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Semantic segmentation–aided
visual odometry for urban
autonomous driving

Lifeng An1, Xinyu Zhang2, Hongbo Gao3 and Yuchao Liu1

Abstract
Visual odometry plays an important role in urban autonomous driving cars. Feature-based visual odometry methods
sample the candidates randomly from all available feature points, while alignment-based visual odometry methods take all
pixels into account. These methods hold an assumption that quantitative majority of candidate visual cues could represent
the truth of motions. But in real urban traffic scenes, this assumption could be broken by lots of dynamic traffic parti-
cipants. Big trucks or buses may occupy the main image parts of a front-view monocular camera and result in wrong visual
odometry estimation. Finding available visual cues that could represent real motion is the most important and hardest step
for visual odometry in the dynamic environment. Semantic attributes of pixels could be considered as a more reasonable
factor for candidate selection in that case. This article analyzed the availability of all visual cues with the help of pixel-level
semantic information and proposed a new visual odometry method that combines feature-based and alignment-based
visual odometry methods with one optimization pipeline. The proposed method was compared with three open-source
visual odometry algorithms on Kitti benchmark data sets and our own data set. Experimental results confirmed that the
new approach provided effective improvement both on accurate and robustness in the complex dynamic scenes.
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Introduction

Visual odometry (VO) is the most important part of visual

simultaneous location and mapping (V-SLAM) algorithm

and has already been widely used in the optical mouses,

small mobile robot, and unmanned aerial vehicles (UAVs).

As a kind of relative affordable and lightweight solution,

VO plays a more and more important role in visual-based

navigation system for autonomous driving cars.

The VO term had been first used by Nistér in 2004,1 but

the relevant researches in this area had been focused over

30 years.2,3 VO uses camera as main sensor and takes the

current image frames as input and compares with previous

frame, then estimates camera’s pose transformation and the

trajectory like wheel odometry does.2 Moravec proposed

first visual motion estimation pipeline and used it for
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NASA Mars rover in 1980.4 Nistér found efficient five-

point algorithm and built the first real-time VO pipeline.1

A common VO pipeline included four steps: capture,

matching, estimation, and optimization or filtering. The

capture step grabbed and rectified the images taken from

cameras. The matching step computed point-wise or

patches-wise correspondences. It could be achieved by a

feature point-level matching5 or directly used raw pixel/

subregion values for patches alignment.6,7 Optical flow

(OF)8 and tracking method9 could also be integrated in this

step and reduce the computation cost of feature extraction

and matching. The estimation step often solved a perspec-

tive from n points (PnP) problem to recover camera pose

transformation and 3-D points’ structure,10 and finally opti-

mization or filtering step recovered the part or whole tra-

jectory a local/global optimization process or a filter

method.11–13

Most of the VO methods worked fine in static indoor

scene. However, in the outdoor environment, especially in

dynamic urban scenes, too many factors impacted accuracy

and availability of VO. Lots of moving objects were the

biggest challenges. High-level object recognition or seg-

mentation methods could provide semantic information for

better environment understanding. This could be done by

cameras only or by fusion multiple sensors.14–19 But some

distance sensors, like sonar and lidar, needed accumulated

multiple data frames for effective recognition,20 which lim-

ited their robustness in dynamic environments. Buczko and

Willert present a feature-adaptive scaling method for out-

liers removal.21 Engel et al. proposed a direct sparse odo-

metry (DSO) approach that jointly optimizes the full

likelihood for all involved model parameters.22 These

methods still tried to overcome the problem in measure-

ment level. Recently, deep learning had been used success-

ful in object detection and image semantic segmentation23

and spatial semantics learning.24 These semantic informa-

tion could provide more causal factors for visual motion

estimation and helped to improve robustness in complex

environment.25 Mohanty et al. proposed a deep VO method

that estimated the odometry vectors between any arbitrary

image pair by a trained convolutional neural network

(CNN).26 These efforts could provide a better way to look

inside how VO using features or pixels and make evalua-

tion method of VO toward the way that humans could

easily understand.

This article focused on dynamic scene VO problem for

the urban autonomous driving cars. A robustness VO sys-

tem could reflect a kind of cognitive process how to under-

stand dynamic scenes correctly and discover the real

motions from not only low pixel-level matching but also

high-level semantic understanding. This work analyzed the

accurateness and robustness impacts of different semantic

segmentations from a statistical point of view. Then a deep

learning neural network was used for preprocessing pixel-

level semantics. These semantic information were used to

select reasonable visual cues and remove outliers in

matching step. After that, a new VO pipeline was provided

to combine feature-based method and alignment-based VO

method. The contributions of this article were a novel

semantic-aided probabilistic model for outliers removal

and alignment patches selection in dynamic scenes and a

new feature-based and alignment-based combined VO

pipeline.

This article was organized as follows: In section

“Related work,” we reviewed the relative VO works. In

section “System overview,” we introduced the semantic

segmentation by a deep learning network and described our

algorithm model. In section “Experimental results,” we

evaluate the accuracy and robustness for the three different

models on a Kitti benchmark data set and our own real-

world data sets. Finally, in section “Conclusions,” we con-

cluded the method and lined out future work.

Related work

A lot of efforts and researches had been focused on devel-

oping usable VO systems which show successful applica-

tions. Parallel tracking and mapping (PTAM)27 was a first

feature-based VO method running in real time. It had two

parallelized threads computing motion estimation and map-

ping, respectively. PTAM ran an efficient bundle adjust-

ment (BA) on all keyframes, which limits it could only be

used in small environment. Civera et al. proposed EKF-

based method using one-point random sample consensus

(RANSAC) and reduced the size of the data subset to

instantiate a hypothesis to one point.28 Dense tracking and

mapping (DTAM)13 was a typical direct method and com-

puted pose transformation by whole image alignment on a

depth map. Semi-direct visual odometry (SVO) algorithm

proposed by Forster et al.6 used a sparse model-based

image alignment algorithm for motion estimation, which

tracks some corner points and uses the 4� 4 patches

around them for direct alignment. Geiger et al. presented

VISO29 to compute six-DOF motion of a moving stereo/

monocular camera and tested it in urban scene data set

Kitti.30 DSO puts intensity resident, exposure time,

attenuation, and irradiance in one energy function and opti-

mized motion estimation, geometrical, and photometric

calibration in a joint framework simultaneously. A lot of

V-SLAM system contained VO part. ORB_SLAM2 had a

feature-based VO thread and a loop closure thread31 and

could compute the camera trajectory real time in a wide

variety of environments.

Most of the successful VO or V-SLAM systems focused

on static environment. In dynamic scene, removing outliers

became a more necessary step for the accurate motion esti-

mation. Choosing correct pixels or keypoints, which repre-

sents the real camera motion, would help to improve VO

robustness in the complex scene. As a common tool,

RANSAC-based method is often used to reject outliers.32

Given an expected rate of success P, the necessary iteration
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times of RANSAC N could be computed by the number of

data points s and outliers rate "

N ¼ logð1� pÞ
logð1� ð1� "ÞsÞ (1)

With higher ", N could reach thousand times in many

cases. Preemptive RANSAC33 tried to fix N using motion

hypotheses. The progressive sample consensus34 computed

similarities of the correspondences for ranking and sampling

to increase the convergence process. Using RANSAC-based

method to reject outliers has an assumption that the noise

samples are far less than the correct samples. They only tried

to find a probabilistic stable set of inliers by growing itera-

tions. In dynamic urban traffic, this assumption would not be

always hold. A front-view monocular camera with limited

field-of-view (FOV) lens could suffer from the occlusions

and disturbances from the moving vehicle nearby.

RANSAC-based methods could not guarantee to choose the

pixels or keypoints that belong to static object in real world

and could lead to hard data association for motion estimation

in dynamic complex scene. Recently, Buczko and Willert

proposed a normalized reprojection error method21 which

shows an increased error for outliers and a constant offset

for inlier. But this method focused on high-speed scene with

an assumption of small rotation, longitudinal motion only

and didn’t consider semantic attributions of all points.

A robust VO in dynamic scenes should have the ability that

distinguishes static object and moving traffic participants. In

this semantic level, scene understanding could help VO by a

higher level visual cues selection process. Civera et al. pro-

posed a semantic SLAM using a monocular extended kalman

filter (EKF) SLAM and inserted 3-D objects into geometric

map.35 Anand et al. trained a graphical model for contextually

guided semantic labeling.36 Yang et al. proposed a method to

solve navigation and vehicle distance estimation simultane-

ously and used dynamic object tracking to divide view field of

camera into static and dynamic parts.37 This method would be

hard to distinguish a moving object which has the same speed

to observer. Geiger et al. provided a probabilistic model com-

bining semantic scene labels, occupancy grid, vanishing

points, and moving object tracklets to discover the intersec-

tion model.38 In his work, the semantic labels provide a prob-

ability of label class given a road layout. In that work, the

labels are three simple classes, foreground, background, and

sky, and contribute little for motion estimation. Pop-up

SLAM proposed by Yang used pop-up model and large-scale

direct monocular SLAM (LSD)39 to predict depth and

demonstrated that scene understanding improves state esti-

mation and dense mapping.40

System overview

This section introduced semantic segmentation–aided VO

(SAVO) method. The whole pipeline is shown in Figure 1.

The VO system took monocular RGB image sequence

I0; :::; Ik�1; Ik ; :::; In as input, followed by a feature detec-

tion pipeline and deep learning segmentation network. The

Figure 1. Semantic segmentation–aided visual odometry pipeline.
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feature points in current frame were computed by point-

wise matching to previous image and weighted by the seg-

mentation category labels, which depended on their contri-

bution to reduce reprojection errors. Then the inlier points

were sampled by a RANSAC process with the semantic

weights and used to estimate camera pose translation. The

selected segmentation patch, which had semantic meaning

of static, was used to direct alignment between previous

frame and current one. The two motion assumptions from

two paralleled methods were fused for output as final pose

estimation.

Throughout this work, the image at time step k was Ik ,

and the pose of camera was represented by Tk 2 SEð3Þ.
The transformation between two consecutive frames Ik�1

and Ik could be Tk ¼ Tk
0Tk�1

41

Tk ¼
Rk tk

0 1

� �
(2)

with rotation Rk 2 SOð3Þ and translation t 2 R3
k . A 2-D

pixel was represented by u ¼ ½u; v�T ;u 2 R2. A 3-D world

point was X ¼ ½x; y; z�T ;X 2 R3. The project function

p : R2
aR3 mapped 2-D pixel u to 3-D point X

X ¼ pðu; dÞ (3)

d was an inverse depth of pixel u. If d ¼ 1, the pixel would

be projected into a 3-D unit sphere surface.

Semantic segmentation

Semantic segmentation was widely used in autonomous

driving for scene parsing and understanding. This work

used a modified SegNet with a pretrained driving model

proposed by Badrinarayanan et al.23 SegNet was a deep

learning encoder network with 13 convolutional layers of

VGG16 model42 and had 12 segmentation categories,

including Sky, Building, Pole, Road Marking, Road, Pave-

ment, Tree, Sign Symbol, Fence, Vehicle, Pedestrian, and

Bike. These category information provided a kind of

semantic understanding for an urban road scene, which

could help us to distinguish the object is movable or not.

To find static pixels was a very important factor for VO in

dynamic urban traffic scene. A moving object would bring

too much uncertainty in motion estimation process. This

work assumed that each semantic category would have

different contributions to VO. The contribution was rela-

tive to the errors of motion estimation brought by the pix-

el’s category. For example, in a dynamic urban traffic

scene, a pixel from Building category could be more reli-

able than a pixel from a Car for motion estimation and

should be sampled as a candidate with higher probability

in VO process. The contribution of category ci was repre-

sented by a probability variable Pci
in this article

Pci
¼ 1

Z

nciXnci

i¼0
rci

(4)

Z was a normalized factor. rci
was the reprojection error of

category ci

rci
¼
X
ðûj;Ik

� u
0
j;Ik
Þ ¼

X
ðûj;Ik

� E � uj;Ik�1
Þ (5)

E was the essential matrix

Ek�1;k ¼ K�1 � ½tk�1;k �x � Rk�1;k � K (6)

In some open benchmark data set, the ground truth of

transformation between frames Tk�1;k was provided. So the

reprojection errors of every semantic categories could be

computed by cumulation of its pixels’ reprojection errors.

In some ways, these errors implicitly provided the level of

contributions to correct motion estimation.

Visual odometry

Feature-based method. This part was similar to a traditional

feature-based approach. In the current image frame Ik , the

feature points and their rich descriptors were extracted. A k-

nearest neighbor (KNN)-based method matched them to the

keypoints from the previous frame Ik�1. The correspondence

of these 2-D points was refined by direction symmetry check

and ratio check. Given the 2-D correspondences, the essen-

tial matrix E could be computed by epipolar constrain equa-

tions and PnP method. The main difference of the proposed

method was the sampling step. Rather than choosing the

correspondent 2-D point pairs randomly in the RANSAC

iteration, this work sampled them depending on their contri-

bution probabilities which came from pixels’ semantic seg-

mentation described as before.

The transformation T feature�based;k ¼ ½Rjt�with rotation R

and translation t was computed by SVDðEÞ and optimized

by a window BA. The 2-D keypoint uj in previous image

Ik�1 had a correspondent keypoint ûj in current image Ik

(Figure 2)

T

k–1

k–1, k

T
kT

1
u

'
1

u'
2

u
2

u3
u

k–1I k
I

2
X

1
X

Figure 2. 2-D points u1, u2, u3 in the frame Ik�1 could be pro-
jected to 3-D world points X1, X2 by p and reprojected to u

0
1,

u
0
2 in frame Ik with optimization variable Tk�1;k. The reprojection

error could be computed by u
0
and its ground truth point V. Here

not all of the matching pairs should be taken into account. For
example, u3 belongs to a movable object category and should
have lower contribution to real motion estimation or just
dropped out.
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u
0 ¼ p�1ðX 0 Þ ¼ p�1ðTkX Þ ¼ p�1ðTkpðu; dÞÞ (7)

u
0

was the reprojected 2-D point in Ik from 2-D point u in

Ik�1. The correspondent point was û in Ik from point-wise

matching of u. So the reprojection error r reprojection was

r reprojectionðTk�1;k ; uÞ ¼ k u
0 � û k (8)

Then the cost function J reprojection was built by

J reprojection ¼
X

i

k rðTk�1;k ; piÞk2 (9)

And every transformation Tk�1;k between two continu-

ous frames was solved by least-squares (LS) minimization

method

Tk�1;k ¼ arg min
T

J reprojection (10)

Alignment-based method. This process used a semi-dense

image alignment framework. Comparing with traditional

direct method, there were three main differences: Firstly,

instead of using whole image pixels for alignment, the pro-

posed method only used partial image that had specific seg-

mentation labels. These patches had the semantic priori

knowledge that they were motionless objects. Secondly,

these patches indicated a set of objects that belonged to one

planar surface, which was a basic assumption for image

alignment. Thirdly, the depth from these candidate patches

or pixels from mono-camera should be estimated easily and

could be used for weighting or sorting residual blocks in LS

minimization process. In this work, the pixels, which labeled

with Road Marking, Road, and Pavement, were selected for

indirect VO estimation. The 3-D points belonged to these

patches were regarded as being static to global coordinate

system and assumed to lay on a rough road plane.

The candidate patch set Ω that belongs to category c was

represented by IΩc
. And every pixel in the set was filtered

by an intensity gradient threshold, which provided a semi-

dense 2-D point and dropout the trivial points with less

texture gradients. The pose transformation Tk�1;k between

images IΩc;k�1 and IΩc;k
was computed by minimizing the

intensity residuals r intensity

r intensityðTk�1;k ; uÞ ¼ IΩc;k�1ðuÞ � IΩc;k
ðu0 Þ (11)

Then the cost function J intensity was built by

J intensity ¼
X
i2Ωc

k rðTk�1;k ; uiÞk2 (12)

And the transformation Tk�1;k was formed as a LS mini-

mization optimization problem

Tk�1;k ¼ arg min
T

J intensity (13)

The whole problem cost function J combined the costs

of two parts

Figure 3. Examples of Kitti data set sequence (a) 00, (b) 01, and
(c) 02 and their semantic segmentation results.
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Figure 4. Reprojection errors. (a) Considering coordinate
distance to image center. (b) Errors distribution on 12 semantic
segmentation categories. All statistic results were computed on
Kitti odometry data set.
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Table 1. Rotation error.

Sequence SAVO VISO DSO ORB_SLAM2

0 0.000156 0.000702 0.005729 0.000056

1 0.000621 0.001238 0.002207 0.001579

2 0.000174 0.000519 0.004907 0.000049

3 0.000166 0.000495 0.005719 0.000033

4 0.000126 0.000285 0.000204 0.000046

5 0.000163 0.000803 0.005072 0.000041

6 0.000109 0.000498 0.001381 0.000043

7 0.000372 0.001375 0.009974 0.000057

8 0.000172 0.000657 0.005437 0.000053

9 0.000231 0.000548 0.005485 0.000061

10 0.000343 0.000867 0.004496 0.000214

SAVO: semantic segmentation–aided visual odometry; DSO: direct sparse
odometry.

Table 2. Translation error.

Sequence SAVO VISO DSO ORB_SLAM2

0 0.017481 0.168392 0.638761 0.525636

1 0.159909 0.424336 0.962693 0.955000

2 0.019727 0.237248 0.704573 0.672709

3 0.013100 0.293990 0.981139 0.913303

4 0.008170 0.166139 0.980135 0.980062

5 0.018440 0.140762 0.605002 0.504923

6 0.011571 0.116012 0.579200 0.546418

7 0.033184 0.163079 0.605035 0.513819

8 0.022087 0.121467 0.622131 0.563724

9 0.033228 0.162112 0.747357 0.704958

10 0.039921 0.182698 0.927605 0.804431

SAVO: semantic segmentation–aided visual odometry; DSO: direct sparse
odometry.
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J ¼ �J reprojection þ ð1� �ÞJ intensity (14)

� was a hand-tuned parameter by experience. Lie group rep-

resentation and dual number method were used to compute

Jacobian. The pose was represented by � ¼ ½� ��T 2 R6,

� 2 R3 was 3-D translation parameter, and � 2 R3 was the

rotation parameter including yaw, pitch, and roll. The Jaco-

bians of transformation in J reprojection and J intensity part had the

same formulation

@r

@δ�
¼ @�

@δ�
j @�
@δ�

2
4

3
5

¼

fx

z
0 0 � fxx

0

z
0 2 � fxx

0
y
0

z
0 2 fx þ

fxx2

z
0 2 � fxy

0

z
0

0
fy

z
0 �

fyy
0

z
0 2 �fy �

fyy
0 2

z
0 2

fyx
0
y
0

z
0 2

fyx
0

z
0

2
6666664

3
7777775

(15)

X ¼ ½x; y; z�T and X
0 ¼ ½x0 ; y0 ; z0 �T were the same 3-D

point in different coordinate systems of Ik�1 and Ik . fx and

fy were camera focal lengths. The J intensity also had a partial

derivative factor of A @I
@u

, A was a constant projection matrix

for bird view of road surface, @I
@u

was the gradient of inten-

sity in the image. Then a classical LS method could be used

to solve the problem.

Experimental results

Data set

Proposed model was tested on open benchmark Kitti

odometry data set.20 It contained 20 rectified stereo

image sequences with calibration file and was

recorded from a car traveling in urban blocks. We

selected first 11 sequences which had pose ground

truth and only used the monocular data of left camera.

The proposed method was also tested on our autono-

mous driving data set. The intelligent vehicle platform

was retrofitted from a Changan Raeton car, equipped

with two AVT® 1394 Pike F-200c cameras capturing

front view stereo images, one OxTS inertial IMU and

Novatel RTK-GPS, and Velodyne VLP-16 LIDAR on
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Figure 6. Trajectories of SAVO on Kitti odometry data set sequences (a) 00, (b) 01, (c) 02, (d) 09. SAVO: semantic segmentation–aided
visual odometry.
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the top of vehicle. We collected about 20 km real road

data on Wuhuan Road in Beijing with different traffic

conditions.

Semantic segmentation contribution analysis

Eleven sequences in Kitti odometry data set were selected

to evaluate semantic segmentation’s reprojection error.

First, segmentation process calculated the categories of

every pixel on all Kitti odometry data set. Then, in each

sequence, ground truth pose file was used to compute the

transformation matrix Tk�1;k between every two consecu-

tive image frames. SIFT features were extracted and used

for neighbor frame matching. All matching keypoints were

filtered by consistence check and ratio check and were

projected from previous frame to next one. The reprojec-

tion errors were computed with the ground truth and

used to evaluate segmentation’s contribution to odome-

try estimation. The feature point count in each semantic

category and the impact of planar distance on image

center of each feature point were also considered.

The reprojection errors were accumulated at each fea-

ture point and were sorted by planar distance to image

center. As shown in Figure 3(a), horizontal axis represented

normalized distance to image center and the vertical coor-

dinates showed average value of reprojection error. For

rectified images, this average error was increased with the

growth of distance. In general, the border points in an

image always had bigger errors. And nearer to image cen-

ter, smaller were the errors. These errors were relative to

inherent physical characteristics of camera lens and ima-

ging sensors and hardly eliminated even after image

rectification.

Figure 4(b) shows the normalized reprojection errors

and keypoint counts about 12 semantic segmentation cate-

gories, such as Sky, Building, Pole, Road Marking, Road,

Pavement, Tree, Sign Symbol, Fence, Vehicle, Pedestrian,

and Bike. The higher count of keypoints means that image

patches of this category had more pixels and stronger

texture than other categories. The reprojection error rep-

resented the uncertainty for each patch used in motion

estimation. In the figure, the categories of Building and

Tree have more keypoints and lower error. In Kitti data

set, the buildings and trees usually appeared in the middle

part of images. And they also occupied more area with

various textures. These pixels were motionless objects and

they did not stay in one plane. So they could be suitable

for feature-based motion estimation. The categories of

movable objects, Vehicle, Pedestrian, and Bike, showed

low reprojection error too. The reason was most of the

vehicles in Kitti data set were parking cars, and the mov-

ing pedestrian and bike were not presented in most of the

sequences. The Bike had higher speed than Pedestrian and

brought higher errors. In a dynamic urban traffic scene,

dropping out the pixels of cars, pedestrian, and bikes

would reduce dynamic disturbance and avoid the difficul-

ties of moving object tracking and motion judgment.

Though the Road pixels were static, they were hard to

extract feature points and led to higher error. On the oppo-

site side, Road Marker pixels had lower error because they

had more corner points than Road and could be easily

tracked and matched.

VO performance analysis

This work was tested on both data sets and evaluated the

performances compared with VISO, DSO, and

Figure 7. Trajectories of SAVO on Beijing Wuhuan data set
sequences 00, 01. ORB_SLAM2, and DSO failed directly, and
VISO could not provide any reasonable trajectories. SAVO’s
recovered trajectories with very big noise. The noises always
came with those contained many dynamic vehicles. (a) seq00 raw
image; (b) seq00 segmentation; (c) seq01 raw image; (d) seq01
segmentation. SAVO: semantic segmentation–aided visual
odometry.
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ORB_SLAM2. FAST corner points and SURF rich descrip-

tors were computed. The threshold of ratio check was 0.7.

The contribution probabilities of segmentation categories

were computed as given in section “System Overview,” and

the probabilities of Sky, Vehicle, Pedestrian, and Bike were

tuned to zero. For monocular VO performance test only,

ORB_SLAM2’s loop closure thread was turned off and its

feature number was set to 3000. ORB_SLAM2 used default

vocabulary. DSO was set to pinhole model with regular FOV

lens, and its gamma and vignette configure were ignored.
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Figure 8. Trajectories, rotational, and translational errors of SAVO on Beijing Wuhuan data set sequences 00, 01. Both errors in this
data set had more higher value levels than Kitti sequences. (a) Trajectory of sequence 00; (b) trajectory of sequence 01; (c) average
rotational error on sequence 00; (d) average rotational error on sequence 01; (e) average translational error on sequence 00; (f)
average translational error on sequence 01. SAVO: semantic segmentation–aided visual odometry.
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Kitti odometry data set. The results of proposed method on

average translational errors and rotational errors were

shown in Tables 1 and 2. ORB_SLAM2 showed best

rotation precision on most of the sequences which had little

moving cars or other traffic participants. In sequence01,

there were several moving cars running on neighboring

lanes. Proposed method showed better robustness and pre-

cision than other algorithm. The proposed method showed

distinct improvements in translation estimation on all Kitti

sequences. Most of the monocular VO couldn’t recover real

scale. This work used a prior knowledge of camera position

with fixed height to the ground and assumed the road sur-

face was a plane. These two factors made proposed method

benefit a lot from Kitti data set. Figure 5 shows rotational

and translational errors relative to travel distance and speed

in Kitti sequence00. The proposed method had the lowest

errors on both rotation and translation. More details about

the evaluation method could be found in VISO.29,43 Some

of the final trajectories are shown in Figure 6.

Beijing Wuhuan data set. As shown in Figure 7, the data set

was collected in a sunny day afternoon with normal traffic

flow condition. Two sequences in the data set were used for

performance experiment. The first one contained 313 pic-

tures and took 936 s. It started at a ring road and stopped at

an open expressway and had 7.8 km distance. The second

one contained 212 pictures and took 455 s. This one cov-

ered 5.9 km distance of the ring road. Tens of moving

vehicles could be found in these sequences. This made

VISO, DSO, and ORB_SLAM2 fail to estimate a reason-

able trajectory. As shown in Figure 8, proposed method

could recover the traces with noises. On one hand, semantic

segmentation provided a prior probability to sample correct

candidate points and image patches. This helped VO try to

avoid the disturbance of moving object in the limit FOV. It

made possible to use traditional VO in dynamic urban traffic

environment. Making full use of fixed camera position infor-

mation and assumption of road plane not only could provide

a scale estimation for monocular camera but also covered the

shortage of reduction of available points. On the other hand,

limited by the precision of segmentation, the sampling pro-

cess could not guarantee the sampled pixels were all static.

The experimental result showed that dynamic objects are

still one of the biggest factors to robustness of VO.

Conclusions

This article proposed a new semantic segmentation–aided

VO pipeline. The new method used a deep learning net-

work to segment input image with 12 semantic categories.

Then a probabilistic model about categories and reprojec-

tion errors was computed for each pixel and used to weigh-

ing and sampling pixel candidates for feature-based VO

pipeline. And semantic segmentation results also helped

to select road plane for alignment-based VO pipeline.

These two pipelines brought cost functions of reprojection

and intensity errors, respectively, and were combined into a

joint optimization in motion estimation process. These

helped VO to reduce impacts of moving objects and make

full use of motionless pixels by their geometry and physical

characters. The experimental results on dynamic urban traf-

fic scene data sets showed that new method provided higher

precision and robustness than three state-of-the-art VO

solutions. To improve the pipeline real-time performance

and study how the VO impact segmenting procedure would

be useful works in the future.
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