occluded region, which is shown as white areas 
in Figure 8(b). The occluded areas highlighted in black 
are excluded. The ground truth for both cases is obtained 
from the Middlebury online library. 
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(a)                                      (b) 

Figure 8. Bad matching pixels are computed in the whole image 
in (a) and in the non-occluded region in (b) 

4.4 Resulting images of Tsukuba stereo image pair 

The Tsukuba stereo image pair is a well-known computer 
generated image pair for testing the accuracy of 
stereovision algorithms. Figure 9(a) shows the ground 
truth of its disparity map. Different intensity values 
represent different distances from the object to the stereo 
camera system. Figure 9(b) is the result produced by the 
previous version [3]. Figure 9(c) is the disparity map 
obtained with the improved profile shape matching 
algorithm. Figure 9(d) demonstrates the disparity map 
when a zero mean Gaussian noise with standard 
deviation of 2 was added to the right image. The result 
demonstrates the more-than-adequate accuracy and 
robustness of the proposed algorithm.  
 

 

 
(a)                                        (b) 

 
(c)                                         (d) 

Figure 9. (a) The ground truth of the Tsukuba stereo image pair.  
(b) The disparity map of the original algorithm. (c) The disparity 
map of our algorithm. (d) The disparity map obtained by our 
algorithm when a Gaussian noise with zero mean and a standard 
deviation of 2 is added to the right image. 
 

 

 Images nonocc≥1 all≥1 nonocc>2 all>2 
Original 
Version 

Tsukuba 9.6 11.5 3.2 5.0 

Improved 
Version 

Tsukuba 6.5 8.1 2.2 3.6 

Table 2. Percentage of bad matching pixels in the disparity map 
 
 
 

The percentages of bad matching pixels given by the 
original algorithm and this improved version are shown 
in Table 2. The accuracy measurement was calculated 
using Equation (2). The columns with the label all show 
the differences between the ground truth and the 
obtained disparity map for every pixel except those in the 
black region on the border, as shown in Figure 8(a). In the 
case of nonocc, the accuracy measurement calculates the 
disparity differences pixel by pixel only in the white areas 
in Figure 8(b).  
 
The labels nonocc≥1 and all≥1 indicate that a pixel is 
counted as a bad matching pixel when its disparity 
difference is greater than or equal to 1. The labels nonocc>2 
and all>2 represent that a pixel is considered as a bad 
matching pixel when the disparity difference is greater 
than 2. In all cases, the proposed algorithm has a lower 
percentage of bad matching pixels than the original 
version. The improved version removes approximately 
30% more bad matching pixels than the original version. 
The average processing time for the entire profile shape 
matching algorithm, from Gaussian smoothing to vertical 
smoothing, was 16 mSec (62 fps); it is now 14 mSec (66 
fps) for the improved version. The improved version is 
approximately 1.14 times faster than the version 
presented in [3]. A performance comparison with other 
stereovision methods is already included in [3] and will 
not repeated here.  

4.5 Human pose estimation 

Using the disparity map obtained by the proposed 
algorithm as a mask, objects within the desired distance 
range are detected and retained. Objects outside the 
range are removed. In this application, the region of the 
body was segmented from the background. A face 
detection algorithm [28] was used to localize the blob of 
the body. Once the coordinate of the face was obtained, a 
flood fill algorithm was applied to find the connected 
components of the face. Using the labelled blob of the 
body and the size of the detected face, a human skeleton 
model was built for pose estimation. The ratios between 
human joints were fixed and determined based on the 
NASA Anthropometric Source Book [29]. Then the 
disparity values were assigned to the corresponding 
joints of the skeleton model. The pose was then estimated 
with the depths and the relative positions of the joints.  
 
Figure 10 shows the created mask and the segmented 
region of the body. Figure 11 shows the result of the flood 
fill algorithm using the face coordinate as the seed, and 
an example of human skeleton fitting. 
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(a)                                             (b) 

Figure 10. The created mask (a) and the segmented region of the 
body (b) 
 

 
(a)                                             (b) 

Figure 11. The result of the flood fill algorithm using the face 
coordinate as the seed (the blue region indicates the blob of the 
body) (a) and an example of skeleton fitting (b) 
 
In Figure 11, the disparity range was selected at between 
35 to 45 pixels. The background was removed because it 
was outside the desired distance range. Different colours 
were used to represent the object distances: green was for 
the farthest objects, yellow for the mid-range, and red for 
the closest. In order to speed up the process, we specified 
a certain region for face detection. As a result, the process 
only worked when a face appeared in the region. 
 
Figures 12(a) and 12(b) show the left and right input 
images from the stereo camera system, respectively. The 
human model put both hands on his knees, as shown in 
red in Figure 12(c). The red colour indicates that the 
hands were closer to the cameras than the green parts of 
the body. The colour dots on the human skeleton model 
in Figure 12(d) represent the depths of each part. Figures 
13(a) and 13(b) show the right arm raised and moved 
forward. The right palm and right elbow were at the 
same depth and were assigned the same red colour 
(Figures 13(c) and 13(d)). The images for the right arm 
moved backward are shown in Figures 14(a) and 14(b). 
The movement was detected as shown in Figure 14(c), 
and the obtained skeleton model is shown in Figure 
14(d). 
 

 
(a)                  (b)                   (c)                  (d) 

Figure 12. The left (a) and the right (b) input images; the 
generated human model (c); the human skeleton model with 
colour dots reflecting the depth of each joint (d) 

 
(a)                  (b)                   (c)                  (d) 

Figure 13. The left image (a) and the right image (b) for right arm 
raised and moved forward; the generated human model (c); the 
human skeleton model with colour dots reflecting the depth of 
each joint (d) 
 
More results are shown in Figure 15. The algorithm 
detects the face in the blue rectangle. The colour of the 
joints in Figures 15(a)-(c) indicates they were at the same 
distance from the cameras. The red dot in Figure 15(d) in 
the right-hand position shows that the hand was closer to 
the cameras than other joints. A similar result can be seen 
in Figure 15(e), which shows the left arm moved forward. 
In Figure 15(f), the green dots on the right arm indicate 
that they were farther from the cameras than the head. By 
analysing the colour dots in Figure 15, the human gesture 
can be determined and used for interfacing with a 
computing device. 
 

 
(a)                  (b)                   (c)                  (d) 

Figure 14. The left image (a) and the right image (b) for right arm 
raised and moved backward; the generated human model (c); the 
human skeleton model with colour dots reflecting the depth of 
each joint (d) 
 

 
(a)                               (b)                           (c) 

 
(d)                               (e)                           (f) 

Figure 15. The skeleton fitting results of different gestures. All 
joints in (a), (b), and (c) were on the same depth plane. The right 
hand in (d) was moved forward. The left arm was moved 
forward in (e). In (f), the left arm was moved forward and the 
right arm moved backward. 

4.6 Hand gesture estimation 

For hand gesture estimation, similarly to human pose 
estimation, the background was removed by retaining 
objects within the desired distance range and excluding 
those outside the range. The hand region was then extracted 
from the background and the convex hull of the hand was 
determined by using the method presented in [30].  Since 
the vertices of the convex hull may not always be formed 
by fingertips, we selected a region of interest and only 
detected the vertices in this region. An example is shown in 
Figure 16. All five fingertips are depicted by red circles.  
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(a)                                     (b)  

  
(c) 

Figure 16. Segmented hand from the background (a); the convex 
hull of the hand (b); the fingertips forming the convex hull (c) 
 
According to the obtained disparity map, disparity values 
were assigned to these fingertip locations. The depth and 
the relative position of the fingertips in the detecting 
region were utilized to estimate hand gesture.  Each 
estimated gesture was employed as a specific function to 
control a smart phone or tablet computer. The analysed 
results are interpreted as specific keys on the keyboard. 
An Android application, ShareKM [31], which maps the 
keyboard inputs to the software functions, was used to 
control a hand-held device.  
 
Figures 17(a) and (b) show the regions of the hand which 
were segmented from the left and right input images. In 
Figure 17, the index and middle finger had the same 
disparity value as the palm and arm. This is reflected in 
Figure 17(c). The hand gesture estimation was obtained 
by combining the disparity values with the locations of 
the fingertips. Figure 17(d) shows the estimation result. 
The tips of the index and middle fingers had the same 
distance and were assigned the same colour.  
 
The middle finger was moved forward in Figures 18(a) 
and 18(b). As a result, the middle fingertip was assigned 
yellow, as shown in Figure 18(c). The depths of the 
fingertips are shown in different colours in Figure 18(d). 
Depending on the distance and the depth of the 
fingertips, different hand gestures were recognized. Since 
each defined gesture had been assigned a key input of a 
keyboard, through the Android application mentioned 
previously, the keys were mapped to the defined 
functions to control a smart phone. 
 

         
(a)                                 (b) 

         
(c)                                 (d) 

Figure 17. The hand regions segmented from the left (a) and 
right (b) input images; the disparity map of the hand (c), where 
the index and middle fingers had the same disparity value as the 
palm and arm; the estimation of the hand gesture (d) 
 

        
(a)                                 (b) 

        
(c)                                 (d) 

Figure 18. The hand regions segmented from the left (a) and 
right (b) input images, where the middle finger was moved 
forward; the disparity map of the hand (c); the estimation of the 
hand gesture (d) 

 
In our experiment for human hand gesture estimation, 
the region of interest was a 200×100 area in the middle of 
the image; the colour representations for distances were 
the same as mentioned in Section 4.5. We assigned four 
gestures, as shown in Figure 19, to control a smart phone: 
turn on/off screen, play/stop music, play previous song, 
and play next song. Commands were given using the 
index and middle fingers. The system was not allowed to 
receive more than one command within three seconds.  
 
To turn on/off the screen, the user needed to bring the 
index and middle fingers together while staying in the 
defined region of interest. The play/stop music command 
was sent when the distance between two fingertips was 
more than 40 pixels. Moving the middle finger forward 
was assigned to play the next song, and moving the index 
forward was assigned to play the previous song. The 
experiment results showed that the algorithm was able to 
control the four functions on a smart phone. 

 

       
(a)              (b)               (c)             (d) 

Figure 19. Defined hand gestures: (a) turn on/off; (b) play/stop 
music; (c) select the previous song; (d) select the next song 
 
5. Conclusion 
 
This paper presents a new stereovision algorithm that is 
efficient for real-time applications. This algorithm 
achieves real-time performance without any manual 
optimization. Unlike the depth or 3D camera, which uses 
infrared to measure the distance and is easily affected by 
lighting variations, this algorithm determines the object 
distance based on relative intensity changes. It requires 
very simple computations. It is suitable for applications 
that use resource-limited systems in either indoor or 
outdoor environments.  
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The proposed algorithm does not require the input image 
pair to be rectified or the stereo camera system to be in 
perfect canonical form. It is able to generate an accurate 
disparity map for human gesture analysis. Although the 
performance of this algorithm for the two applications 
discussed in Sections 4.5 and 4.6 is hard to quantify, the 
results shown in Figures 12-19 are all quite good. 
Occasionally, there were a very few frames where the 
joint or fingertip locations were not quite accurate. These 
intermittent errors did not affect the final post and 
gesture estimations. The experimental results 
demonstrate the accuracy and robustness of the proposed 
algorithm and show its feasibility for real-time human 
gesture estimation for video-based non-contact human-
computer interfaces. 
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