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Abstract 
Background/aims: Geldanamycin, a benzoquinone ansamycin antibiotic, and its analogues 
induce apoptosis of tumor cells and are thus considered for the treatment of cancer. Similar to 
apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death 
characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-
exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-
concentration ([Ca2+]i) and formation of ceramide. The present study explored, whether 
geldanamycin modifies [Ca2+]i, ceramide formation, cell volume and phosphatidylserine 
abundance at the erythrocyte surface. Methods: Erythrocyte volume was estimated from 
forward scatter, phosphatidylserine-abundance from annexin V binding, hemolysis from 
hemoglobin release, ceramide formation from binding of fluorescent antibodies and  
[Ca2+]i from Fluo3-fluorescence. Results: A 48 hours exposure to geldanamycin significantly 
decreased forward scatter (≥ 5 µM), significantly increased annexin-V-binding (≥ 25 µM), 
but did not significantly modify Fluo3-fluorescence (up to 50 µM). The annexin-V-binding 
following geldanamycin treatment was not significantly modified by removal of extracellular 
Ca2+ but was paralleled by significantly increased ceramide formation (50 µM). Conclusions: 
Geldanamycin stinulated eryptosis, an effect at least partially due to ceramide formation.

Introduction

The benzoquinone ansamycin antibiotic geldanamycin has been shown to inhibit heat 
shock protein Hsp90 [1-12], which prevents stress-induced cellular damage [2], stabilizes 
various oncogenic kinases [1, 7, 9, 10, 12] and influences gene expression e.g. by up-
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regulating NF-κB [13, 14]. As Hsp90 expression is particularly high in cancer cells and is 
associated with tumor cell progression, invasion and formation of metastases, as well as 
development of drug resistance [2], geldanamycin and its analogues have been considered 
for treament of cancer [2, 3, 12, 15-19]. Geldanamycin has been shown to induce apoptosis 
[1, 5, 6, 8-10, 15, 20-23], an effect paralleled by altered gene expression, downregulation of 
Akt, p38 MAPK activation, mitochondrial depolarization, reactive oxygen species formation, 
decline of reduced glutathion, lipid peroxidation and caspase activation [5, 9, 15, 20, 21]. 
On the other hand, geldanamycin may counteract neuronal injury, an effect attributed to 
destabilization of RIP1 protein [4, 7, 24].

Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal 
erythrocyte death characterized by cell membrane scrambling and cell shrinkage [25]. 
Eryptosis may be triggered by increased cytosolic Ca2+ concentration ([Ca2+]i) resulting from 
Ca2+ entry through Ca2+-permeable cation channels [26, 27] or from permeabilization of the 
cell membrane e.g. by hemolysin [28]. Increased [Ca2+]i leads to cell shrinkage by activation of 
Ca2+-sensitive K+ channels [29] with K+ exit, hyperpolarization, Cl- exit and thus cellular loss 
of KCl and osmotically obliged water [30]. Increased [Ca2+]i  further triggers phospholipid 
scrambling of the cell membrane with translocation of phosphatidylserine to the erythrocyte 
surface [31]. Ca2+ sensitivity of phospholipid scrambling is enhanced by ceramide [32]. 
Eryptosis may further be stimulated by energy depletion [33] and caspase activation [34-
38]. Kinases participating in the regulation of eryptosis include AMP activated kinase AMPK 
[27], cGMP-dependent protein kinase [39], Janus-activated kinase JAK3 [40], casein kinase 
1α [41, 42], p38 kinase [43], PAK2 kinase [44] as well as sorafenib [45] and sunitinib [46] 
sensitive kinases.

Eryptosis is a physiological mechanism preceding and actually preventing hemolysis of 
defective erythrocytes [32]. Excessive cell swelling may lead to rupture of the erythrocyte 
cell membrane, resulting in hemolysis with release of cellular hemoglobin, which is filtered in 
renal glomerula and subsequently occludes renal tubules [47]. The activation of K+ channels 
during eryptosis counteracts cell swelling and thus hemolysis [30].

The present study explored, whether geldanamycin modifies erythrocyte [Ca2+]i, 
erythrocyte volume and/or phosphatidylserine abundance at the erythrocyte surface. 

Materials and Methods

Erythrocytes, solutions and chemicals
Leukocyte-depleted erythrocytes were kindly provided by the blood bank of the University of Tübingen. 

The study is approved by the ethics committee of the University of Tübingen (184/2003V). Erythrocytes 
were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 125 NaCl, 5 KCl, 1 
MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl2; pH 7.4 at 37°C 
for 48 h. Where indicated, erythrocytes were exposed to geldanamycin (Enzo, Lörrach, Germany) at the 
indicated concentrations. In Ca2+-free Ringer solution, 1 mM CaCl2 was substituted by 1 mM glycol-bis(2-
aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). 

 FACS analysis of annexin-V-binding and forward scatter
After incubation under the respective experimental condition, 50 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. In the following, the 
forward scatter (FSC) of the cells was determined, and annexin-V fluorescence intensity was measured 
with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur (BD, 
Heidelberg, Germany).

 Measurement of intracellular Ca2+

After incubation erythrocytes were washed in Ringer solution and then loaded with Fluo-3/AM 
(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 2 µM Fluo-3/AM. The cells were 
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incubated at 37°C for 30 min and washed twice in Ringer solution containing 5 mM CaCl2. The Fluo-3/
AM-loaded erythrocytes were resuspended in 200 µl Ringer. Then, Ca2+-dependent fluorescence intensity 
was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS 
Calibur.

Determination of ceramide formation
For the determination of ceramide, a monoclonal antibody-based assay was used. After incubation, 

cells were stained for 1 hour at 37°C with 1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, 
Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:5. The samples were 
washed twice with PBS-BSA. Subsequently, the cells were stained for 30 minutes with polyclonal fluorescein 
isothiocyanate (FITC) conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, 
Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed by repeated washing with 
PBS-BSA. The samples were then analyzed by flow cytometric analysis with an excitation wavelength of 488 
nm and an emission wavelength of 530 nm. 

Measurement of hemolysis
For the determination of hemolysis the samples were centrifuged (3 min at 400 g, room temperature) 

after incubation, and the supernatants were harvested. As a measure of hemolysis, the hemoglobin (Hb) 
concentration of the supernatant was determined photometrically at 405 nm. The absorption of the 
supernatant of erythrocytes lysed in distilled water was defined as 100% hemolysis.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for 
control and experimental conditions.

Results

The present study addressed the effect of geldanamycin on eryptosis. Hallmarks of 
eryptosis include cell shrinkage. Thus, cell volume was estimated utilizing forward scatter. 
The forward scatter was determined by flow cytometry. As shown in Fig. 1A,B, a 48 hours 

Fig. 1. Effect of geldanamycin on erythrocyte forward scatter. (A) Original histogram of forward scatter of 
erythrocytes following exposure for 48 hours to Ringer solution without (grey shadow) and with (black 
line) presence of 50 µM geldanamycin. (B) Arithmetic means ± SEM (n = 12) of the normalized erythrocyte 
forward scatter (FSC) following incubation for 48 hours to Ringer solution without (white bar) or with 
(black bars) geldanamycin (5-50 µM). *** (p<0.001) indicates significant difference from the absence of 
geldanamycin (ANOVA).
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exposure to geldanamycin resulted in a decrease of forward scatter, an effect reaching 
statistical significance at 5 µM geldanamycin concentration. 

The second hallmark of eryptosis is cell membrane scrambling with subsequent increase 
of phosphatidylserine abundance at the cell surface. Accordingly, phosphatidylserine 
exposing erythrocytes were identified by annexin-V-binding in flow cytometry. As illustrated 
in Fig. 2A,B, a 48 hours exposure to geldanamycin increased the percentage of annexin-V-
binding erythrocytes, an effect reaching statistical significance at 25 µM geldanamycin 
concentration. 

In order to test, whether geldanamycin exposure leads to hemolysis, the percentage of 
hemolysed erythrocytes was estimated from hemoglobin concentration in the supernatant. 
As shown in Fig. 2B, a 48 hours exposure to geldanamycin increased the hemoglobin 
concentration in the supernatant, an effect reaching statistical significance at 25 µM 
geldanamycin concentration. Notably, the percentage of hemolytic erythrocytes remained 
almost one magnitude smaller than the percentage of phosphatidylserine exposing 
erythrocytes (Fig. 2C).

Fig. 2. Effect of geldanamycin on phosphatidylserine exposure and hemolysis. (A) Original histogram 
of annexin V binding of erythrocytes following exposure for 48 hours to Ringer solution without (grey 
shadow) and with (black line) presence of 50 µM geldanamycin. (B) Arithmetic means ± SEM (n = 12) of 
erythrocyte annexin-V-binding (PS-(+) cells) following incubation for 48 hours to Ringer solution without 
(white bar) or with (black bars) presence of geldanamycin (5-50 µM). (C) Arithmetic means ± SEM (n = 4) 
of the percentage of hemolysis following incubation for 48 hours to Ringer solution without (white bar) or 
with (grey bars) presence of geldanamycin (5-50 µM). *** (p<0.001) indicate significant differences from 
the absence of geldanamycin (ANOVA).

Fig. 3. Effect of geldanamycin on erythrocyte cytosolic Ca2+ concentration. (A) Original histogram of Fluo3 
fluorescence in erythrocytes following exposure for 48 hours to Ringer solution without (grey shadow) 
and with (black line) presence of 50 µM geldanamycin. (B) Arithmetic means ± SEM (n = 12) of the Fluo3 
fluorescence (arbitrary units) in erythrocytes exposed for 48 hours to Ringer solution without (white bar) 
or with (black bars) geldanamycin (5-50 µM).
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In an attempt to elucidate the mechanisms underlying the triggering of erythrocyte 
shrinkage and cell membrane scrambling following geldanamycin exposure, cytosolic Ca2+ 
concentration ([Ca2+]i) was determined utilizing Fluo3 fluorescence. To this end, erythrocytes 
were loaded with Fluo3-AM and Fluo3 fluorescence determined in FACS analysis following 
incubation in Ringer solution without or with geldanamycin (1-50 µM). As illustrated in 
Fig. 3, a 48 hours exposure of human erythrocytes to geldanamycin up to 50 µM remained 
without significant effect on Fluo3 fluorescence. 

To further elucidate the role of Ca2+, an additional series of experiments explored 
whether extracellular Ca2+ entry was required for the effect of geldanamycin on cell 
membrane scrambling. To this end, erythrocytes were exposed to 50 µM geldanamycin for 
48 hours either in the presence of 1 mM Ca2+ or in the absence of Ca2+ and the presence of 
Ca2+ chelator EGTA (1 mM). As illustrated in Fig. 4, the effect of geldanamycin on annexin-V-
binding was virtually the same in the presence and nominal absence of Ca2+.

Additional experiments explored, whether geldanamycin stimulates the formation of 
ceramide, which has previously been shown to trigger eryptosis even at constant [Ca2+]i. 
Ceramide abundance at the erythrocyte surface was determined utilizing an anti-ceramide 
antibody. As shown in Fig. 5, a 48 hours exposure to geldanamycin increased the abundance 
of ceramide at the erythrocyte surface, an effect reaching statistical significance at 25 µM 
geldanamycin concentration.

Fig. 4. Effect of Ca2+ withdrawal on geldanamycin- induced 
annexin-V-binding. Arithmetic means ± SEM (n = 6) of the 
percentage of annexin-V-binding erythrocytes after a 48 
hours treatment with Ringer solution without (white bar) 
or with (black bars) 50 µM geldanamycin in the presence 
(left bars, Plus Calcium) and absence (right bars, Minus 
Calcium) of calcium. *** (p<0.001) indicates significant 
difference from the absence of geldanamycin (ANOVA).

Fig. 5. Effect of geldanamycin on ceramide formation. (A) Original histogram of ceramide surface abun-
dance of erythrocytes following exposure for 48 hours to Ringer solution without (grey shadow) and with 
(black line) presence of 50 µM geldanamycin. (B) Arithmetic means ± SEM (n = 4) of ceramide abundance 
after a 48 hours incubation in Ringer solution without (white bar) or with 50 µM geldanamycin (black bar). 
* (p<0.05) indicates significant difference from the absence of geldanamycin (t test). 
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Discussion

The present study uncovers a novel effect of geldanamycin, i.e. the stimulation of 
suicidal erythrocyte death. Exposure of human erythrocytes to geldanamycin is followed by 
erythrocyte shrinkage and erythrocyte membrane scrambling, both hallmarks of eryptosis. 
The concentrations required were similar to those previously observed in vivo [48].

Similar to geldanamycin, a wide variety of xenobiotics stimulate eryptosis [46, 49-
75]. However, most xenobiotics triggering eryptosis do so by increasing cytosolic Ca2+ 
concentration [32]. They are effective by activation of the endogenous Ca2+ permeable non-
selective cation channels, which involve somehow the transient receptor potential channel 
TRPC6 [26] and are activated by oxidative stress [75] . Activation of those channels shrinks 
erythrocytes by stimulating entry of extracellular Ca2+ with subsequent increase of cytosolic 
Ca2+ concentration ([Ca2+]i), and activation of Ca2+ sensitive K+ channels [29, 75]. The activation 
of the Ca2+ sensitive K+ channels leads to K+ exit, cell membrane hyperpolarisation, Cl- exit 
and thus cellular loss of KCl with osmotically obliged water [30]. Even though geldanamycin 
does not appreciably affect [Ca2+]i, it still leads to a marked and robust decrease of forward 
scatter. The cell shrinkage is already maximal at geldanamycin concentrations, which have 
little effect on phosphatidylserine exposure. Possibly, geldanamycin shrinks erythrocytes 
by Ca2+ independent activation of K+ channels, an effect already maximal at the lowest 
geldanamycin concentrations used and thus seemingly lacking dose-dependence.  

The effect of geldanamycin on cell membrane scrambling is at least partially due to 
formation of ceramide, which sensitizes the cells to the eryptotic effects of [Ca2+]i and is thus 
capable to trigger eryptosis without increase of [Ca2+]i [32]. 

Excessive eryptosis contributes to several clinical disorders [25] including diabetes [38, 
75, 76], renal insufficiency [75] , hemolytic uremic syndrome [77], sepsis [78], malaria [79, 
80], sickle cell disease [81], Wilson’s disease [80], iron deficiency [82], malignancy [83], 
phosphate depletion [84], and metabolic syndrome [71]. Again, those disorders are mostly 
effective by increasing cytosolic Ca2+ concentration [32]. 

Eryptotic erythrocytes are cleared from circulating blood with subsequent development 
of anemia, if the accelerated loss of erythrocytes is not compensated by enhanced formation 
of new erythrocytes [25]. Phosphatidylserine exposing erythrocytes may further adhere to 
endothelial CXCL16/SR-PSO of the vascular wall [85], which may, at least in theory, interfere 
with blood flow [85-90]. Phosphatidylserine exposing erythrocytes may further stimulate 
blood clotting and thus favour the development of thrombosis [86, 91, 92]. In view of the 
present observations, those potential side effects must be considered during the use of 
geldanamycin. 

Conclusions

Geldanamycin triggers eryptosis, an effect at least partially due to stimulation of 
ceramide formation. Geldanamycin stimulates cell membrane scrambling and cell shrinkage 
and thus suicidal death of human erythrocytes by mechanisms not requiring Ca2+ entry. 
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