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Abstract
Background: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The 
underlying molecular adaptations are unclear, but might provide targets for therapeutic 
interventions. We therefore conceived a study to determine molecular changes of early 
pulmonary stress failure in a model of tachycardia-induced heart failure. Methods: 
CHF was induced in rabbits by progessive right ventricular pacing (n=6). Invasive blood 
pressure measurements and echocardiography were repeatedly performed. Untreated 
animals served as controls (n=6). Pulmonary tissue specimens were subjected to two-
dimensional gel electrophoresis, and differentially expressed proteins were identified by 
mass spectrometry. Selected proteins were validated by Western Blot analysis and localized 
by immunohistochemical staining. Results: CHF animals were characterized by significantly 
altered functional, morphological, and hemodynamic parameters. Upon proteomic profiling, 
a total of 33 proteins was found to be differentially expressed in pulmonary tissue of CHF 
animals (18 up-regulated, and 15 down-regulated) belonging to 4 functional groups: 1. 
proteins involved in maintaining cytoarchitectural integrity, 2. plasma proteins indicating 
impaired alveolar-capillary permeability, 3. proteins with antioxidative properties, and 4. 
proteins participating in the metabolism of selenium compounds Conclusion: Experimental 
heart failure profoundly alters the pulmonary proteome. Our results supplement the current 
knowledge of pulmonary stress failure by specifying its molecular fundament.
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Introduction

Heart failure (CHF) is increasingly seen as complex systemic disorder, which means that 
the failing heart pathophysiologically interacts with diverse other organs, thereby causing or 
aggravating organ malfunctions, which in turn further aggravate the poor outcome of such 
individuals [1]. Thereof, pulmonary dysfunction leading to vascular congestion, interstitial, 
and alveolar lung edema is of outstanding clinical relevance for both acute and chronic care 
of heart failure patients [2, 3], and hence deserves detailed mechanistic evaluation. 

Current evidence shows that pulmonary pressure and volume overload, as it occurs 
in heart failure, initially results in an impaired anatomical configuration of the alveolar-
capillary membrane, which is characterized by endothelial and alveolar cell breaks [4–7]. 
These ultrastructurally evidenced alterations, usually termed “stress failure”, might be 
reversible as soon as the causing stressors diminish, but will otherwise end in a progressive 
remodeling process, which is identified by collagen proliferation in the extracellular matrix 
and a reexpression of fetal genes [8–11]. As in the heart, these later adaptations might 
initially be protective (by preventing further edema formation), but deleterious in the long 
term (by exacerbating symptoms and exercise intolerance) [12]. 

Hitherto characterization of early pulmonary alterations in heart failure is largely 
confined to structural and ultrastructural examinations, whereas the knowledge of 
underlying molecular mechanisms is still very scarce, but otherwise important for defining 
potential new therapeutic targets. 

We therefore conceived an unbiased proteomic screening approach to detect molecular 
pulmonary adaptations in a model of tachycardia-induced heart failure in rabbits. As we could 
recently show, such a study concept proves to be effective for unveiling pathophysiologically 
meaningful molecular alterations in heart failure [13].

Materials and Methods

Animal model
For this study, the model of tachycardia-induced heart failure in rabbits was used due to two main 

reasons: first, this model reliably mimics neurohumoral, structural, functional, hemodynamic, and 
electrophysiological adaptations exactly as they occur in human heart failure [13–19], and secondly, rabbits 
were shown to share important similarities with humans regarding lung anatomy and pathophysiology [20].

A total of 12 male rabbits (chinchilla bastard) was examined for this study. Six animals underwent 
implantation of a programmable cardiac pacemaker (Medtronic Minix 8340, Minneapolis, MN or Vitatron 
Model 810, Dieren, NL) with a transvenous right ventricular lead forming the CHF group, and 6 untreated 
animals served as controls (CTRL group). Experimental heart failure was induced by progressive rapid right 
ventricular pacing over a total of 30 days as described previously [13–17]. In brief, animals of the CHF group 
were paced with 330 beats per minute (bpm) for 10 days resulting in early left ventricular dysfunction, then 
360 bpm for another 10 days, and finally at 380 bpm during the last 10 days leading to congestive heart 
failure. All experiments were conducted under the regulation and with permission of the local committee 
of animal care. 

Echocardiography and hemodynamic measurements
The development of heart failure was documented by transthoracic echocardiography, which was 

conducted under light sedation (5 mg midazolam i.m.) after halting the pacemaker stimulation at baseline 
and then at the end of each pacing period, i.e. after 10, 20, and 30 days. Every echocardiographic examination 
comprised a long and short-axis view (HP Sonos 5500, 12 MHz probe) from the left parasternal window. 
Left atrial diameter, LV end-diastolic (LVIDd) and end-systolic (LVIDs) dimensions and diastolic and systolic 
thickness of the left ventricular anteroseptal wall (IVSd and IVSs) and posterior wall (LVPWd and LVPWs) 
were determined from three repeated 2D guided M-mode tracings using the ASE convention, and fractional 
shortening (FS) was calculated from these measurements. Conscious arterial pressure and heart rate 
were determined invasively via the medial ear artery under light sedation and after halting the pacemaker 
stimulation at baseline and at the end of each pacing period.
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Protein isolation from pulmonary tissue for 2D-PAGE
After animals were euthanized, thoracotomy was performed, and fractions of pulmonary tissue 

were excised rapidly. Afterwards, tissue specimens were thoroughly washed in ice-cold saline solution to 
remove all blood remnants, and homogenized by grinding under liquid nitrogen. Small amounts of tissue 
homogenates were transferred into 1.5 ml tubes and immediately covered by 1 ml of urea/thiourea lysis 
buffer (2 M thiourea, 7 M urea, 4% (w/v) CHAPS, 1% (w/v) DTT, 2% (v/v) carrier ampholytes (pH 3–10) and 
10 mM Pefabloc (proteinase inhibitor). After vortexing and incubating for one hour at room temperature, 
samples were centrifuged (20800g, 15°C), and the supernatants were aspirated. Protein quantification 
of the supernatants was done using a commercial kit (2-D Quant Kit; GE Healthcare, Fairfield, USA) as 
described by the manufacturer. 

Two-dimensional gel electrophoresis
The 2D-PAGE was performed according to Görg et al. [21, 22] with modifications as described 

previously [13]. Immobilized pH gradient (IPG) strips (IPG pH 3-10, 18 cm, GE Healthcare) were first 
actively rehydrated with the sample (750 µg of protein solution in 350 µl rehydration buffer [8 M urea, 1% 
CHAPS, 0.4% DTT and 0.5% carrier ampholyte]) at 50 V with 50 µA/strip for 16 hrs, followed by a stepwise 
increase of voltage under constant temperature conditions (20 °C) using an Ettan IPGphor 3 Isoelectric 
Focusing Unit (GE Healthcare, Fairfield, USA): 500 V for 2:15 hrs, 1000 V for 1:30 hrs, rapid voltage ramping 
to 8000 V within 1:00 h, 8000V for 3:00 hrs, and finally 1000 V for a maximum of 20:00 hrs until further 
processing. Equilibration was done by reducing and alkylating the IPG strips for 15 min each, using 1% 
(w/v) DTT and 4% (w/v) iodoacetamide in equilibration buffer (6 M urea, 30% (w/v) glycerol, 2% (w/v) 
SDS in 0.05 M Tris-HCl buffer at pH 8.8), respectively. Second dimension electrophoresis was carried out 
with an Ettan DALTsix Electrophoresis Unit (GE Healthcare, Fairfield, USA) at 25 °C and at constant voltage 
of 600 V at 400 mA for 16-17 hrs using 26 x 20 cm SDS gels with 12.5% (v/v) acrylamide. To visualize the 
separated protein spots, gels were stained with colloidal Coomassie Brilliant Blue G250 as described by 
the manufacturer (Roti-Blue, Carl Roth, Germany). Molecular mass standards over the range 10 – 170 kDa 
were obtained from PeqLab Biotec, Erlangen, Germany. For each biological replicate at least three technical 
replicates were prepared.

Image analysis and quantification
Gels were scanned and digitized at 300 dpi using an Image Scanner III (GE Healthcare, Fairfield, USA). 

Spot detection, quantification, and matching were done by applying the MELANIE software (MELANIE 
version 7.0, GeneBio, Switzerland) after manual adjustment of the smooth, min area, and saliency 
parameters. Normalization was conducted by defining the intensity of each spot as a proportion of the 
total intensity from the entire gel. Statistical analysis was automatically done by the software using one-
way ANOVA with statistical significance being set at P values less than 0.05. All gel spots with significant 
differential expressions between two groups were highlighted and checked manually. 

Protein identification by mass spectrometry
The protein identification procedure has been comprehensively detailed in our previous work [13]. 

In brief, differentially expressed proteins were cut out from the gels, washed, and digested by trypsin 
(sequencing grade, Roche). Mass spectrometry was done by MALDI-MS and –MS/MS on a 4800 Proteomics 
Analyzer running with the v3.5.3 4000 series explorer software (AB Sciex). After dissolving the digests in 
matrix solution and spotting onto the target plates, MS was performed in positive reflector mode over the 
800-4000 m/z mass range. On the twelve most intense peaks, MALDI-MS/MS was performed. The raw data 
were then launched to Mascot using the standard program tool GPS Explorer (v3.6., AB Sciex), and Mascot 
(v2.1., Matrix Science) was used as search engine to search a local copy of the NCBInr data base. To assign 
the detected proteins to their putative biological process and molecular function, a comprehensive data 
search was performed using the Uniprot databases (www.uniprot.org) and Panther software tools (www.
pantherdb.org). 

Western blot analysis
For validating expression differences, Western Blot analysis was performed for selected proteins. For 

this purpose, 10-40 µg of protein were dissolved in 10 µl buffer solution (BioRad Laemmli Buffer with 
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beta-Mercaptoethanol), incubated at 95 °C for 5 minutes and then cooled on ice. Protein solutions and 
molecular weight standards were transfered on precast gels (Mini Protean TGX stainfree any kD, BioRad), 
and separated at 100 - 150V and 35 mA. After activating the proteins gels with BioRad ChemiDoc MP for 
2.5 minutes, proteins were transfered at 2.5 A and 25 V for 3-5 minutes using the Trans Blot Turbo System 
(BioRad). Blots were scanned with ChemiDoc MP System and then washed with TBST twice for 5 minutes 
each and blocked with 3% BSA in TBST for 1 hour at room temperature. After washing the blots three 
times with TBST, primary antibodies were incubated in 1 % BSA in TBST at 4 °C over night, and blots were 
washed again three times with TBST. Second antibodies were linked with abcam Dylight (450/650/488 
nm) fluorescence stain and used in a 1:7000-1:10000 dilution (TTBS/1%BSA). After 1h incubation at room 
temperature, blots were washed three times with TBST and once with TBS, and were afterwards analyzed 
using the ChemiDoc MP (BioRad) device.

Immunohistochemical staining
To localize selected proteins, immunohistochemical stainings were performed. For this purpose, 3- 

5 µm paraffine slices were first rinsed with Xylol (2x 10 minutes) to remove paraffine, then treated with 
Ethanol (2x minutes 100%, 2x 5 minutes 96%, 1x 5 minute 70%), and afterwards washed with PBS for 2x 5 
minutes. Antigen retrieval was done for 10 minutes in a microwave with 0.01M sodium citrate buffer pH 6.0.

Endogen Biotin was blocked with Avidin/Biotin Blocking Kit (vector/Linaris SP-2001) followed by 
blocking of unspecific bindings with Superblock (Pierce). After decanting the Superblock solution, the first 
antibody (Annexin A2: ab54771, Abcam, UK; Catalase: ab125688, Abcam, UK; Albumin: ab8940, Abcam, 
UK; Moesin: ab126825, Abcam, UK; β-Actin: ab8226, Abcam, UK; each 1:100/1:200 diluted with PBS) 
was incubated on the slices for 2 hours, which were afterwards washed with PBS twice for 5 minutes, 
respectively. The second antibodies (Dianova preadsorbed) were incubated for 1 hour at room temperature 
and washed off by rinsing with PBS twice. For development, the ABC AP Kit was used according to the 
manufacturer`s instructions (AK-5000). Slices were afterwards stained with Mayers hematoxylin for 5-10 
minutes, incubated with aqua for 30 minutes, rinsed with ethanol (70%, 96%, 100%), and finally covered 
with DePex (Serva).

Statistical analysis
Data are expressed as mean ± SD or mean ± S.E.M. Differences between two analyzed groups were 

assessed by the Student`s t-test or ANOVA when appropriate. Statistical significance was defined as P<0.05.

Results

Cardiac adaptations in tachycardia-induced heart failure
Rapid ventricular pacing resulted in profound morphological and functional changes 

of the heart (Table 1): Both left ventricular end-systolic and end-diastolic diameters were 
significantly enlarged (LVIDs 1.21±0.11 vs. 0.79±0.11 cm and LVIDd 1.63±0.08 vs. 1.37±0.12 
cm; P<0.005 each). Fractional shortening indicating systolic left ventricular function displayed 
a marked and significant decline (FS 26.18±4.53 vs. 41.40±3.53%; P<0.005), and systolic 
blood pressure decreased accordingly (BP systolic 68.11±9.37 vs. 88.40±17.52 mmHg; 
P<0.05). Heart rate tended to rise (247±23 vs. 235±19 mmHg), even though this increase 
did not meet the significance criteria. Importantly, CHF animals developed a significant left 
(0.30±0.08 vs. 0.14±0.03 g/kg BW; P=0.001) and right atrial (0.18±0.03 vs. 0.10±0.02 g/
kg BW; P=0.001) hypertrophy indicating increased atrial pressures and pulmonary venous 
congestion.

Alterations of the pulmonary proteome in tachycardia-induced heart failure
Upon two-dimensional gel electrophoresis of pulmonary tissue, a total of 33 protein 

spots displayed significant expression differences between control and CHF-animals (Fig. 
1, Tables 2A and 2B). Thereof, eighteen spots were up-regulated (Table 2A), and fifteen 
spots were down-regulated (Table 2B). Remarkably, the secreted plasma proteins albumin 
and fibrinogen appeared in numerous spatially distinct spots on the 2D gels indicating 
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diverse protein modifications, respectively (Fig. 1). By assigning the differentially expressed 
proteins to their putative molecular function (Fig. 2A), one third of proteins were found 
to have importance in maintaining structural cellular integrity, one third revealed binding 
activity, and about 27% had catalytic activity. As compared to this numerically limited 
number of molecular function groups, the attribution to the underlying biological processes 
was more complex (Fig. 2B): Besides lower represented biological processes, about 16% 
of proteins were involved in cellular and developmental processes, respectively, 13% had 
importance in cellular component organization procedures, and 11% revealed relevance in 
cell communication, metabolic, and transport processes, respectively. 

By abstracting this functional and procedural grouping, four intrinsically coherent 
groups could be built: (1) proteins maintaining structural cellular integrity, (2) plasma 
proteins, (3) proteins involved in antioxidative defense, and (4) proteins metabolizing 
selenium compounds.

Corroboration of protein expressions by western blot analysis
Expression differences of two proteins were exemplarily validated by Western Blotting. 

Catalase (representing the group of proteins with functional enzymatic activity) and moesin 
(representing the group of proteins involved in cytoskeletal architecture) were both down-
regulated in lungs of CHF-animals, which was in accordance with the proteomic results (Fig. 
3).

Table 1. LA, left atrial diameter; LVIDd, left 
ventricular end-diastolic diameter; LVIDs, left 
ventricular end-systolic diameter; FS, fractional 
shortening; HR, heart rate; bpm, beats per min-
ute; BP, blood pressure; BW, body weight; LA, 
left atrial weight; LV, left ventricular weight; RA, 
right atrial weight; RV, right ventricular weight. 
Mean ± standard deviation

Fig. 1. Two-dimensional gel. 
Differentially expressed pro-
teins are numbered as in Tables 
2A and 2B.
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Cellular localization of selected proteins
To localize differentially expressed proteins within the pulmonary tissue, 

immunohistochemical stainings of five proteins (annexin A2, moesin, β-actin, catalase, and 
albumin) were performed (Fig. 4). Annexin A2 was generally found in the subepithelial layer 
(arrows in the left picture) and particularly in the intensely folded basement membranes 
of bronchial tubes (arrows in the right picture). The cytoskeletal protein moesin displayed 
extensive accumulation within the interalveolar septa (black arrows in the left and right 
picture), but was not found in epithelial structures such as the bronchial tubes (white arrow 
in the left picture). Beta-actin was ubiquitarily detected in interalveolar septa and bronchial 

Table 2. CHF, congestive heart failure; ID, identification number; MW, molecular weight; NCBI, National 
Center for Biotechnology Information; pI, isoelectric point

http://dx.doi.org/10.1159%2F000358645


Cell Physiol Biochem 2014;33:692-704
DOI: 10.1159/000358645
Published online: March 07, 2014

© 2014 S. Karger AG, Basel
www.karger.com/cpb 698

Birner et al.: Lung Alterations in Heart Failure

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

tubes (arrows in the left and right picture) with fine granular alignments within epthelial 
cells. Catalase, which protects cells from toxic effects of hydrogen peroxide (Table 2B), 
mainly accumulated in bronchial epithelial cells (arrows in the left picture) and in alveolar 
macrophages (arrows in the right picture) or alveolar epithelial cells. Finally, the secreted 
plasma protein albumin has been located in interalveolar septa (arrows in the left picture) 
and on top of the epithelial layer of bronchial tubes (arrows in the right picture).

Discussion

The main findings of this study investigating molecular changes of lungs in experimental 
heart failure are that (1) molecular elements involved in maintaining structure and integrity 
of pulmonary cells are severly disturbed, (2) enzymes with antioxidative properties are 
down-regulated, which points to an impaired antioxidative capacity, (3) expression of 
proteins involved in the metabolism of selenium compounds is changed, and (4) plasma 
components are detectable in interalveolar septa and on the top of bronchial cells indicating 
an impaired alveolar-capillary permeability.

These results reflect molecular pulmonary alterations in tachycardia-induced heart 
failure and thus provide a molecular fundament for pulmonary stress failure. Furthermore, 
by extending previous proteomic analyses on primary lung pathologies such as lung cancer 
[23, 24], ARDS [25], asthma [26], sarcoidosis [27] or COPD [28] to pulmonary proteome 

Fig. 2. A: Molecular functions of differentially expressed proteins as composed by use of the Uniprot data-
base (www.uniprot.org) and the Panther software tool (www.pantherdb.org). B: Biological processes cov-
ered by the differentially expressed proteins. This analysis was done by use of the Uniprot database (www.
uniprot.org) and the Panther software tool (www.pantherdb.org).

Fig. 3. Western blot analysis exemplarily corrobo-
rating expression differences of catalase and moes-
in. White bars, control group; gray bars, CHF group. 
*P<0.05 vs. control. 

A B

http://www.uniprot.org
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alterations in heart failure, our work additionally demonstrates that proteomics is also 
suitable to detect secondary lung adaptations.

Previous animal studies investigating pulmonary adaptations in CHF
Previous studies were mainly performed using dogs [29, 30], guinea pigs [10, 12], 

mice [31], and rabbits [6] conducting isolated hemodynamic measurements [6] or applying 
heart failure models of tachypacing [29, 30] and aortic banding [10, 12, 31]. These studies 
revealed an increased endothelial, interstitial and epithelial thickness resulting in a higher 
pulmonary resistance to high-vascular-pressure injury [29] and a reduced capillary 
filtration capacity [10], which effectively prevents from further edema formation [12]. Even 
though these adaptations might be initially protective, ongoing vascular and lung fibrosis, 
myofibroblast proliferation and leukozyte infiltration, as experimentally evidenced, finally 
unfolds deleterious effects by causing severe lung disease [31]. Interestingly, these structural 
lung alterations were seen 49 [29] to 158 days [12] after heart failure was induced, whereas 
in the short term (i.e., within 4 weeks) lungs primarily revealed functional, but rather less 
structural adaptations [30]. This early situation was also imitated by artificially exposing 
rabbit lungs to increasing capillary transmural pressures, which caused disruptions of all 
layers of the blood-gas barrier resulting in a high-permeability form of lung edema [6] and 
furthermore hallmarking the so-called alveolar-capillary stress failure [4, 5, 7–9, 32]. Which 
molecular alterations take place in this early period (i.e., within 4 weeks), is largely unknown, 
but important for determining the molecular basis of the later evolving maladaptations as 
described above. These molecular changes were analyzed in our study using an unbiased 
proteomic screening approach.

The molecular basis of structural cellular integrity is disturbed in lungs of CHF animals
Seven proteins involved in structural cellular integrity were found to be differentially 

expressed in our study. Thereof, five (annexin A2, moesin, gelsolin isoform 1, cytokeratin 

Fig. 4. Immunohistochemical staining for anti-an-
nexin A2, anti-moesin, anti-β-actin, anti-catalase, 
and anti-albumin to detect (sub-) cellular localiza-
tions of the proteins. Magnification, x200 and x400. 
For description refer to the Results section (para-
graph “cellular localization of selected proteins”).

Fig. 5. Integrative concept summarizing the differ-
entially regulated protein classes.
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8, and microfibril-associated glycoprotein 4) were down-regulated and two (beta-actin, 
tubulin alpha-1C chain) were up-regulated in heart failure. Importantly, since only proteins 
from specific cellular components were underexpressed, this might rather reflect a true 
loss of cellular protein content than a mere reduction of cell quantity. Accordingly, the 
downregulation of mainly cytoarchitectural proteins indicates a profound disturbance of 
structural cell integrity. 

Annexin A2, which was detected especially in the subepithelial layer and basement 
membranes in our study, is supposed to crosslink plasma membrane domains with the actin 
polymerization apparatus [33] and hence seems to play an important role in reorganization 
of the cytoskeleton and cell adhesion. Interestingly, annexin A 2 was also found to mediate 
membrane fusion of surfactant factor containing lamellar bodies in alveolar epithelial type 
II cells [34–37], which means that a downregulation of this protein would also hamper 
the exocytotic release of the surfactant factor. Moesin, which was highly expressed in the 
interalveolar septa and downregulated in heart failure, is another protein crosslinking the 
actin cytoskeleton and the plasma membrane. This protein belongs to the ezrin/radixin/
moesin (ERM) protein family and has been shown to be critical for preserving alveolar 
architecture and lung homeostasis [38]. Furthermore, the ERM protein complex is intricately 
involved in the modulation of endothelial permeability [39]. This was shown in two studies 
from Adyshev`s working group, where a depletion of moesin using a siRNA approach resulted 
in an attenuation of a thrombin-induced increase of endothelial cell barrier function [40] and 
in a further rise of angiogenic sphingolipid S1P-induced endothelial barrier enhancement 
[41]. By extrapolating these results, the downregulation of moesin in our study might either 
be indicative for a disturbed cytoarchitecture or could be interpreted as compensatory 
mechanism to enhance the otherwise impaired endothelial barrier function. The latter seems 
plausible in the context of the also downregulated protein gelsolin: this protein has likewise 
been shown to play a role in modulating endothelial barrier function. But contrary to moesin, 
in this case a deficiency of the protein was found to cause an increase of pulmonary vascular 
permeability [42], which could probably be counteracted by the downregulation of moesin. 

Cytokeratin 8 belongs to the intermediate filament network, and its pulmonary 
underexpression in heart failure seems to be stress-responsive, as it has been evidenced 
before [43, 44]. Also microfibril-associated glycoprotein 4 was downregulated in our study. 
Even though this extracellular matrix protein has already been described to colocalize with 
surfactant protein A (SP-A) in the interalveolar septum and in the elastic lamina of pulmonary 
arteries [45], its molecular function remains elusive.

Whereas all these cytoarchitectural proteins were downregulated in heart failure, two 
proteins (i.e., beta-actin and tubulin alpha-1C chain) were overexpressed: tubulin alpha-1c-
expression has already been described to be increased in endothelial and –to a lesser extent 
– in epithelial cells due to a rise of interstitial lung pressure [46], so the upregulation of 
this protein largely seems to be stress-responsive. Also, beta-actin has been described to 
play an important role in stress response: Ito et al. found that mechanical stretch acting on 
pulmonary tissue activates cellular calcium influx, which is tightly regulated by the actin 
cytoskeleton [47], and Kerem et al. in their heart failure model described a strong increase 
of beta-actin in pulmonary endothelial cells, leading to an impaired endothelial calcium 
homeostasis and endothelial dysfunction [48]. 

Pulmonary anti-oxidative capacity is impaired in tachycardia-induced heart failure
Three pulmonary proteins involved in anti-oxidative processes were downregulated 

in our study: Catalase, which has been detected in two different localizations on the two-
dimensional gels most probably due to protein modifications, is a major pulmonary 
enzymatic antioxidant [49] with an already proposed therapeutic potential [50]. Biliverdin 
reductase catalyzes the reduction of biliverdin to bilirubin, which in turn has been proved 
to be a major antioxidant cytoprotectant being able to protect cells from a 10,000 fold 
excess of H2O2 [51]. Furthermore, this enzyme participates in an amplification cycle, where 
bilirubin is itself oxidized to biliverdin and afterwards reconverted by biliverdin reductase 

http://dx.doi.org/10.1159%2F000358645


Cell Physiol Biochem 2014;33:692-704
DOI: 10.1159/000358645
Published online: March 07, 2014

© 2014 S. Karger AG, Basel
www.karger.com/cpb 701

Birner et al.: Lung Alterations in Heart Failure

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

[51]. Thus, a downregulation of this protein would disturb this cycle, reduce the amount of 
generated bilirubin, and therefore impair the antioxidative capacity of this system. Finally, 
mitochondrial aldehyde dehydrogenase 2 was underexpressed in in our study. This enzyme 
was evidenced to protect from oxidative stress [52] by reducing ROS, which results in an 
attenuation of hyperoxia-induced cell death of pulmonary epithelial cells [53]. As above, a 
downregulation of this protein would likewise impair the antioxidative capacity.

Most interestingly, an oxidant/antioxidant imbalance as it is caused by a downregulation 
of antioxidative enzymes, has been shown to act as profibrotic stimulus leading to 
pulmonary fibrosis [49, 54]. Against this background it would be intriguing to speculate that 
an impairment of the pulmonary antioxidative potential, as it has been seen in our study, 
would be the starting point for the later maladaptive profibrotic remodeling of lungs in heart 
failure.

Heart failure provokes an altered pulmonary selenium metabolismus 
Two different proteins participating in the metabolismus of selenium compounds 

were differentially expressed in our study: Indolethylamine N-methyltransferase, which was 
upregulated in heart failure, and selenium binding protein 1, which was identified in two 
spatially different spots of the two-dimensional gels (with one being up- and one being 
downregulated). The latter expression behaviour might most probably be attributable to 
a different regulation of two out of three described isoforms of selenium binding protein 1 
[55], whose molecular function is unclear so far [56]. Despite an ongoing lack of knowledge 
about the detailed role of selenium metabolism, it has nevertheless been shown that lower 
selenium levels are associated with an increased risk of mortality and a worse immune 
function [57], so an alteration of selenium-metabolizing compounds as shown in our study 
could possibly be interpreted against this background.

Plasma components in lung tissue indicate impaired alveolar-capillary permeability
Numerous protein spots, each representing serum albumin, were found to be upregulated 

on the two-dimensional gels in heart failure animals. Furthermore, fibrinogen was identified 
in several protein spots, which were both up- and downregulated. This more complex 
expression behaviour is difficult to explain, but might possibly indicate a higher pulmonary 
fibrinogen turnover in heart failure. Since albumin was mainly detected in interalveolar 
septa in our study, these serum proteins are indicative for an impaired alveolar-capillary 
barrier function, as it has been described before [58]. 

Limitations
Since we intended to detect also unpredictable molecular alterations, we conceived an 

unbiased methodological approach using well established proteomic techniques. This in 
turn means that the true potential of our study (as of every classical proteomic work) rather 
lies in generating new hypotheses than in unveiling novel causalities. It is clearly reserved 
for future experiments to verifiy these hypotheses and to evaluate their functional relevance. 
These studies could also validate the cellular localizations of the differentially expressed 
proteins by applying sensitive cell isolation techniques (such as laser microdissection).

Furthermore, by choosing ph 3-10 IPG strips for our experiments, we analyzed a large, 
but nevertheless only one part of the pulmonary proteome. So we cannot claim to cover all 
differential protein expressions, which might also have occured both in the more basic and 
acidic regions.

Integrative concept and conclusion
Our study revealed a molecular fundament of pulmonary stress failure in experimental 

tachycardiomyopathy. By integrating our findings, we hypothesize that the profound 
molecular alterations of the cytoarchitecture would translate in an impaired structural 
integrity of the alveolar-capillary barrier (which has been ultrastructurally described as 
cellular disruptions by others), provoking an increase of alveolar-capillary permeability. 
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Furthermore, a downregulation of antioxidative enzymes indicates an impaired ROS-
deactivating capacity, which in turn could fuel the later profibrotic remodeling of lungs 
thereby initiating a circulus vitiosus, which ends – as in the heart – in a maladaptive functional 
deterioration of the organ. Finally, an altered selenium metabolism might influence immune 
response processes, even though its functional relevance remains vague in this context (see 
Fig. 5). Provided that future works will verify these hypotheses, our study presents potential 
molecular targets for therapeutic interventions in this clinically meaningful disease complex.
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