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1. Metastasis
The leading cause of death in cancer patients is metastasis. 
Metastasis defines both the process of spreading of cancer 
cells from the primary tumor and the resulting secondary 
tumors. The primary tumor changes its place (meta + statis) 
and new tumors form at distant sites. During metastasis 
of carcinoma (cancer of epithelial tissue), tumor cells 
proliferate in an uncontrolled fashion, induce angiogenesis 
(new blood vessel formation), degrade the underlying 
basement membrane and penetrate into the connective 
tissue, migrate towards blood vessels, intravasate (enter 
blood vessels), survive in the blood circulation, extravasate 
(exit blood vessels), and form secondary tumors in distant 
organs (Figure 1A). Therefore, cancer metastasis is a 
disease of altered cell adhesion, motility, and invasion.

2. Definition of invadopodia
Under physiological conditions such as bone resorption, 
cells invade into tissues in a tightly regulated manner. 
Normal bone osteoclasts form special cellular structures 
called podosomes to degrade and thus remodel the bone 
matrix. During cancer metastasis, tumor cells perform 
uncontrolled invasion using cellular structures called 
invadopodia (Figure 1B). The term invadopodia was first 
used by Chen (1989) to describe membrane protrusions 
involved in the local degradation of the extracellular 
matrix. After 25 years, the field has grown to be complex 
and rather complicated even in terms of definitions. There 
are 3 major structures in cells, each of which can be defined 

in terms of their molecular components and the functions 
they carry out. These are focal adhesions, podosomes, and 
invadopodia. They do have similarities, but they are also 
distinct from one another. In attempts to clear up some of 
the confusion, podosomes and invadopodia have also been 
collectively called invadosomes. Although focal adhesions 
do share common protein markers with podosomes, they 
were thought to be more distinct from podosomes and 
invadopodia; however, recently proteolytic activity has 
also been observed for these structures, further blurring 
the borders between the definitions of these structures 
(McNiven, 2013). Available data raise the question of 
whether focal adhesions, podosomes, and invadopodia 
share a common precursor. A conservative comparison of 
focal adhesions, podosomes, and invadopodia is presented 
in the Table. Please note that this table is compiled 
conservatively to include the data most commonly 
agreed upon in the literature. There are also several 
reviews and milestone papers describing in detail various 
aspects summarized here (Ayala et al., 2006; Gimona and 
Buccione, 2006; Linder, 2007; Gimona et al., 2008; Caldieri 
et al., 2009;  Linder, 2009; Yilmaz and Christofori, 2009; 
Linder et al., 2011a, 2011b; Murphy and Courtneidge, 
2011; Oser et al., 2011; Yamaguchi, 2012). In particular, 
there are comprehensive reviews on the signaling 
mechanisms involved (Stylli et al., 2008; Destaing et al., 
2011; Hoshino et al., 2013). In this review, we will focus 
on invadopodia, integrate current models, and point out 
technical challenges and open questions in the field.
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Invadopodia are relatively dynamic, actin rich, 
proteolytic cellular structures formed by invasive cancer 
cells (Bowden et al., 2006; Buccione et al., 2009; Linder, 
2009; Linder and Aepfelbacher, 2003) (Figure 2). 
Invadopodia can be from a few hundred nanometers to 
several microns wide and can be up to 8 micrometers if 
the underlying matrix is thick enough (Baldassarre et al., 
2003). Invadopodia also form on stiff substrates such as 
glass and thus they can be studied with high resolution 
imaging (DesMarais et al., 2009). The molecular markers 
for invadopodia include actin and its associated proteins 
cortactin, Arp2/3, N-WASP, Nck1, and cofilin as well as 
matrix metalloproteinase MT1-MMP (Artym et al., 2006; 
Stylli et al., 2008; Oser et al., 2009, 2011). In addition, 
actin filaments, microtubules, and intermediate filaments 
cooperate during invadopodia elongation (Schoumacher 
et al., 2010). In melanoma cells, invadopodia contain 
α3β1 integrin at the core and α5β1 integrin at the 
periphery (Mueller et al., 1999). Integrins at invadopodia 
may function to signal and to focus degradation of the 
extracellular matrix (ECM) (Buccione et al., 2009; Mueller 

et al., 1999). However, it is unclear if invadopodia have 
an adhesive function as they lack vinculin (Gimona et al., 
2008; Linder, 2009). That is, whether invadopodia require 
local adhesion at the sites of formation is unknown. 
Preliminary results from our lab using nano-patterned 
surfaces suggest that invadopodia do not require local 
adhesion (unpublished data). Experiments using nano- 
and micro-patterned substrates can present valuable 
approaches to answer such questions and other aspects 
of invadopodia/podosome research such as dynamics of 
mechanical properties (Labernadie et al., 2010).

In images of cells forming invadopodia, the Golgi 
complex appears to be polarized and juxtaposed to the 
site of invadopodia, suggesting a link between proteolytic 
activity and membrane transport (Baldassarre et al., 
2003; Buccione et al., 2009; Caldieri and Buccione, 
2010). However, if and how the spatial positioning of 
invadopodia is controlled is not known. In addition, the 
position and orientation of the Golgi can be modulated 
by micrometer scale surface patterns (Thery et al., 2006). 
Therefore, if invadopodia are positionally linked to the 

Figure 1. Metastasis and invadopodia. A. Metastasis comprises (i) uncontrolled proliferation, (ii) 
angiogenesis, (iii) invasion, (iv) intravasation, (v) extravasation, and (vi) secondary tumor formation. 
Invasion involves matrix degradation carried out by invadopodia. B. Invadopodiaform and mature at 
multiple stages: (i) initiation, (ii) stabilization, and (iii) maturation (see also Figure 3). Initiation involves 
recruitment of actin and cortactin, MT1-MMP recruitment leads to stabilization. Maturation stage involves 
matrix degradation. When cells are on a thick matrix, invadopodia appear as membrane protrusions 
penetrating into the extracellular matrix. C. Electron micrograph of an MDA-MB-231 cell cultured on 
gelatin. The ultrastructure of invadopodia (arrows) is shown. Reprinted by permission from Macmillan 
Publishers Ltd: Oncogene (Bowden et al., 1999) copyright 1999.
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Golgi, changing the position of the Golgi by culturing 
cells on different micrometer scale surface patterns should 
also change the localization of invadopodia. Thus micro-
patterned substrates present themselves as valuable tools 
for the question at hand.

3. Upstream of invadopodia
Growth factors act as intercellular signaling molecules 
that promote various processes such as cell growth, 
proliferation, differentiation, and motility. In addition, 
growth factor receptors and integrins are known to cross-
talk (Moro et al., 2002; Yamada and Even-Ram, 2002; Alam 
et al., 2007; Gilcrease, 2007). Growth factors can be soluble, 
transmembrane, or ECM bound proteins (Ruoslahti et al., 
1992; Massague and Pandiella, 1993; Taipale and Keski-Oja, 
1997). Epidermal growth factor (EGF) is 1 of the 7 ligands 
of EGF receptor (EGFR also known as ErbB1), which is 
in turn the most studied member of the ErbB receptor 
family (Cohen, 1962; Carpenter and Cohen, 1990; Harris 
et al., 2003; Singh and Harris, 2005). Furthermore, EGFR 
expression correlates with poor prognosis in breast cancer 
(Sainsbury et al., 1985; Lewis et al., 1990; Memon et al., 
2006). EGF is known to induce motility and invadopodia 
formation in breast cancer cells (Yamaguchi et al., 2005). 
However, whether EGFR is present at invadopodia and 
acts directly and locally or not is not known.

In terms of signal transduction, growth factor receptor 
tyrosine kinase and integrin initiated upstream events have 
been shown to promote invadopodia formation through 
phosphorylation of cortactin via a Src and Arg dependent 

pathway (Stylli et al., 2008; Oser et al., 2010; Destaing 
et al., 2011; Mader et al., 2011; MacGrath and Koleske, 
2012).  b1 integrin has been shown to promote metastasis, 
invadopodia maturation, and matrix degradation 
through Arg (Beaty et al., 2013). Local changes in pH 
induced by NHE1 are also shown to regulate cortactin 
phosphorylation (Magalhaes et al., 2011). Furthermore, 
small GTPases are shown to be spatiotemporally regulated 
at invadopodia where RhoC is inactivated at the center of 
invadopodia and is activated at its periphery so that cofilin 
is active at the center and is inactive at the periphery 
(Bravo-Cordero et al., 2011, 2012). Here, RhoC is shown 
to act through ROCK, which phosphorylates LIMK, which 
in turn phosphorylates and inactivates cofilin.

4. An integrated model of invadopodia
Over the years, valuable research has produced models that 
describe invadopodia. An integrated model is presented in 
Figure 3. One of the early studies classified invadopodia 
formation into 4 stages: I. Invadopodia initiation, II. 
Preinvadopodia, III. Mature invadopodia, and IV. Late 
invadopodia. Cortactin levels are at their maximum at 
stages II and III and subside afterwards, while actin levels 
reach a peak at stage III. MT1-MMP reaches a maximum 
at stage II and is stable thereafter, while matrix degradation 
saturates at stage III (Artym et al., 2006).

Later on, a more detailed model was presented by Oser 
et al. (2009), pointing out the central role of cortactin 
in invadopodia. Here, cortactin was shown to regulate 
cofilin and N-WASP activities and thus control the stages 

Table. Comparison of focal adhesions, podosomes, and invadopodia.

Focal adhesions Podosomes Invadopodia

Cell type virtually all cells
osteoclasts, macrophages,
endothelial cells,
smooth muscle cells

cancer cells

Function adhesion,
matrix degradation? matrix degradation matrix degradation

Cellular localization cell periphery distributed leading edge and proximal to Golgi

Composition

Actin
Vinculin
Talin
Paxillin
Focal adhesion kinase
Integrin

Actin
Vinculin
WASP
Grb2
MT1-MMP

Actin
Arp2/3
Cortactin
N-WASP
Nck1
Cofilin
Tks5
MT1-MMP

Shape ellipse ring dot
Size <20 µm <1 µm × 4 µm <8 µm × 5 µm
Number per cell <400 20–100 1–40
Stability/ Persistence stable/several hours highly dynamic/2–12 min dynamic/up to 3 h
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of invadopodia formation. Four stages were redefined 
here: Stage I – Precursor formation: Cortactin, N-WASP, 
cofilin, and Arp2/3 form a complex. Stage II – Activation 
of actin polymerization: Nck1 joins the precursor complex 
while phosphorylation of cortactin activates cofilin’s 
severing activity, which in turn provides free barbed 
ends for Arp2/3 for new actin polymerization. Stage III 
– Stabilization: Cortactin is dephosphorylated, cofilin 
re-joins the complex, and invadopodia precursors are 
stabilized. Stage IV – ECM degradation: MT1-MMP is 
recruited to invadopodia and ECM is degraded.

The model by Oser et al. was then refined in terms of 
involvement of Tks5 and SHIP2, which are shown to be 
required for invadopodia maturation but not initiation 

(Sharma et al., 2013). The integrated model we present 
here comprises 3 stages: initiation, stabilization, and 
maturation. Initiation here describes a combination of the 
previously described stages I and II and involves structural 
complex formation and actin polymerization. Stabilization 
includes MMP recruitment. At the maturation stage, 
MMPs are activated and matrix degradation takes place.

To recapitulate, the first events in the signal transduction 
pathways that result in invadopodia formation are 
integrin and/or growth factor activation. Although 
the intermediates are not entirely known, activation 
of Src is the key event for invadopodia formation. Src 
in turn activates Arg, which phosphorylates cortactin. 
While unphosphorylated cortactin, unphosphrylated 

Figure 2. Immunofluorescence images of invadopodia in MDA-MB-231 breast cancer cells cultured 
on fibronectin, an extracellular matrix protein. Actin, cortactin, and fibronectin were labeled using 
blue-fluorescent phalloidin, cortactin specific antibodies followed by green-fluorescent secondary 
antibodies, and fibronectin specific antibodies followed by red-fluorescent secondary antibodies, 
respectively. Yellow arrows point to invadopodia. Cortactin and actin colocalize at invadopodia. At 
mature invadopodia, the underlying matrix of fibronectin is also degraded. In the merged image, 
cortactin, actin, and fibronectin are shown in green, blue, and red, respectively.
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cofilin, N-WASP, Tks5, Nck1, and Arp2/3 coexist in 
the pre-initiation complex, after phosphorylation of 
cortactin, cofilin leaves the complex and enables actin 
polymerization. At the same time, NHE1, which causes a 
decrease in the local pH, is recruited. During stabilization, 
cofilin is dephosphorylated and binds back to cortactin, 
and MT1-MMP is recruited to invadopodia. Finally, in 

the maturation stage MT1-MMP is activated and matrix 
degradation takes place.

5. Invadopodia in 2D and 3D and in vivo
Invadopodia are observed in both 2D and 3D cell cultures 
in vitro. Most research has been carried out in 2D cell 
culture, while studies in 3D conditions are increasing. 
In 2D cell culture, invadopodia are found at the ventral 
surface of cells. They even form on substrates such as glass 
without a matrix coating. If the substrate underneath 
cancer cells is degradable and thick enough, invadopodia 
extend as proteolytic protrusions into the matrix. When 
cancer cells are embedded in a 3D matrix, the definition 
of a ventral surface dissolves and cancer cells can form 
proteolytic protrusions at various points. As in 2D, how 
the cellular localization of invadopodia is determined in 
3D is unknown. However, invadopodia are composed of 
actin, cortactin, cofilin, Tks5, and MT1-MMP in both 2D 
and 3D cultures and in vivo settings (Blouw et al., 2008; 
Lizarraga et al., 2009; Magalhaes et al., 2011; Gligorijevic 
et al., 2012; Yu Machesky, 2012).

Invadopodia have been observed in 2D and 3D in 
vitro settings. However, the in vivo and physiological 
relevance has only been recently clarified. N-WASP 
expression is shown to increase in invasive breast cancer 
(Yu et al., 2012). Expressions levels of cortactin have been 
positively correlated with aggressiveness of head and neck 
squamous cell carcinoma and breast carcinoma (Buday 
and Downward, 2007; Clark et al., 2009). Expression level 
of Tks5 has been shown to increase in breast cancer and 
glioma (Seals et al., 2005; Stylli et al., 2012). MMP expression 
levels are known to be differentially regulated in various 
cancers (Kessenbrock et al., 2010). Early MMP inhibitors 
failed in clinical trials, and their nonproteolytic functions 
are speculated to be one of the reasons. However, there 
are still promising candidates such as MT1-MMP (Chen 
et al., 1994; Chen, 1996; Sabeh et al., 2009). In addition, 
upstream players that induce invadopodia formation such 
as MenaINV, Arg, IL-6, EGFR, and faciogenital dysplasia 
protein Fgd1, are known to have increased expression 
levels in various cancers (Ayala et al., 2009; Clark et al., 
2009; Li et al., 2010b; Wang et al., 2004, 2007; Gil-Henn et 
al., 2013). Thus both upstream regulators and structural 
components of invadopodia present vital opportunities for 
diagnosis and therapy.

6. Technical bottlenecks for research on invadopodia
A technical limitation for research on invadopodia has 
been the limited number of assays for proteolytic activity. 
Fluorescently labeled gelatin or fibronectin is commonly 
used in addition to DQ-collagen, which becomes 
fluorescent upon degradation. In addition, Packard et al. 
(2009) have used a substrate that shows sites of degradation 

Figure 3. Integrated model for the initiation, stabilization, and 
maturation of invadopodia. Presented is a combination of various 
models published in the literature through the years. Initiation: 
Growth factor and/or integrin initiated signaling cascades result 
in phosphorylation of cortactin by Arg, which in turn is activated 
by Src. Phosphorylation of cortactin releases cofilin from the 
invadopodial complex comprising Arp2/3, N-WASP, Nck1, 
and Tks5. Release of cofilin promotes actin polymerization. 
Stabilization: Cortactin is dephosphorylated and cofilin is re-
recruited to the complex. NHE1 induces local decrease in pH 
and MT1-MMP is recruited. Maturation: MT1-MMP is activated 
and matrix degradation takes place.
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by MT1-MMP. Fluorogenic peptide substrates have also 
been utilized to assay matrix degradation by MMPs (Leight 
et al., 2013). The field would greatly benefit from novel 
assays that allow the determination of matrix degradation, 
particularly for 3D culture and in vivo settings.

Another bottleneck has been the difficulty in analyzing 
invadopodia in a quantitative manner. Counting 
invadopodia in a cell or in a field of view based on co-
labeling of actin and cortactin, for instance, requires either 
brute force of manual counting or elegant image processing 
approaches. An alternative approach has been to quantify 
the area of matrix degraded by invadopodia rather than 
counting individual structures (Li et al., 2010a). Well-
designed image processing approaches would be greatly 
beneficial for research on invadopodia.

7. Conclusions and open questions
In conclusion, while our understanding of invadopodia 
continues to improve despite confusion even at the 
definitions level, the field requires the incorporation of new 
technologies and there are many open questions waiting to 
be answered, such as: Do focal adhesions, podosomes, and 
invadopodia share a common precursor? Do invadopodia 
have an adhesive function? How is the cellular localization 
of invadopodia controlled? Is EGFR present at invadopodia 
and does it act directly or indirectly? How can we better 
assay the proteolytic activity of invadopodia? How can we 
improve the quantitative analysis of invadopodia? How 

can we better exploit upstream regulators and structural 
components of invadopodia for the diagnosis and therapy 
of cancer?

Glossary
Cortactin: Cortical actin binding protein. Cortactin 
promotes actin polymerization.

Cofilin: An actin binding protein. Cofilin severs actin 
filaments.

N-WASP: Neural Wiskott–Aldrich syndrome protein. 
N-WASP promotes actin nucleation.

Tks5: Tyrosine kinase substrate 5, a scaffold protein.
Nck1: Noncatalytic region of tyrosine kinase adaptor 

protein 1. Nck1 is an adaptor protein involved in signal 
transduction.

MT1-MMP: MT1-MMP is a matrix metalloproteinase 
also known as MMP-14.

Src: The first described proto-oncogene. A nonreceptor 
tyrosine kinase.

Arg: A member of the Abelson family of nonreceptor 
tyrosine kinases.

NHE1: A Na+/H+ exchanger.
RhoC: A member of the Rho family of small GTPases.
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