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Abstract In this paper, an extension of the interscale 
SURE-LET approach exploiting the interscale and 
intrascale dependencies of wavelet coefficients is 
proposed to improve denoising performance. This 
method incorporates information on neighbouring 
coefficients into the linear expansion of thresholds (LETs) 
without additional parameters to capture the texture 
characteristics of this image. The resulting interscale-
intrascale wavelet estimator consists of a linear expansion 
of multivariate thresholding functions, whose parameters 
are optimized thanks to a multivariate Stein’s unbiased 
risk estimate (SURE). Some experimental results are given 
to demonstrate the strength of the proposed method. 

Keywords Orthonormal Wavelet, Multivariate SURE-
LET, Interscale and Intrascale Dependence, Multivariate 
Stein’s Unbiased Risk Estimate, Image Denoising 

1. Introduction  

During the last decade, image denoising has undergone 
dramatic improvement; lots of new methods based on 
wavelet transforms have emerged for removing Gaussian 

noise. A standard methodology proceeds by wavelet 
transforming the image, operating on the transform 
coefficients with nonlinear estimation functions, and then 
inverting the wavelet transform to obtain the denoised 
image. The choice of estimation function is an essential 
part of the denoising problem. Estimation functions 
generally take the form of "shrinkage" operators that are 
applied independently to each transform coefficient (e.g., 
[1-4]), or are applied to the neighbourhoods of 
coefficients at adjacent spatial positions and/or from other 
sub-bands (e.g., [5-16]). As demonstrated by several 
algorithms presented in the above literature, the 
performance of image-denoising algorithms can be 
improved significantly by taking into account the 
statistical dependence between interscale and intrascale 
coefficients. Figure 1 illustrates the statistical dependence 
between interscale and intrascale coefficients.  

Image denoising can be accomplished by many different 
approaches. For example: using a prior model for the 
transform coefficients or using a parametric form for the 
estimation function. Generally, the generalized Gaussians 
[7, 11], scale mixtures models [13], Bessel K densities [17], 
and symmetric alpha stable densities [18], have been used  
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Figure 1. Illustration of the Parent-Child Relation and 3 3×
Neighborhood Window 

as prior models for the transform coefficients, which may 
be used to drive a Bayes-optimal estimator such as a 
MAP or MMSE estimator. Alternatively, one may directly 
assume a parametric form estimation function, such as  
[6, 8, 9, 19, 20], and select parameters by optimizing 
performance under certain conditions. In [8, 9], Luisier et 
al. introduced a new SURE [21] approach to image 
denoising - interscale orthonormal wavelet thresholding - 
which parameterized the denoising process as a sum of 
elementary nonlinear processes - LETs - with unknown 
weights instead of postulating a statistical prior model for 
the wavelet coefficients, and then adaptively optimized 
the parametric estimator by minimizing SURE, which 
provides an approximation of the mean squared error 
(MSE) as a function of the observed noisy data. Risk 
minimization and unknown weights’ estimations 
ultimately come down to solving a linear system of 
equations. However, they only took into account 
interscale dependency using an interscale prediction 
model group delay compensation (GDC), and they 
disposed of intrascale dependency. Their experimental 
result demonstrated that, for most of the images, the 
interscale SURE-based approach is competitive in relation 
to the best techniques available that consider orthonormal 
wavelet transforms. However, it should be noted that this 
approach did not obtain good performance for images 
with substantial textures, such as the Barbara image. The 
main reason for this is that some local information 
(especially the texture of Barbara’s trousers) is completely 
lost at coarser scales. Interscale correlations may be too 
weak for this image, which indicates that an efficient 
denoising process may require intrascale information as 
well. For other denoising methods, the reader is referred 
to [22, 23] and the references cited there. 

In this paper, we propose a multivariate SURE-LET 
approach to orthonormal wavelet image denoising as an 
extension of Luisier’s bivariate approach. This method 
incorporates information on neighbouring coefficients 
into the LET without additional parameters to capture the  

texture characteristics of this image. The resulting 
interscale-intrascale wavelet estimator consists of a linear 
expansion of multivariate thresholding functions, whose 
parameters are optimized thanks to multivariate SURE. 
This paper is organized as follows: In Section 2, we 
explain the multivariate SURE theory for a 
neighbourhood vector and generalize the corresponding 
linear parameterization strategy. In Section 3, the 
competitive results with the best up-to-date algorithms 
will be shown. The conclusion can be found in Section 4. 

2. Multivariate SURE-LET 

Let k kg , ∈ be equally-spaced samples of a real-valued 

image, where   is a set of spatial indexes ( 2⊂  ).
Consider the standard nonparametric regression setting:  

k k kf g n= +                               (2.1) 

where kn  are i.i.d. normal random variables with a mean 

zero and variance 2σ  independent of kg . Let f , g  and 
n  denote the matrix representation of the corresponding 
samples. Let Y fW= , X gW=  and B nW= , where W  is 
the two-dimensional dyadic orthonormal wavelet 
transform (DWT) operator [24]. Let k

ojy  be the detail 
coefficient of the noisy image f  at location k , scale j
and orientation o , and similarly for k

ojx  and k
ojb . It 

follows from (2.1) that:  

k k k
oj oj ojy x b= +                              (2.2) 

For facilitation, we will drop scale j  and the orientation 
o  indexes, change the spatial indexes k  to 1-D index n ,
and consider the standard simplified denoising problem 
in each orientation sub-band at a given scale: given noisy 
data n n ny x b= + , for 1n N= ... , where nb  is an 

independent white Gaussian noise of variance 2σ , and 
due to the orthogonality of the basis we observe 

{ }, 1,2y ny n N= =   and seek to estimate the desired 
{ }, 1, 2x nx n N= =   as accurately as possible according 

to various criteria. This is a classical problem in 
estimation theory. Our aim is to find an estimation 
function θ  of the observed noisy coefficient 
neighbourhood alone, such that:  

( ),ˆ 1, 2, ,x u
n n n Nθ= =                      (2.3) 

which will minimize the MSE defined by:  

2 2

1

1 1ˆ ˆMSE || ||
N

n n
n

x x
N N=

= | − | = − x x               (2.4) 
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where 1 2{ }u un n N= , ,...,=  is an observation neighbourhood 

sequence, and un  of a d -dimensional real-valued 
( 1d d∈ , > ) vector is spatial neighbourhood vector of ny .
Specifically, un  is defined as all those coefficients within a 
square-shaped window that is centred at the n th coefficient, 
as illustrated in Figure 1. Without loss of generality, we can 

assume that u yn n ny = , 
 , where y n

  is the last 1d −

components of un . So far, we have introduced an explicit 
dependence between nx  and y n . As we know from [8, 9], 
the MSE in the space domain is a weighted sum of the MSE 
of each individual sub-band, which allows us to apply the 
denoising function independently in every high-pass sub-
band. 

2.1 Unbiased Estimate of the MSE

It seems impossible to compute the 2ˆ|| ||x x N− / since we 
do not have access to the signal x . However, in the case 
of Gaussian noise, it is possible to apply an extension of 
Stein’s principle [21] for deriving an explicit expression. 
The following lemma 1 shows how it is possible to 
replace an expression that contains the unknown 
coefficient x  by another one with the same expectation, 
yet containing the known noise coefficient y  only. 
Lemma 1 and Theorem 1 essentially recap the derivation 
of SURE, which can be found in [8]. 

Lemma 1. Let θ  : d →   be a continuous and almost 
everywhere differentiable function, such that:  

1

|| ||

( ) ( )lim ( )exp 0
2t

t ttd ξ ξξ θ
−

→+∞

 − Γ −∀ ∈ , − = 
 




  (2.5) 

2( )E unθ 
  
| | < +∞  and 

( )u
E n

ny
θ ∂

< +∞ ∂  
        (2.6) 

Then, under the additive white Gaussian noise assumption:  

2 ( )
( ) ( )

u
E u E u E n

n n n n
n

x y
y

θθ θ σ   
      

 ∂
= −  ∂ 

        (2.7) 

where 2IdσΓ = , Id  is a unit matrix and [ ]E ⋅  stands for 

the mathematical expectation operator.  

Proof. Let T d dR R: →  be a continuous and almost 
everywhere differentiable function, such that:  

1

|| ||

( ) ( )lim ( )exp 0
2t

t tT td ξ ξξ
−

→+∞

 − Γ −∀ ∈ , − = 
 




   (2.8) 

2( )E T un
 
  
| | < +∞   and   

( )T u
E

u
n

n F

 ∂
< +∞ 

∂  
  (2.9) 

where
F

⋅  is the Frobenius norm. In this multivariate 

context, Stein’s principle [21] can be expressed as:  

( )
( ) ( )

T u
E T u w E T u u E

u
n

n n n n
n

   
      

 ∂
= − Γ ∂ 

        (2.10) 

where wn  is, according the spatial neighbourhood vector 
of nx , similar to un  formally. Equation (7) follows by 

choosing [ ]( ) 0 0T t tθ: , ,...,   and focusing on the top-

left element of matrix ( )E T u wn n
 
  

 .

Theorem 1. Under the same hypotheses as Lemma 1, the 
random variable:  

2
2 21 2|| ( ) || { ( )}u u

N N
σε θ θ σ= − + −y div         (2.11) 

is an unbiased estimator of the MSE, i.e.:  

[ ] 21 || ( ) ||u
N

ε θ 
  

= −E E x                   (2.12) 

where ( )
1

{ ( )} n

n

N
yn

θθ ∂
∂=

= udiv u .

Proof. By expanding the expectation of the MSE, we have:  

[ ]

2 2 2

2 2 2

|| ( ) || || ( )|| 2 ( ) || ||

|| ( )|| 2 ( ) 2 { ( )} || ||

θ θ θ

θ θ σ θ

     
          

   
      

 − = − + 
 = − + + 

E u x E u E u x E x

E u E u y E div u E x





Since the noise b  has zero mean, we can replace 2|| ||E x 
  

by 2 2|| ||E y Nσ 
  

− . A rearrangement of the y  terms then 

provides the result of Theorem 1.  

The expression in equation (2.12) may be evaluated on a 
single observation y  ( u  can be assembled by 
overlapping y ) to produce an unbiased estimate of the 
MSE. Although the derivation of this expression is 
relatively simple, it leads us to the somewhat 
counterintuitive conclusion that the estimator may be 
optimized without explicit knowledge of the clean 
coefficients x . It must be emphasized that this estimate is 
close to its expectation, which is the MSE of the denoising 
procedure, because the standard deviation of ε  is small 
by the law of large numbers. 

2.2 The Multivariate SURE-LET Approach 

Similar to the LET of [5, 8, 9], we build a linearly 
parameterized multivariate estimation function 
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incorporating information on neighbouring coefficients of 
the form:  

1
( ) ( )n nu u

K

k k
k

aθ ϕ
=

= 
1

2
1 2

( )

( )
( )

…

( )
n

n

n

n

u

u
u

u
T

K

a

K

a a a

ϕ
ϕ

ϕ

 
  

Φ

 
 
 = , , , ×
 
 
 

 



(2.13) 

Here, ( )nuΦ  is a 1K ×  vector function, the ka  is an 
unknown weight specified by minimizing the SURE 
given by (2.11), and a  is a 1K ×  vector. It should be 
noted that the new multivariate estimation function does 
not introduce more parameters, compared with LET in [8-
9], which means that this improvement still maintains 
efficiency of calculation. In this formalism, ( )un

ny
θ∂
∂  can be 

expressed as:  

( )
( )n

u
a u

n

n
y

ny
θ∂

= ∇ Φ
∂



where we have denoted by ( )nu
ny∇ Φ  the vector 

containing the partial derivatives of the components ny ,

i.e., 1 2( ) ( ) ( )( ) ...u u u
nu n n K n

n n n ny y y y
ϕ ϕ ϕ∂ ∂ ∂

∂ ∂ ∂
 ∇ Φ = , , , 


.

The MSE estimate ε  is quadratic in a , as follows:  

22 2

1 1

1 2( ) ( )n na u a u
n

N N

n y
n n

y
N N

σε σ
= =

= Φ − + ∇ Φ −  

2

1

1 ( ) ( ) 2 ( )n n na u u a a u
N

n n
n

y y
N

 
 
 

=

= Φ Φ − Φ +   

2
2

1

2 ( )na u
n

N

y
nN

σ σ
=

+ ∇ Φ − 

        2 212 || ||a Ma a c y
N

σ= − + −                (2.14) 

where we have defined:  

1

1 ( ) ( )n nM u u
N

nN =

= Φ Φ                  (2.15) 

( )2

1

1 ( ) ( )n nc u u
n

N

n y
n

y
N

σ
=

= Φ − ∇ Φ             (2.16) 

Finally, the minimization of (2.14) with respect to a  boils 
down to the following linear system of equations:  

1a M c−= .                                   (2.17) 

Note that since the minimum of ε  always exists, it is 
ensured that there will always be a solution to this 
system. When ( )Mrank K< , we can simply take its 
pseudo-inverse to choose any one among the admissible 

solutions. Of course, it is desirable to keep the number of 
degrees of freedom K  as low as possible in order for the 
estimate ε  to maintain a small variance.  

2.3 The New Inter- and Intrascale Thresholding Function 

To compensate for feature misalignment between child 
coefficients and parent coefficients, we will also use the 
GDC scheme [8, 9], which builds an interscale predictor 
out of the low-pass sub-band at the same scale. Let p n

y
denote the value of the GDC output, which can be 
interpreted as a discriminator between high SNR wavelet 
coefficients and low SNR wavelet coefficients, 
corresponding to the noisy coefficient ny . A Gaussian 
smoother function proposed in [8, 9] is chosen, namely 
the decision function:  

2

22( )
yp n
T

p n
yf e

−
= .                              (2.18) 

where 6T σ=  is the universal threshold. 

In order to incorporate information on neighbouring 
coefficients into the LET without additional parameters, 
we propose the following pointwise radial exponential 
function:

2|| ||
22

( 1)
( ) 1

un

nu dT
k

k ny e k Kϕ
− −

= , = ,..., .                 (2.19) 

Here, d  is the dimension of vector un  and the radial 
profile of this pointwise function is exponential in || ||nu .

By joining the interscale predictor and multivariate 
SURE-LET approach, we lead to the following general 
inter- and intrascale thresholding function:  

1 1
( ) ( ) ( ) (1 ( )) ( )n n nu u u

K K

p p pk k k K kn n n
k k

y y yf a f aθ ϕ ϕ+
= =

, = + − = 

1

1 1 2
1

( )

( ) ( )

( ) ( )
… …

(1 ( )) ( )

(1 ( )) ( )
n

n

n

n
a

n

u

u

u
u

u
pn

p n

p Kn
K K K

p n

p Kn

y

yf

yf
a a a a

yf

yf

ϕ

ϕ
ϕ

ϕ

 
 + × 

Φ ,

 
 
 
 

, , , , , ×  
− 

 
 

−  










   (2.20) 

Here, ( )nu p n
yΦ ,  is a 2 1K ×  vector function and a  is 

2 1K ×  vector. It is essential to notice that, because of the 
statistical independence between sub-bands of different 
iteration depths, nu  and p n

y  will also be statistically 

independent. Therefore, the partial derivatives of 
( )nu p n

yθ ,  with respect to the component ny  are 
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uncorrelated with p n
y  - Theorem 1 remains true - and 

then the linear parameter vector a  is solved by 
minimizing the MSE estimate ε  defined in Theorem 1, 
i.e., a  can be obtained by (2.17).  

We can summarize our denoising algorithm as follows:  
1) Perform a J  level DWT to the noisy image f , i.e. 

Y fW= .
2) For each sub-band (except the low-pass residual), 

compute the interscale predictor 1{ }p n Nn
y ≤ ≤  using 

the GDC approach [8, 9].  
3) Compute the 2

1{|| || }un n N≤ ≤  under a given 
neighbourhood window size, and obtain 

( )nu p n
yΦ ,  according to (2.19) and (2.20).  

4) Determine M  and c  using (2.15) and (2.16), and 
then solve the linear system (2.17) to obtain a .

5) Sub-band adaptive image denoising using (2.20).  
6) Reconstruct the denoised image from the processed 

sub-bands and the low-pass residual. 

3. Numerical Experiments 

In what follows, we carried out all the experiments on 8-
bit greyscale test images of sizes 512 512×  and 
256 256× , as presented in Figure 2. The test images were 
obtained from the same sources, as mentioned in [8, 9, 11]. 
We applied our multivariate SURE-LET (abbreviated as 
MuSURE-LET) algorithm according to the expression 
(2.20) with K = 3, after four or five decomposition levels 
(depending on the size of the image) of an orthonormal 
wavelet transform (OWT) using the standard Daubechies 
symlets with eight vanishing moments (sym8 in MatLab). 
A good estimator for σ  is the median of absolute 
deviation (MAD) using the highest level wavelet 
coefficients [2], as follows:  

( )ˆ ( )
0 6745

s
s

median w
w subbandHHσ | |

= ∈ .
.

          (3.1) 

Figure 2. The test images used in the experiments, referred to as 
‘Lena’, ‘Barbara’, ‘Boat’, ‘Mandrill’, ‘Fingerprint’ and ‘Bridge’ 
(numbered from left to right and top to bottom) 

Here, sub-band HH is the finest scale wavelet sub-band 
in the diagonal direction. The denoising performances are 
measured in terms of a peak signal-to-noise ratio (PSNR), 
defined as:  

2

10 21
1

25510 N
nN n

PSNR log
w

=

=


                    (3.2) 

where N  is the total number of pixels and ˆ nn nw xx= − .

The window size is dependent on the abundance of the 
textures of the example images. In our experiments, 
the window size 7 7×  yields the best results for those 
images with substantial textures, while the window 
size 3 3×  yields the best results for those images with 
less detailed textures. Table 1 shows the error 
variances of the denoised images, expressed as the 
PSNR defined in (3.2), at eight different power levels 

[10 15 20 25 30 50 75 100]σ ∈ , , , , , , , . Note that, for all the 
images, there is very little improvement at the lowest 
noise level. This makes sense, since the "clean" images in 
fact include quantization errors and have an implicit 
PSNR of 58.9 dB.  
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Figure 3. PSNR improvements brought by our multivariate SURE-LET strategy compared to bivariate SURE-LET: (A) Lena image; (B) 
Barbara image  
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3.1 Comparisons with the Interscale SURE-LET Approach 

In order to understand the relative contribution of our 
method, we first want to evaluate the improvements 
brought by the integration of neighbouring coefficients’ 
dependencies. Compared with the bivariate SURE-LET 
approach defined in [8,9], we can evaluate the 
improvements brought by our multivariate SURE-LET 
function (2.20) (see Figure 3). As can be observed, the 
integration of neighbouring coefficients’ dependencies 
improves the denoising performance considerably. For 
those images that have substantial textures. such as the 
Barbara image, the denoising gains are up to 0 8 1 1. − .  dB 
when the range of the PSNR values of input noisy images 
are in [15, 30], and for ones that have less detailed 
textures, such as the Lena image, the denoising gains are 
up to 0 2 0 3. − .  dB when the range of the PSNR values of 
input noisy images are in [15, 30]. Figure 4 provides a 
visual comparison of an example image (Barbara) 
between the above-mentioned two methods. Our method 
is seen to provide fewer artefacts - for example, in parts of 
the forehead and hair of the woman - which means that 
our method can better suppress noise in the uniform 
areas.

In order to understand the relative contribution of our 
method, we first want to evaluate the improvements 
brought by the integration of neighbouring coefficients’ 
dependencies. In Figure 3, we compare our multivariate 
SURE-LET function (2.20) with the bivariate SURE-LET 
(abbreviated as BiSURE-LET) defined in [8]. As can be 
observed, the integration of neighbouring coefficients’ 
dependencies improves the denoising performance 
considerably. For those images that have substantial 
textures, such as the Barbara image, the denoising gains 
are up to 0 8 1 1. − .  dB when the range of the PSNR values 
of input noisy images are in [15, 30], and for ones that 
have less detailed textures, such as the Lena image, the 
denoising gains are up to 0 2 0 3. − .  dB when the range of 
the PSNR values of input noisy images are in [15, 30]. 
Figure 4 provides a visual comparison of an example 
image (Barbara) with the above-mentioned two methods. 
Our method is seen to provide fewer artefacts - for 
example, in parts of the forehead and hair of the woman - 
which means that our method can better suppress noise 
in the uniform areas. 

3.2 Comparisons with State of the Art Denoising Schemes 

Compared with state-of-the-art denoising algorithms, for 
which the code is freely distributed by the authors: 
Bishrink ( 7 7× ) [15,16], ProbShrink ( 3 3× ) [12], BLS-
GSM ( 3 3× ) [13], Block-matching and 3D filtering (BM3D)  

[25], Non-local Means (NL-Means) [26] and Field of 
Experts (FoE) [27, 28]. Since the versions of the noise 
standard are not on a unit level, we have averaged the 
output PSNRs over eight noise realizations so as to apply 
the same noise realizations to different algorithms. 

Table 1 reports the PSNR results we obtained with the 
various denoising methods, the best results being shown 
in boldface. As we can see, our algorithm (Multivariate 
SURE-LET) matches or overmatches the other methods’ 
results for most of the images. Noisy ( =60σ ) and 
denoised fingerprint and mandrill images are shown in 
Figures 5 and 6, respectively. 

When looking more closely at the results, we observe the 
following.  

Our method gives better results than Sendur’s Bishrink 
7 7,×  which integrates both the inter- and the intrascale 
dependencies (an average gain of 0 8+ .  dB).  

Our method gives better results than Pižurica’s 
ProbShrink 3 3,×  which integrates the intrascale 
dependencies (an average gain of 0 6+ .  dB).  

Our method outperforms the Portilla’s BLS-GSM 3 3× or
NL-Means by more than 0 2 0 3. − .  dB on average.  

Our method improves the PSNR by about 0.6 dB on 
average in comparison with FoE. 

Figure 4. Comparison of the denoising results on the Barbara 
image (cropped to 256 256×  to show the artefacts): (A) Part of 
the noise-free Barbara image; (B) Part of the noisy Barbara image: 

30σ = , 18 59PSNR = .  dB; (C) Result of the BiSURE-LET: 
25 82PSNR = .  dB; (D) Result of the MuSURE-LET: 
26 94PSNR = .  dB. 
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σ  BiShrink ProbShrink BLS-GSM  BiSURE-LET  MuSURE-LET  BM3D NL-Means FoE 
Lena   

10  34.47  34.30  34.74  34.56  34.81  35.91 34.31 35.04 
15  32.63  32.41  32.90  32.68  32.92  34.26 32.07 33.26 
20  31.30  31.05  31.59  31.37  31.61  33.04 31.55 31.84 
25  30.30  30.02  30.57  30.36  30.60  32.08 30.46 30.82 
30  29.49  29.25  29.74  29.56  29.78  31.28 29.49 29.81 
50  27.16  27.22  27.44  27.37  27.55  28.85 27.39 26.49 
75  25.47  25.56  25.72  25.76  25.87  26.99 25.31 24.13 
100  24.31  24.30  24.54  24.66  24.72  25.55 23.75 21.87 

Barbara   
10  32.52  32.48  32.89  32.16  32.96  34.93 33.16 32.86 
15  30.14  30.04  30.54  29.65  30.59  33.05 30.79 30.22 
20  28.51  28.40  28.93  27.96  28.98  31.71 30.21 28.30 
25  27.29  27.20  27.72  26.74  27.84  30.64 28.92 27.05 
30  26.33  26.27  26.76  25.82  26.94  29.73 28.03 26.01 
50  23.91  23.86  24.25  23.72  24.58  27.15 25.72 23.15 
75  22.49  22.50  22.72  22.54  22.98  25.13 23.35 21.36 
100  21.67  21.68  21.53  21.81  22.01  23.57 21.86 19.77 
Boat   
10  32.46  32.53  32.89  32.91  33.09  33.90 32.90 33.05 
15  30.47  30.50  30.89  30.86  31.06  32.11 30.69 31.23 
20  29.08  29.11  29.49  29.47  29.67  30.85 29.69 29.82 
25  28.03  28.05  28.43  28.44  28.63  29.86 28.63 28.72 
30  27.20  27.22  27.58  27.63  27.81  29.06 27.65 27.86 
50  25.05  25.12  25.34  25.52  25.66  26.64 25.21 24.53 
75  23.67  23.82  23.97  24.04  24.14  24.84 23.35 22.48 
100  22.66  22.69  22.64  23.09  23.16  23.64 22.10 20.80 

Mandrill  
10  30.05  29.78  30.17  30.20  30.39  30.70 30.32 30.19 
15  27.48  27.27  27.66  27.65  27.92  28.31 27.93 27.69 
20  25.84  25.65  26.02  26.02  26.33  26.75 26.41 25.93 
25  24.65  24.48  24.85  24.88  25.20  25.62 25.19 24.23 
30  23.77  23.61  23.98  24.03  24.34  24.75 24.31 23.92 
50  21.65  21.93  21.91  22.07  22.30  22.42 21.90 21.75 
75  20.54  20.81  20.70  20.96  21.07  21.14 20.57 20.38 
100  19.95  20.12  20.04  20.36  20.40  20.39 19.91 19.51 

Fingerpt   
10  30.93  31.62  31.65  31.70  31.76  32.45 31.02 32.03 
15  28.67  29.29  29.36  29.47  29.54  30.28 28.69 29.42 
20  27.18  27.80  27.82  27.95  28.03  28.80 27.20 27.34 
25  26.04  26.55  26.65  26.79  26.89 27.70 26.15 25.05 
30  25.10  25.68  25.70  25.87  25.98  26.82 25.24 23.60 
50  22.57  23.12  23.21  23.39  23.56  24.32 22.97 22.68 
75  20.70  21.33  21.43  21.49  21.76  22.63 21.04 20.29 
100  19.47  20.14  20.23  20.18  20.55  21.30 19.55 18.75 

Bridge   
10  29.08  29.61  30.02  30.19  30.32  30.71 30.43 30.92 
15  26.96  27.20  27.52  27.80  27.90  28.28 27.96 28.48 
20  25.62  25.74  26.02  26.31  26.40  26.76 26.48 26.78 
25  24.69  24.73  25.03  25.27  25.35  25.75 25.37 25.70 
30  23.99  23.97  24.29  24.48  24.56  25.02 24.55 24.81 
50  22.28  22.11  22.48  22.52  22.59  23.10 22.16 22.50 
75  21.05  21.13  21.12  21.15  21.21  21.86 20.60 20.83 
100  20.22  19.97  20.19  20.28  20.38  20.91 19.63 19.50 

Table 1. Comparison of Some of the Most Efficient Denoising Methods (sym8) 

7Lihong Cui, Zhan Wang, Yigang Cen, Xuguang Li and Jianjun Sun: 
An Extension of the Interscale SURE-LET Approach for Image Denoising



Figure 5. Comparison of the denoising results on the Fingerprint image (cropped to 200 200×  to show the artefacts): (A) Part of the 
noise-free Fingerprint image; (B) Part of the noisy Fingerprint image: 60σ = , 12 57PSNR = .  dB; (C) Result of the BiShrink: 

21 71PSNR = .  dB; (D) Result of the ProbShrink ( 3 3× ): 22 60PSNR = .  dB; (E) Result of the BLS-GSM ( 3 3× ): 22 39PSNR = .
dB; (F) Result of the MuSURE-LET: 22 73PSNR = .  dB; (G) Result of the BM3D: 23 55PSNR = . ; (H) Result of the NL-Means: 

22.00PSNR = ; (I) Result of the FoE: 21.60PSNR = .

Figure 6. Comparison of the denoising results on the Mandrill image (cropped to 256 256×  to show the artefacts.) (A) Part of the 
noise-free Mandrill image; (B) Part of the noisy Mandrill image: 60σ = , 12 57PSNR = .  dB; (C) Result of the BiShrink: 

21 12PSNR = .  dB; (D) Result of the ProbShrink ( 3 3× ): 21 48PSNR = .  dB; (E) Result of the BLS-GSM ( 3 3× ): 21 32PSNR = .
dB; (F) Result of the MuSURE-LET: 21 71PSNR = .  dB; (G) Result of the BM3D: 21 79PSNR = . ; (H) Result of the NL-Means: 

21.22PSNR = ; (I) Result of the FoE: 21.10PSNR = .

Although the PSNR of our method is less than 
approximately 0.9 dB on average when compared to 
BM3D, the denoised images of our method are very 
similar to the original and qualitatively superior to BM3D 
(comparing (F) with (G) in Figure 5 and Figure 6). 

In particular, our algorithm obtains better results for 
those images with substantial textures, for which the 
bivariate SURE-LET is not very effective [8, 9], such as the 
Barbara and Mandrill images.  

From a visual point of view, our algorithm can be seen to 
provide fewer artefacts as well as a better preservation of 
edges and other details. These observations are clearly 
illustrated in Figure 5 and Figure 6.  

4. Conclusions 

The paper integrates the intrascale dependencies within 
the SURE-LET approach successfully such that, as an 
extension of the interscale and bivariate SURE-LET 
approaches in [8], the results are interesting.  

The comparison of the denoising results obtained with 
our algorithm and with the best state-of-the-art non-
redundant techniques (that integrate both inter- and 
intrascale dependencies) demonstrate the efficiency of 
our multivariate SURE-LET approach, which gave 
superior output PSNRs for most of the images. The visual 
quality of our denoised images is characterized more by 
fewer artefacts and a better preservation of edges and 
other details than the other methods.  

(E ) (F ) (G ) (H ) (I)

(A ) (B ) (C ) (D )

(E ) (F ) (G ) (H ) (I)

(A ) (B ) (C ) (D )
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