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1Abstract—In this study, the research and implementation of 

an automatic power quality (PQ) recognition system are 
presented. This system contains a USB interfaced multichannel 
data acquisition (DAQ) device and a graphical user interfaced 
(GUI) application. The DAQ device consists of an analog-to-
digital (ADC) converter, field programmable gate array 
(FPGA) and a USB first in first out (FIFO) buffer interface 
chip. The application employs Stockwell Transform (ST) 
technique combined with neural network model to build the 
classifier. Eight basic and two combined PQ disturbances are 
determined for the classification. Different from the previous 
studies, the synthetic signals used for neural network training 
are modified by adding the harmonics detected in the real 
signal. This approach is used to increase the classifier accuracy 
against the real line power signal. Also, ST is simplified by 
using only the frequencies which are required in the feature 
extraction step to reduce the processing time. Developed 
application handles the signal processing, the classification, 
and the database recording tasks by using multi-threaded 
programming approach under the mean time of 41 ms. The 
experimental results show that the proposed power quality 
disturbance detection system is capable of recognizing and 
reporting power quality faults effectively within the real-time 
requirements. 
 

Index Terms—discrete transforms, graphical user interfaces, 
neural networks, power quality, real-time systems. 

I. INTRODUCTION 

Different types of non-linear loads such as controlled and 
non-controlled rectifiers, AC voltage controllers and 
saturated inductive loads are several of the most common 
causes of the increasing voltage or current signal distortion. 
The distortions lead to produce different types of power 
quality (PQ) symptoms. In recent years, those disturbances 
take more attention because of having negative effects on 
power sensitive equipment used in industrial plants. PQ 
faults must be detected, analyzed and classified to take 
necessary preventive measures. These tasks should be taken 
to reduce the economic losses caused by such power quality 
problems. 

In a secure power electric system, voltage and current 
waveforms should be monitored and acquired continuously 
in order to detect the disturbances effectively. Captured data 
are analyzed and classified using appropriate digital signal 
processing and machine learning methods. Digital signal 
processing techniques such as Wavelet Transforms (WT) [1-
5] and ST [2], [6-14] have a widespread application area in 

the literature. These methods are used to extract a pattern 
that characterizes different PQ disturbances. Machine 
learning methods such as Artificial Neural Networks (ANN) 
[1], [2], [7-9], decision trees (DT) [3-4], [11], [15-17], and 
Support Vector Machines (SVM) [18-19] are used to 
address the pattern to related PQ disturbances. 

 
 

There are many powerful automatic power quality 
detection and recognition systems developed by using 
mentioned methods [19], [20]. Costly and complex designs 
and low modularity can be counted as common drawbacks 
of such systems. There are some studies using LabVIEW 
virtual instrumentation packages [14], [21-23] and dSPACE 
systems [10]. These solutions provide researchers with 
powerful components to evaluate the signal processing 
algorithms. However, the highly developed hardware [24] 
and software dependencies can be considered as drawbacks 
of these systems. This dependency may lead issues when 
portable end-user instrument design is desired. Also, there 
are other studies on automatic power quality disturbance 
classification systems employing digital signal processor 
(DSP) and field programmable gate array (FPGA) solutions 
[25-26]. These systems are highly effective solutions with 
high performance. However, these solutions need an 
external computer with general purpose processor for 
database and networking operations. The studies [27-28] 
propose complete system approaches for an embedded 
power quality recognition system. Nevertheless, high 
hardware design complexity can be considered drawbacks 
for these studies. 

This paper demonstrates the research and implementation 
of a relatively inexpensive and practical real-time power 
quality recognition system. The system design contains a 
USB interfaced data digitizer hardware and a single board 
computer compatible software used to detect and to classify 
the PQ disturbance. The proposed system processes three-
phase voltage signals to realize classification tasks. The 
signal processing software uses ST for feature extraction 
and ANN for PQ disturbance classification. All of the 
classified disturbance other than normal is recorded into 
structured query language (SQL) compatible database for a 
possible further assessment. The main contribution of this 
paper is to present an affordable real-time power quality 
classification methodology by using a simplified ST scheme 
with the platform independent hardware and software. 
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II. SYSTEM OVERVIEW 

The classification system acquires three-phase power 
signal data by using the USB interfaced data acquisition 
device. Voltage signals are sampled at 10 ksps and 5 periods 
of the signal are used to detect and classify the possible PQ 
disturbance (PQD). Acquired signal data are organized as 
windows which are five periods length. Each window is 
plotted in the GUI of the application. Then ST operation is 
performed over the window. The amplitude matrix is 
calculated after ST operation. Seven types of features 
comprising the recognition pattern is calculated. The 
recognition pattern is fed into ANN and the output is 
monitored. If the maximum output value is observed at a 
different output rather than Output 0 (output for a 
NORMAL situation), the classification result (fault type), 
time and raw signal data are recorded into SQL database 
table. The raw signal data may be used for post-process 
assessment if necessary. The flowchart of the classification 
task is shown in Fig. 1. 

 
Figure 1. Flowchart showing the proposed classification process 

III. DESIGN OF DATA ACQUISITION (DAQ) DEVICE 

DAQ unit is used to digitize AC power signal and 
transmit the obtained data to the computer. Its capture rate 
can be set up to 200 ksps for all 8 channels. This device is 
the enhanced version of our previous design proposed in 
[29]. In this design, Xilinx Spartan 6 FPGA is used instead 
of the microcontroller to control data acquisition. DAQ unit 
employs three components: Spartan 6 FPGA board (Papilio 
Pro), AD7606 Analog-to-Digital converter breakout board 
and FT2232H USB-FIFO interface breakout board (Fig. 2). 

 
Figure 2. Block scheme of proposed USB interfaced data digitizer device 

 
FT2232H is used for buffering and transmitting sampled 

data through the USB port. FT2232H is a dual channel USB 
UART/FIFO interface chip. Channel A of FT2232H is 
programmed as UART and channel B is programmed as 
asynchronous FIFO mode. UART channel is used to send a 
command to FPGA control logic: start sampling, stop 
sampling and set sampling rate. FIFO channel is used for 

transmitting raw signal data to the computer. 
AD7606 is a 16-bit successive approximation (SAR) 

ADC with 8 channels synchronous sampling. The AD7606 
comes with the following features that make it an ideal part 
for data acquisition systems (DAS): 

• Sampling rate up to 200 ksps on all channels, 
• Bipolar analog input ranges from ±5 V to ±10 V, 
• Single 5 V analog supply, 
• Analog input clamp protection, 
• Second-order antialiasing analog filter, 
• Flexible parallel/serial interface. 
AD7606 has been used for different applications [26], 

[28-31] requiring accurate data acquisitions from power 
quality detection to vibration sensing. 

The FPGA configuration is designed using Xilinx ISE 
14.7. The configuration bitstream is transferred to FPGA by 
using JTAG interface channel of an onboard FT2232D chip. 
Project tree is given in Fig. 3. 

 
Figure 3. Xilinx ISE project tree of the DAQ device configuration 

 
In the project tree, pp_ft2232_top is the Verilog module 

(top-level module) that interconnects the other modules. 
This can be considered as a virtual motherboard like in a 
personal computer hardware. The functions of the other 
modules are briefly described below: 

PwmGen: This module is used to generate 10 KHz 
sampling signal from 32 MHz crystal oscillator on Papilio 
Pro board. This module outputs a pulse width modulation 
(PWM) signal with 50% duty cycle. 

Frequency_divider_by2: This module is used to 
generate the read signals for ADC and the write signals for 
the internal FIFO by dividing 32 MHz clock signal by 2. 

aFifo: It is the memory used for buffering ADC data 
before sending it through the USB interface. This is derived 
using FIFO IP Core provided by Xilinx in ISE Design Suite. 
It operates in asynchronous mode and read/write speed is 16 
MHz. 

Async_sender: This module is used to transfer ADC data 
from aFIFO to the data stream channel of USB-FIFO 
(Channel B). 

Daq_interface: This module is used to start and to stop 
the sampling operation. The sub-module serial_rx is used to 
read the command comes from the computer side. serial_rx 
reads the command data at 2 MBaud communication speed. 
This module reads the commands through Channel A. RTS 
(Ready-to-Send) pin of UART module is used to reset 
FPGA modules and ADC. 

All the FPGA modules operate in parallel when the 
acquisition is active. For example, when the command of 
stop sampling is sent over UART; sampling, reading and 
writing operations are not interrupted. The device’s tested 
data throughput is 40 ksps x 2 bytes x 8 channels = 625 kb/s. 
This amount of data can be transmitted through USB-FIFO 
without any bottlenecks because the maximum 
asynchronous data transfer rate of FT2232H is 8 
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Megabytes/second. TXE flag of the FT2232H is checked 
before writing. This flag indicates whether the on-chip 
transmit buffer is full or not. When the device driver is late 
to read from the on-chip buffer, the data coming from ADC 
is accumulated into FIFO buffer inside FPGA. The data 
stream is ensured in this way. 

The proposed device draws only 100 mA current and does 
not require any additional components for data acquisition 
control management. Reference [32] proposes a competitive 
device that uses MAX11046 ADC, FT2232H and a complex 
logic programmable device (CPLD). Additionally, this 
design employs a microcontroller (PIC12F509) for the data 
acquisition control, which brings the requirement of 
additional firmware development. This device also draws 
300 mA current, thus consumes more power than proposed 
device. The main contribution of this section is to present 
how an FPGA can be efficient for portable, flexible, low 
cost and low power consumption instrumentation design.   

IV. DESIGN OF PROPOSED DATA ANALYSIS PIPELINE 

In this section, PQD classification steps are explained. 
Firstly, ST is described. Secondly, feature extraction method 
is presented. Then the generation of PQ disturbances used in 
this study is explained. This section ends with the discussion 
about the classification of the PQ disturbances and previous 
studies. 

A. Stockwell Transform 

The mathematical representation of ST is presented by 
Stockwell et al. [33] by using Wavelet transform (WT) and 
Short Time Fourier Transform (STFT). The Continuous 
wavelet transform (CWT) of the input signal h(t) is defined 
as in (1) [9], [14], [17], [18], [34]:  


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where w(t-τ, d) is the scaled form of the fundamental 
wavelet. The parameter d is the scaling factor that is 
obtained by inverting the fundamental frequency of the 
input signal. The ST of function h(t) is defined as a CWT 
with a specific mother wavelet multiplied by the phase 
factor (2) 
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where the mother wavelet for this phase corrected equation 
is defined as in (3): 

ftj
ft

ee
f

ftw 


22

22

2
),( 
   (3) 

The equation (3) is not a CWT due to the lack of having a 
zero mean condition for an acceptable wavelet. Final 
equation of the continuous S-transform is obtained by using 
the inverse of f as dilation parameter as in (4): 
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The ST can also be expressed as the operations on the 
Fourier spectrum H(f) of h(t) as written in (5): 
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The power system signal h(t) can be expressed in a discrete 
form as h(kT), k=0,1,..,N-1 where T is the sampling interval 
and N is the total samples number. The discrete Fourier 
transform (DFT) of h(kT) is expressed as in (6): 
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where n=0,1,..,N–1. Using (5), the ST of a discrete time 
series h(kT) is given by (let τ → kT and f → n/nT) as in (7) 
[9], [14], [17], [32]. 
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where k, m=0,1,..,N-1, and n=1,..,N-1. For n=0 (the 
frequency at zero) the transform is done by calculating the 
mean of amplitudes in the frequency spectrum (8) [17], [18]. 
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The ST localizes both the phase spectrum and the 
amplitude spectrum. By using FFT, convolution and inverse 
FFT, the discrete ST can be computed fast. The output of ST 
is a complex matrix whose rows and columns are frequency 
and time values, respectively. ST-amplitude matrix (STA) 
(9) is calculated to analyze power signal disturbances, in 
which the rows are the frequencies and the columns are the 
time samples [7], [17], [33]. 
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The information contained in the time-frequency 
spectrum (each row in STA-matrix) is used to analyze and 
determine the PQ disturbance (PQD) characteristics in this 
paper. The graphical representation of the STA exhibits 
frequency-time, amplitude-time, and frequency amplitude 
plots. In this study, for the pre-processing step ST is 
preferred. Because ST is immune to noisy conditions and 
preserves phase information of analyzed signal [14], [17].  

B. Feature Extraction  

By observing the frequency rows (contours) of STA, the 
distinctive features of PQDs can be determined easily. A 
distorted power signal with oscillatory transient and 5th 
harmonic is given in Fig. 4 (a) and 150 Hz, 250 Hz, 350 Hz 
and 700 Hz contours in (b) to (e), respectively [11], [20]. It 
can be seen that the oscillatory transient triggers the energy 
existence at 700 Hz contour (e). Also, there is a big energy 
concentration response to the existence of 5th harmonic at 
250 Hz contour at the end of the signal. These 
concentrations corresponding to different disturbances 
present distinctive features. 

In Fig. 5, a signal with interruption and several frequency 
contours are given. The contour related to 50 Hz is noted to 
decrease its value during the interruption. The other 
frequency contours exhibit a low energy at the beginning 
and at the end of interruption. In these examples, it can be 
seen that the transient events (e.g. beginning of interruption 
or oscillatory transient) can be detected by examining high-
order harmonics. In addition, any harmonics event can be 
detected by searching corresponding frequency contours [2], 
[11], [20]. 
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Figure 4. Signal with an oscillatory transient and 5th harmonic (a). 50 Hz 
contour (b), 150 Hz contour (c), 250 Hz contour (d), 700 Hz contour (e) 
[20] 

 
Figure 5. Voltage interruption (a). 50 Hz contour (b), 150 Hz contour (c), 
250 Hz contour (d). 700 Hz contour (e) 

 
In this paper, the distinctive features are extracted by 

using these advantages provided by STA contours. The 50 
Hz contour presents useful information about sags, swells, 
and interruptions [2], [34]. Thus, the mean value of 50 Hz 
contour has been selected as a distinctive feature. However, 
this feature does not clearly distinguish between sags and 
interruptions, and therefore, there is a need for another 
feature. The second and the third features are obtained by 
determining the minimum and the maximum absolute peak 
values of the sinusoidal power signal (Fig. 6). In the 
previous work [11], the minimum value of 50 Hz contour 
selected to distinguish sag and interruption cases. 
Nevertheless, this feature is not enough as seen in sag and 
interruption classification accuracy with PSCAD generated 
data as seen at the end of same work. 

 
Figure 6. Signal with Flicker (a), absolute value of the signal and selected 
features X2 and X3 (b) 

 
In order to detect the disturbances including the third, the 

fifth and the seventh harmonics, the mean value of contours 
related to these frequencies (150 Hz, 250 Hz, and 350 Hz) 
are used. Mean values of these contours are preferred due to 

the requirement of lower computation burden compared to 
the energies used in [11], [20]. 

The sum of mean values for contours from 600 Hz to 
1600 Hz has been selected as another characteristic feature. 
The value of this feature gives information about the high 
frequency transient events like an oscillatory transient. 

The features constituting the recognition pattern are 
summarized in Table I. The features X1, X4, X5, X6, and 
X7 are extracted from the rows of STA. Therefore, ST is 
applied over these rows (frequencies). There is no need for 
operation of full spectrum ST. 

 
TABLE I. THE FEATURES COMPRISING THE RECOGNITION PATTERN 
Feature Description 

X1 Mean of 50 Hz contour 
X2 Minimum peak value of 5 cycles 
X3 Maximum peak value of 5 cycles 
X4 Mean Value of 150 Hz Contour 
X5 Mean Value of 250 HZ Contour 
X6 Mean Value of 350 Hz Contour 
X7 Sum of mean values from 600 Hz to 1600 Hz 

C. PQ Disturbance Generation 

In this paper, the classification work for eight types of 
simple and two types of combined power quality 
disturbances are realized: the simple PQDs are swell, sag 
(dip), interruption (outage), oscillatory transient, harmonics, 
flicker, notching; combined PDQs are swell with harmonics 
and sag with harmonics.  Class labels belong to these 
disturbances are given in Table II. 

 
TABLE II. CLASS LABELS BELONG TO DISTURBANCES 

Disturbance Label 
Normal C1 

Sag C2 
Swell C3 

Interruption C4 
Harmonics C5 

Oscillatory Transient C6 
Flicker C7 

Sag+Harmonics C8 
Swell+Harmonics C9 

Notching C10 
 

The signals related to these disturbances are generated by 
using MATLAB according to power signal disturbance 
models [1], [5], [23], [35] based on IEEE 1159 standards. 
These synthetic signals are sampled at 10 ksps within five 
cycles. Evaluated power system’s fundamental frequency is 
50 Hz and the normalized voltage peak value is 1 V. 

These signals are modified by adding the harmonics that 
are measured with our previous system proposed in [29]. 
This modification is performed to enhance the classifier 
accuracy against the real power signal.  This modification is 
applied to 40% of the signals that are generated for training. 
The harmonics and their amplitudes added to the synthetic 
signals are shown in Table III. The features given in Table I, 
are extracted by using these signals. Then the ANN is 
trained by using these features. 

 
TABLE III. HARMONIC AMPLITUDES ARE ADDED TO SIGNAL MODELS 

Frequency Amplitude 
150 Hz 0.056379 
250 Hz 0.06528 
350 Hz 0.014343 
450 Hz 0.008286 
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Fig. 7 shows the scatter plot of feature values X2 versus 
X3 of test patterns for Normal, Sag, Swell and Interruption 
classes. These classes are distinguished well by these 
features. Fig. 8 shows the scatter plot of feature values X3 
and X7 of test patterns for Harmonics, Oscillatory Transient, 
Flicker, Sag+Harmonics, Swell+Harmonics and Notching 
classes. Sag+Harmonics and Notching classes have some 
overlapping cases. 

 
Figure 7. Scatter plot of feature values X2 versus X3 of test patterns for 
Normal, Sag, Swell and Interruption classes 

 
The ANN classifier eliminates this ambiguity with the 

contribution of features X2 and X4 as seen in Fig 9. In this 
plot, Swell+Harmonics and Notching classes have some 
overlapping cases. 

 
Figure 8. Scatter plot of feature values X3 and X7 of test patterns for 
Harmonics, Oscillatory Transient, Flicker, Sag+Harmonics, 
Swell+Harmonics and Notching classes 

 

 
Figure 9. Scatter plot of feature values X2 and X4 distinguishing Notching 
and Sag+Harmonics classes 
 

D. PQD Classification By Use Of ANN 

Neural networks have been used as an important tool for 
classification, and have been applied to wide range of real 
world tasks successfully [36]. It has been used as a PQD 
classification tool in different studies [2], [37].  

In this paper, feedforward backpropagation ANN is used 
to classify PQDs. The ANN has two layers: hidden layer and 
output layer. The number of neurons in the hidden layer is 
determined as a function of number of inputs, regarding the 
expression (2n+1), where n is the number of inputs to the 
ANN [2]. The transfer function between input and hidden 
layer is tansigmodial; the transfer function between the 
hidden and the output layer is lineal. The learning ratio is 
determined as 0.07, the epoch 100000 and the training 
algorithm is selected as traingd. The implementation is 
performed using MATLAB. 

ANN is trained with the signal data according to the 
signal models mentioned in the previous subsection. 50 
signals are generated for each disturbance type (Totally 500 
signals are generated for training set). Then ST is applied to 
these signals. The features given in Table I are extracted 
after ST. Input matrix to be used for ANN training is 
constructed with these features. ANN is trained with the 
input matrix (500x7) by using given parameters above. After 
the training operation is completed ANN is saved (Fig. 10 
(a)). 

For the validation of the ANN and selected features, 500 
signals are generated with random parameters again. 
Features of these signals are extracted and tested with pre-
trained ANN. For every step of the validation, the confusion 
matrix is updated (Fig. 10 (b)). Classification accuracy is 
calculated from the confusion matrix. By using this method, 
a classification accuracy of 98.4% is obtained with synthetic 
signals. However, we observe that the ANN fails against the 
real signal disturbances. For example, recorded normal 
signal including low level harmonics is classified as 
harmonics. 

 
Figure 10. Training (a) and verification (b) flowcharts of the ANN 

 
For better validation of the ANN against the real signal 

data, 500 signals are generated with random parameters 
again. Harmonics measured in real (as given in Table III) 
signal are added to these signals. After the validation, a 
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classification accuracy of 80% is obtained. This accuracy 
rate shows that the real signal harmonics have negative 
effects on classification accuracy. Therefore, ANN is re-
trained with harmonics injected signals. When network 
training is completed after 100000 iterations, mean square 
error (MSE) is obtained as 0.0293. Validation is repeated 
with harmonics injected new test data and a classification 
accuracy of 94.7% is obtained. The confusion matrix for this 
evaluation is given in Table IV. Diagonal elements of the 
table indicate true classifications and the other elements 
indicate misclassifications. As seen in Table IV, sag (C2) 
case is misclassified as interruption for 6 times for the worst 
situation. 

 
TABLE IV. CONFUSION MATRIX OBTAINED USING ANN WITH PROPOSED 

FEATURES 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 50 0 0 0 0 0 0 0 0 0 
C2 5 39 0 6 0 0 0 0 0 0 
C3 1 0 43 0 0 3 3 0 0 0 
C4 0 3 0 47 0 0 0 0 0 0 
C5 0 0 0 0 50 0 0 0 0 0 
C6 0 0 0 0 0 50 0 0 0 0 
C7 1 0 0 0 0 0 49 0 0 0 
C8 0 0 0 1 6 0 0 43 0 0 
C9 0 0 0 0 1 0 0 0 49 0 

C10 0 0 0 0 0 0 0 0 0 50 

Overall Accuracy 94.7% 
 

Precision, Recall and F measure values extracted from the 
confusion matrix, is given in Table V. According to F 
measure results, the overall accuracy rate is almost 
reasonable for the accuracy rate of each class except the C2. 
Recall value (0.78) for C2 shows that the disturbance of sag 
is misclassified more times than the other classes. This 
classification error can be reduced by enhancing the samples 
of the related perturbations.  

The main contribution of this section is to reveal that the 
classification accuracy of a power quality classifier ANN 
can be enhanced by using the real signal harmonics in the 
training step. Example MATLAB codes for training and test 
stages can be accessed from GitHub repository: 
https://github.com/pqd-researcher/pqd_class_verification. 

 
TABLE V. PRECISION, RECALL AND F MEASURE VALUES OBTAINED FROM 

CONFUSION MATRIX 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

P
re

ci
si

on
 

0.88 0.93 1.00 0.87 0.88 0.94 0.94 1.00 1.00 1.00 

R
ec

al
l 

1.00 0.78 0.86 0.94 1.00 1.0 0.98 0.86 0.98 1.00 

F
 m

ea
su

re
 

0.93 0.85 0.92 0.90 0.93 0.97 0.96 0.92 0.99 1.00 

 

Levenberg-Marquardt backpropagation algorithm 
(trainlm) is also tested within our study. MSE is obtained as 
0.00175 after 39 iterations with this method. Convergence 
of this method is much faster than gradient descent 
approach. Nevertheless, a verification accuracy of 87% is 

obtained with the ANN trained by use of the Levenberg-
Marquardt algorithm. 

Comparison of S-Transform based classification schemes 
are given in Table VI. Uyar et al. [7] obtained very high 
accuracy with synthetic signal data by using ANN. Authors 
of that paper used 14 features that may be challenging for 
real-time implementation. Biswall and Dash [10] obtained 
very high accuracy by using DT with real signal data 
acquired from a laboratory setup. However, the number of 
features required for classification is relatively high as in 
reference [7]. Li and Chilukuri [18] used SVM with particle 
swarm optimization (PSO) for classification. In this paper, 
the number of classified PQDs is low in comparison to other 
studies. Rodriguez et al. [20] used a rule based (RB) 
approach to classify the disturbances. They tested the 
method with synthetic signals at different noise levels. 
Classification accuracy (99.5%) of RB approach is higher 
than ANN accuracy (98.4%) for signals with no noise. 
However, the classification accuracy of RB approach is 
lower (72.7%) than ANN accuracy (89%) for signals with 
the noise level of 20 dB.  

 
TABLE VI. COMPARISON OF S-TRANSFORM PERFORMANCE WITH 

DIFFERENT CLASSIFIERS 
R

ef
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T
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Uyar et al. [7] NN Synthetic 14 9 99.67% 
Biswall and 
Dash [15] 

Decision 
Tree 

Real 20 13 94.8% 

Li and 
Chilukuri [18] 

PSO-
SVM 

Synthetic 5 7 99% 

Rodriguez et 
al. [20] 

Rule 
Based 

Approach 

Synthetic 6 11 99.5% 

Kumar et al. 
[23] 

NN + 
Decision 

Tree 

Synthetic 5 13 99.9% 

Mishra et al. 
[38] 

PNN Synthetic 4 11 94.7% 

Lee and Dash 
[39] 

PNN + 
Rule 

Based 
Decision 

Synthetic 3 10 95.33% 

Chilukuri and 
Dash [40] 

Fuzzy Synthetic 5 7 99.28% 

Proposed 
Method 

NN Synthetic+ 
Real Signal 
Harmonics 

7 10 94.7% 

 

Kumar et al. [23] used DT and ANN combined 
classification scheme that can be hard to implement with a 
real-time classification system. Authors of paper [38] used 
the probabilistic neural network (PNN) to classify the PQDs. 
PNN is preferred in that study because of having a simple 
and adaptable structure with a fast learning stage. However, 
two of the features used in this study are column based 
features. These features may require the inspection of full-
spectrum STA calculation. Lee and Dash [39] used rule 
based decision tree with PNN. Using combined classifier 
helps with enhancing the classification accuracy but brings 
more computational overhead as in [23]. Chilukuri and Dash 
[40] proposed a classification scheme based on Fuzzy rules.  
They obtained very high accuracy (99.28%) with synthetic 
signals at an SNR level of 40 dB. Nevertheless, the number 
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of PQDs is low as in [18]. The Fuzzy model, a widely used 
solution in control systems [41], [42], has also been used for 
detection and classification purposes in different 
applications [43], [44]. In addition to this, Fuzzy models, 
have also been employed to detect the PQDs [10], [35], [40]. 

The classification accuracy in these studies varies 
according to the number of features and the classified PQDs 
as well as the methods. As seen in the literature overview, 
neural network approach is more common and reliable for 
PQD recognition. In general, simulated signal data has been 
used for training and evaluation. Different from the previous 
studies, the main contribution of this section to present a 
method to deal with real power signal data by mixing 
harmonics with simulation data. In addition to this, the 
features used in recognition process are based on STA 
matrix rows (frequencies). ST calculation can be simplified 
by using only the required frequencies in recognition pattern 
instead of the full spectrum. Obtained accuracy with 
selected features shows that the proposed method is 
admissible for an online PQD recognition system. 

V. DESIGN OF PQ DISTURBANCE CLASSIFICATION 

SOFTWARE 

The classification software processes the digitized signal 
data and makes a decision about the PQD state. If a 
disturbance detected on one of the three phases, recognized 
PQ disturbance and five periods of signal data (1000 sample 
points) are recorded into Structural Query Language (SQL) 
compatible database. Also, the voltage signals can be 
monitored using graphical user interface (GUI) of the 
software. All these tasks are performed using three threads. 
The first thread is the main thread of the Qt application. This 
thread has the function to display and react to the graphical 
user interface. The second thread reads the data from the 
USB-FIFO buffer into processing queue of the software. 
The third thread reads the data from the processing queue 
and performs the required operations to plot and to classify 
the signal. 

Data reader thread checks and reads the data package 
(3200 bytes for one period) from USB-FIFO, and then 
appends the data to the processing queue. The application 
reads FIFO buffer at the end of the power line signal period. 
FT_GetStatus Application Programming Interface (API) 
function is used to check whether the number of bytes 
exceeds 3200. This value indicates the period limit of the 
acquired signal for 8 channels at 10 ksps sampling rate. 
FT_Read function is used to read the buffered data (Fig. 11). 

 
Figure 11. Flowchart for the Data Reader thread 

Data processor thread reads the data back from the queue. 
The sampled data are read from the ADC in the ascending 
channels order. Therefore, data processor thread parses data 
into appropriate channels then performs the calculations and 
the display operations (Fig. 12). 

 
Figure 12. Flowchart for the Data Processor thread 

 
Those threads are synchronized by using mutex 

mechanism. To keep the processing time under 100 ms 
deadline, thread priorities of those threads set to high by 
using setPriority call of Qt framework. Signal plotting 
operations are implemented with QtCharts. QtCharts comes 
with OpenGL ES 2.0 API support. Plotting task is offloaded 
from CPU to GPU with high performance operation by 
using OpenGL support. While the proposed software 
processes and makes a decision about the acquired data, 
incoming data is placed into the FIFO buffer by the device 
driver of FT2232H. 

Acquired signal data is normalized to 1V peak value 
using a variable coefficient. This is a calibration task to 
catch the normal condition of the monitored power line. The 
coefficient can easily be changed by using a slider 
component in the GUI of the application (Fig. 13). DC part 
is removed from the acquired signals before S-Transform 
operation. AD7606 has a 2nd order anti-alias analog filter, 
therefore, the acquired signal is not filtered. 

 
Figure 13. GUI of the proposed application 

 
In this study, ST, is only performed over frequency rows 

that are used in the feature extraction step, instead of the full 
spectrum. Thus, 1 forward and 21 inverse DFT operations 
are performed for one phase of the power signal (Fig. 14). 
This approach makes the ST more suitable in real-time 
operations. He et al. [33] uses dynamics method to remove 
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unwanted frequencies from ST operation. A fast dyadic 
frequency scaling scheme is used to decrease computational 
burden of ST [15]. Such methods may require considering a 
different number of features varying according to different 
PQDs. This uncertainty makes the extraction process a bit 
more complicated. As proposed in this work, the fixed 
number of features preference is a simpler approach and 
more suitable for ANN classifier. The main contribution of 
this section is to present a way to reduce the computation 
time of ST by excluding unneeded frequency rows from the 
calculation. 

 
Figure 14. ST calculation with only selected frequencies 

 
The gaussian window is pre-calculated at the application 

startup to reduce the runtime of ST by using a similar 
approach as used in [33]. DFT operations demanded by ST, 
are performed by using FFTW [45] library. All FFT plans 
within the application, are distributed into two threads to 
take the advantage of multi-core processor technology. 

In the PQ disturbance classifier application, the neural 
network weights obtained in MATLAB application are used. 
After the training operation, the input layer and the bias 
weights (W1 and B1) and the hidden layer and the bias 
weights (W2 and B2) are exported as a single disk file. The 
PQD classifier application loads the weights from the file at 
startup. Classification is realized by two matrix 
multiplication operations using these weights and the feature 
vector by (10). 

)*11tanh(*22 XWBWBY   (10) 

where Y is the output vector of the ANN and X is the input 
feature vector.  

Example PQD events detected and recorded by the 
proposed system with real line signals are given in Fig. 15 
and Fig. 16. The signal given in Fig. 15 demonstrates a 
flicker case. This signal is classified as flicker by the 
proposed application. Fig. 16 shows a swell case. This 
signal is classified as swell. Fig. 17 depicts a combined PQD 
with oscillatory transient and swell cases. This signal is 
classified as oscillatory transient. This event was detected 
during a monitoring session of an uninterruptible power 
supply (UPS) output on low battery. These classification 
results prove the robustness of the proposed system against 
real signal data. 

The proposed application employs SQLite 3.0 database to 

store the information regarding PQ perturbations. SQLite 
database engine is built within Qt Library. Every PQ 
disturbance information detected by the application is 
inserted into regarding table in the database structure. 
Record row comprises of disturbance date, time, type and 5 
cycles of raw signal. The raw signal data for three-phase 
take place in the separate columns in the record row. 

The libraries used in the application project are open-
source and come with the cross-platform support. By taking 
the advantage of these features, the application can easily be 
ported to Linux based operating systems and Mac OS X 
platforms. The project is designed by using Qt Creator 
integrated debugging environment (IDE). GUI of the 
application is designed based on Qt Framework. Visual 
Studio 2015 C++ compiler is used to build the project on 
PC. Then the application is cross-built for Raspberry Pi 3 by 
using gcc-4.9-linaro-arm-gnueabi-hf toolchain. 

 

 
Figure 15. Signal with flicker 

 
Figure 16. Signal with swell 

 
Figure 17. Signal with oscillatory transient 

VI. EXPERIMENTAL STUDY 

Performance measurement of the system is carried out by 
using 220 volts 50 Hz AC power voltage signal. Three 
potential transformers (PT) with 12 volts RMS seconder 
voltage are used to reduce the amplitude of the voltage on 
each phase. Divided seconder voltage (3.8 V) is applied to 
ADC inputs by using voltage divider connection (Fig. 18). 

 
Figure 18. Three phase connections for the system test 

The period of the observed line signal is 20 ms. The 
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application processes the acquired signal by accumulating 5 
periods. Data reading and parsing, STA calculation, feature 
extraction, neural network classification, signal plotting and 
database record operations take time here. The application 
has to perform all these tasks in 100 ms in order to meet the 
real-time requirements. The elapsed timing measurements 
on a Raspberry Pi 3 single board computer are given in 
Table VII for 6 hours long operation. 

 
TABLE VII. ELAPSED TIMING MEASUREMENTS DURING REAL-TIME 

PROCESSING 
Elapsed Time (µs) Operation  

(For Three Phase) Minimum Maximum Mean 
Signal Plotting 134 317 160 

S-Transform (22x1000 
double typed points) & 

Feature Extraction 
13568 23687 14016 

ANN computation 48 146 51 
Database Record (5 cycles 

of raw data) 
19160 215837 26294 

TOTAL 32910 239987 40521 
 

The sum of the mean processing times is under 41 ms and 
this result shows that the proposed system is sufficient for 
an admissible PQD detection system. The classification 
operation in [20] is completed in 71 ms for single phase 
without plotting and recording the signal data. Another 
paper [25] using DSP based hardware and decision tree for 
classification, reports a classification time about 90 ms for 
single phase operation. Authors of reference [15] report an 
ST computation time of 3.2 ms with fast dyadic scaling 
(dSPACE Application). However, this is a single-phase 
signal processing time with 640 sample points. Overall 
classification time is not reported within this paper. Reddy 
et al. [14] proposed a power quality monitoring system 
employing ST. In this study, ST is implemented with 
LabVIEW. The power signal is acquired with NI SCXI-
1600 USB data acquisition device and ST 3D contours are 
displayed with the application. Nevertheless, automatic 
power quality classification task is not implemented within 
this study. Authors of this paper report a computation time 
of 0.75 s for only ST operation. As seen in the literature 
overview, the processing time required for PQD 
classification of the proposed ST scheme is lower than the 
previous implementations. 

In our experiment, the database insertion operation takes 
the longest time and can be reduced by using an external 
storage device with higher write speed. For this experiment, 
Sandisk Ultra Dual drive with USB 3.0 OTG interface is 
used. However, Raspberry Pi 3 USB interface is USB 2.0 
high speed compatible.  

The data processing thread goes into the suspended state 
during the disk write operation and the data reader thread 
continues reading data from FIFO queue. Data overflow is 
avoided in this way. Database record operation is only 
performed when a PQ fault occurs, thus, the elapsed time for 
the raw signal record can be omitted. Another solution can 
be given as using “synchronous off” option for SQLite 
connection to decrease table insertion time. File write task is 
delivered to OS without waiting for completion with this 
option. On the other hand, this way is safe unless the power 
of processing computer gets interrupted. The mean times for 
processing is even under 5 ms on a notebook computer with 
Intel Core i7 3537U (3rd generation) CPU with 8 GB RAM 

and solid state drive. 

VII. CONCLUSION 

In this work, a USB interfaced power quality recognition 
and estimation system is implemented. The disturbance 
classification is realized by processing voltage signals of a 
three phase line. Power line voltage is acquired by using an 
FPGA powered multichannel simultaneous DAQ with USB-
FIFO interface. Signal features regarding PQD are extracted 
by using ST. Feed forward back propagation ANN is used 
for the disturbance classification. Different from the 
previous studies, the harmonics measured in the real power 
signal, are added to synthetic signals which are used for 
training the ANN. Also, ST is performed over only the 
frequency lines used for the feature extraction. Seven 
features are used for classification. The ANN weights 
exported from MATLAB are used in the proposed 
application. Using pre-calculated weights makes the 
implementation become very practical. Additionally, 
acquired signal data are displayed in real-time. Performance 
measurement results validate that the proposed classification 
system is capable of detecting and logging power quality 
faults effectively in a real-time computing speed. 

In our future work, a remote monitoring system will be 
integrated into this system by using Internet of things 
approach. Message Queuing Telemetry Transport (MQTT) 
protocol is a candidate method to build a distributed power 
grid monitoring system. MQTT protocol can be used both 
remote control and data collection purposes in a practical 
way. 
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