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Abstract A neural network based robust control system 
design for the trajectory of Autonomous Underwater 
Vehicles (AUVs) is presented in this paper. Two types of 
control structure were used to control prescribed 
trajectories of an AUV. The vehicle was tested with 
random disturbances while taxiing under water. The 
results of the simulation showed that the proposed neural 
network based robust control system has superior 
performance in adapting to large random disturbances 
such as underwater flow.  
It is proved that this kind of neural predictor could be 
used in real-time AUV applications.   
 
Keywords Neural Network Control, Robust Control, 
Autonomous Underwater Vehicles, Trajectory Control 

                                         
Nomenclature 
 
C  Matrix of Coriolis and centrifugal terms 
D  Matrix of the hydrodynamic damping terms 
g Vector of gravity and buoyant forces  

xI Mass moment of inertia coefficient about 
body longitudinal axis 

yI Mass moment of inertia coefficient about 
body lateral axis 

zI Mass moment of inertia coefficient about 
body vertical axis 

m Mass of the underwater vehicle body 
M Matrix of inertia and added inertia 

δM Drag moment about lateral body axis due to 
stern and rudder deflection 

qM Drag moment about lateral body axis due to 
existing pitch q corresponding to laminar 
flow 

qM  Fluid inertia moment about lateral body axis 
due to time rate of change of pitch rate ( q ) 

rN  Drag moment about vertical body axis due to 
existing yaw r corresponding to laminar flow 

rN Fluid inertia moment about vertical body 
axis due to time rate of change of yaw (r ) 

vN Fluid inertia moment about vertical body axis 
due to existing sway v corresponding to 
laminar flow 
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δN  Drag moment about vertical body axis due to 
stern and rudder deflection 

nI Number of neurons in the input layer
nH Number of neurons in the hidden layer 
nO Number of neurons in the output layer
P Training patterns
RPROP Resilient back-propagation algorithm 
RNF Robust neural feedback 
t Time 
u0 Constant forward speed of underwater 

vehicles 
AUV Autonomous underwater vehicle 

)t(u  Force of the RNF control system       
)t(u NN  Force of the neural controller 

)t(u R
 Force of robust feedback controller 

W Submerged weight of vehicle 
wij Weights matrices from ith layer to jth layer 
wjk Weights matrices from jth layer to kth layer 
X Y Z Body-fixed coordinate system 
X0 Y0 Z0 Earth-fixed coordinate system 
xG, yG, zG Position of the centre of gravity in the body-

fixed frame 
y(t)   System output signal 
yr(t)   Desired input signal 
yNN(t)   Neural network model signal 

vY  Fluid inertia in the lateral y direction due to 
time rate of change of sway velocity ( v ) 

rY  Drag contribution in the lateral y direction 
due to time rate of change of sway velocity 
(v ) 

δY  Sway force due to deflection angle of rudder 
and stern plane 

z Depth 
φ Roll angle of AUV 
θ Pitch angle of AUV 
ψ Yaw angle of AUV 
δr Rudder deflection of AUV 
δs Stern plane deflection of AUV 
η Vector of position and attitude of the AUV in 

the inertial frame 
τ  Resultant vector of thruster forces and 

moments 
)t(ijΔ  Update value for each weight 

α  Weight-decay parameter  
λ  Update parameter 

 
 

1. Introduction 
 
Nowadays, AUVs are widely used for underwater 
investigations. Son and Kim [1] investigated manoeuvrable 
control of an underwater vehicle using a combined 
discrete-event and discrete-time system simulation. The 
proposed simulation model was established on the basis of 
discrete-event system specification formalism, 
representative of a discrete-event system simulation. The 

proposed approach made it possible to build a simulation-
based expert system to support decision-making in the 
acquisition of an underwater vehicle. 
 
Santhakumar and Asokan analysed dynamic station 
keeping of an under-actuated flat-fish-type AUV, and 
proposed a new method of station keeping with the 
addition of dedicated thrusters [2]. The effect of the 
additional thrusters on tracking performance was 
analysed and a modular configuration (using retractable 
thrusters) was developed. The effects of underwater 
current magnitudes and angle of incidences on the station 
keeping performance were also investigated. A 
comparative analysis of power consumption during 
station keeping proved the effectiveness of the proposed 
modular configuration.  
 
An adaptive neuro-fuzzy sliding-mode-based genetic 
algorithm control system for a remotely operated vehicle 
with four degrees of freedom was presented by 
Moghaddam and Bagheri [3]. A set-point controller for 
autonomous underwater vehicles was proposed by 
Herman [4]. The controller was expressed in transformed 
equations of motion with a diagonal inertia matrix. The 
stability of the proposed control law was proven and the 
performance of the developed controller was verified via 
simulation on the underwater vehicle.  
 
Kumar et al. presented a new control scheme for robust 
trajectory control of underwater vehicles. The 
effectiveness of the controller was verified through 
simulations and execution issues were discussed. 
Adaptive control of low-speed bio-robotic autonomous 
underwater vehicles in the dive plane using dorsal fins 
was also considered [5]. 
 
Narasimhan and Singh developed an indirect adaptive 
control system for depth control using dorsal fins. 
According to the simulation results, the adaptive control 
system accomplished precise depth control of the bio-
robotic autonomous underwater vehicle using dorsal fins, 
in spite of large uncertainties in the system parameters 
[6]. Autonomous underwater vehicle control architectures 
were reviewed and sensor data bus based control 
architecture was investigated by Kim and Yuh [7].  
 
A wave drift force that severely affects the underwater 
vehicle in shallow water was examined by Luo et al. [8]. 
On the basis of wave force analysis, three-dimensional 
disturbances caused by wavy surge water were 
measured, and a control system was proposed using 
least-squares multi-order data fitting polynomial 
prediction and fuzzy compensation, combined with a PID 
controller. The experimental results showed that the 
control system for disturbance of surge and wave was 
feasible and effective. 
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A chattering-free sliding-mode controller was developed 
by Soylu et al. for the trajectory control of remotely 
operated vehicles. A new approach for thrust allocation 
was also proposed based on minimizing the largest 
individual component of the thrust manifold [9]. Bessa et 
al. [10] developed an adaptive fuzzy sliding mode 
controller for remotely operated underwater vehicles. 
Their study was carried out based on the sliding mode 
control strategy and enhanced by an adaptive fuzzy 
algorithm for uncertainty/disturbance compensation. The 
performance of the proposed control structure was also 
appraised using numerical simulations. 
 
Naik and Singh [11] investigated the problem of 
suboptimal dive plane control of autonomous 
underwater vehicles using the state-dependent Riccati 
equation technique. The simulation results showed that 
effective depth control was accomplished in spite of the 
uncertainties in the system parameters and control fin 
deflection constraints.  
 
In other research, a neuro-fuzzy controller for 
autonomous underwater vehicles was proposed by Kim 
and Yuh [12]. Simulation results showed effectiveness of 
the neuro-fuzzy controller for autonomous underwater 
vehicles. Akkizidis et al. [13] used a fuzzy-like PD 
controller for an underwater vehicle, and analysed and 
presented experimental results. A switched control law 
for stabilizing an under-actuated underwater vehicle was 
proposed by Sankaranarayanan et al. [14], and simulation 
results were presented to validate this. Lapierre [15] 
designed and verified a diving-control method based on 
Lyapunov theory and back-stepping techniques. The 
results of the control system and subsequent simulations 
demonstrated the performance of the solutions proposed.  
 
The organization of the present paper is as follows. The 
following section describes some of the theory of AUVs. 
A proposed robust neural feedback control system is 
outlined in Section 3. The simulation results are given in 
Section 4. Finally, conclusions are presented. 
 
2. Dynamics equations of autonomous  
underwater vehicle  
 
The motion for an underwater vehicle’s generalized six-
degree of freedom equations is derived under the 
following assumptions: 

• The vehicle behaves as a rigid body; 
• The earth’s rotation is negligible as far as 

acceleration of the centre of mass is concerned; 
• The vehicle moves at low speed; 
• The hydrodynamics parameters are constant; 

 
The equations of motion for an underwater vehicle can be 
represented as in [16, 17]: 

( ) ( ) ( )M C D gν ν ν ν ν η τ+ + + =                    (1) 
 
where M is the matrix of inertia and added inertia, C is 
the matrix of Coriolis and centrifugal terms, D is the 
matrix of the hydrodynamic damping terms, ( )g η  is the 
vector of gravity and buoyant forces, and τ  is the 
resultant vector of thruster forces and moments. 
 

        ( )Jη η ν=    (2) 
 
where ( )J η  is the kinematics transformation matrix and

( , , , , , )Tx y zη ϕ θ ψ= . The linear steering equations of 
motion are: 
 

11 12 13 11

21 22 23 21

31 32 33 31

r

a a a b
r a a a r b

a a a b

ν ν
δ

φφ
= +

       
       
       
            





   

         (3) 

where the components of the matrix are as follows: 
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The linearized forms for equations of the AUV motion 
containing heave and pitch are as follows:  
 

        
11 12 11

32

0
1 0 0 0

0 0 0
s

q a a q b

z a z
θ θ δ= +
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           (4) 

 
where the components of the matrix are as follows: 
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Schematic representation of the AUV system with 
coordinates is shown in Figure 1. The hydrodynamics 
parameters and the AUV parameters are given in Table 1.
 

 

 

 

Figure 1. Schematic representation of the AUV system with coordinates 
 

 
m 250 kg Mq 300 N.m 
g 9.81 m/s2 qM  -30 kgm2 

u0 2 m/s Nv 300 N.m 
xG -0.15 m vN  10 kg.m 
zG 0.03 m Yδ 8047 N 
zB 0 Nδ -76 N.m 
Izz 140 kg.m2 Yr 100 
Iyy 150 kg.m2 

rY  10 kg.m 
Nr 300 N.m Yv 100 N 

rN   -30 kg.m2 vY -250 kg 

Table 1. The hydrodynamics parameters and the AUV parameters 
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3. Robust Neural Feedback Control System (RNFCS) 
 
A designed control system is employed to control the 
trajectory of the AUV. The purpose of this proposed 
control system is to provide the appropriate control 
action. The mathematical expression of the force of the 
RNF control system is given by: 
 

R NN
u(t)  u (t) u (t)= +  (5) 

where uR(t) is the force of the robust controller and uNN(t) 
is the force of the neural controller. The sum of these two 
forces gives the control force signal u(t). The first part of 
the control input for the robust controller can be 
described as follows: 
 

( ) ( )( ) ( ) *R

de t Rtu t K e t K eP D dt
−= + 

 
                   

(6) 

where KP, KD and R are the proposed control system 
parameters and are empirically set to KP = 10, KD=7 and  
R = 0.0001. In the following equation, e(t) is the control 
error: 
 

     ( ) ( ) ( )re t y t y t= −  (7) 

 
where yr(t) is the reference input signal and y(t)  is the 
system output signal. Neural network structure is shown 
in Figure 2. The second part of the control input for the 
proposed control system is explained in the following 
subsection. 
 

3.1 Neural controller 

A neural controller with Resilient Back-propagation 
Algorithm is one popular neural network structure for 
control and prediction. Fundamentally, two steps are 
involved when using this control: system identification 
and control design. The identification stage of this control 
is to train a neural network to present the forward 
dynamics of the plant. The neural network model of the 
plant that needs to be controlled is developed using two 
sub-networks for the model approximation.  The neural 
model is as follows:  
 

)]1nt(u),...,1t(u),1mt(y),...,t(y[N)dt(y +−−+−=+
     (8) 

 
 
 

where y(t) is the system output, u(t) is the system input 
and d is the relative degree (d≥2). Multilayer neural 
networks can be used to identify the function F. The 
identification model has the form: 
 

)t(u)].1nt(u),...,1t(u),1mt(y),...,t(y[g
)]1nt(u),...,1t(u),1mt(y),...,t(y[f)dt(ŷ

NN+−−+−
++−−+−=+

    (9) 

where ˆ( )y t d+  is the estimate of ( )y t d+ . Identification 
is carried out at every instant t by adjusting the 
parameters of the neural network using the error 

ˆ( ) ( ) ( )e t y t y t= − . For a system output, y(t+d) is used, 
and for a reference trajectory yr(t+d). 
 

)t(u)].1nt(u),...,1t(u),1mt(y),...,t(y[g
)]1nt(u),...,1t(u),1mt(y),...,t(y[f)dt(y

NN+−−+−
++−−+−=+

    (10) 

f and g are activation functions of the hidden layer in the 
first and second sub-networks, respectively, as follows: 
 

1te
1)t(g)t(f

+−
==   (11) 

For each sub-network, the linear activation function uses 
the output layer. The controller output will have the 
form: 
 

)]1nt(u),...,1t(u),1mt(y),...,t(y[g
)]1nt(u),...,1t(u),1mt(y),...,t(y[f)dt(y)t(u r

+−−+−
+−−+−−+=

    (12) 

Using the equation directly causes a realization problem 
based on the output at the same time, y(t). So, instead: 
 

)1t(u)].1nt(u),...,1t(u),1mt(y),...,t(y[g
)]1nt(u),...,1t(u),1mt(y),...,t(y[f)dt(y

NN ++−−+−
++−−+−=+

    (13) 
Using Eq. (13): 
 

)]1nt(u),...,1t(u),1mt(y),...,t(y[g
)]1nt(u),...,1t(u),1mt(y),...,t(y[f)dt(y)1t(u r

+−−+−
+−−+−−+=+

    (14) 

Figures 3 and 4 represent the neural plant model 
identification and the neural controller, respectively. The 
proposed RNF control system architecture is shown in 
Figure 5. The neural network training parameters are given 
in Table 2. The Resilient Back-propagation algorithm is 
used to adjust the weights of the neural network.  
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Figure 2. Schematic representation of the neural network model 
 
 

Learning parameter 
η

0.5 
Hidden layer neurons

nH 10 

Momentum term 
α 0.3 

Output layer neurons
nO 1 

Iteration number 
N 

5500000 
Activation Function

g(.) Sigmoid 

Input layer neurons 
nI 2 

Errors
RMSEs 0.03 

Table 2. The neural network training parameters  
 

: Non-linear neuron  

nH 

y(t+1) 

nI 

Output Layer 

Hidden Layer

Bias Bias 

: Linear neuron

Input Layer 

nO 

+1 +1 

u(t) 

y(t) 

wij wjk 
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Figure 3. Neural controller plant model identification 
 

 
Figure 4. Neural controller 
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uNN (t) y(t) 

+ 
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u(t) y(t) 

+ 
 
- 

Neural Network Model of AUV 

 

+ 

uNN(t) 

g(t) 
f(t) f(t)+g(t)*uNN(t-1) 

+ 
- 
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Figure 5. Proposed RNF control system architecture 
 
3.1.1 Resilient Back-propagation Algorithm (RPROP) 

The Resilient Back-propagation Algorithm is a local adaptive 
learning scheme performing supervised batch learning in 
feed-forward neural networks. The basic principle of this 
algorithm is to eliminate the harmful influence of the partial 
derivative’s size on the weight step. As a consequence, only 
the sign of the derivative is considered to indicate the 
direction of the weight update. This algorithm typically uses 
a sigmoid function in the hidden layers and a linear function 

in the output layer. Here, 
ij

w
 
is the weight matrix, and 

( )
ij

tΔ
 
is the update value for each weight. A second learning 

rule is introduced which determines the evolution of the 

update value ( )
ij

tΔ . This estimation is based on the 

observed behaviour of the partial derivative during two 
successive weight-steps:  
 















−Δ

<−
∂
∂

∂
∂−Δλ
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∂
∂

∂
∂−Δλ

=Δ −

+

else),1t(
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w
Eif),1t(
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w
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w
Eif),1t(

)t(

ij

ijij
ij

ijij
ij

ij

 

(15)

 
where +− λ<<λ< 10 . (16)

The adaptation rule works as follows. Every time the 

partial derivative of the corresponding weight 
ij

w  

changes its sign, which indicates that the last update was 
too big and the algorithm has jumped over a local 

minimum, the update value ( )
ij

tΔ  is decreased by the 

factor λ− . If the derivative retains its sign, the update 
value is slightly increased in order to accelerate 
convergence in shallow regions. Once the update value 
for each weight is adapted, the weight-update itself 
follows a very simple rule: if the derivative is positive 
(increasing error), the weight is decreased by its update-
value; if the derivative is negative, the update value is 
added. This is formulated as follows: 
 















<
∂
∂Δ

>
∂
∂Δ−

=Δ

else,0

0)t(
w
Eif),t(

0)t(
w
Eif),t(

)t(w
ij

ij

ij
ij

ij

 

 

(17) 

)t(w)t(w)1t(w ijijij Δ+=+ . (18) 
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Controller 
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 KP KI  KD 

Rudder deflection 13 4.8 8 

Yaw angle 1.2 0.5 0.75 

Theta angle 5.4 4.3 1.68 

Depth change 36 32 9.9 

Table 3. The PID gain parameters with Zeigler-Nichols method 
 
However, there is one exception. If the partial derivative 
changes sign, i.e., the previous step is too large and the 
minimum is missed, the previous weight-update is 
reverted to: 
 

0)1t(
w
E)t(

w
Eif

),1t(w)t(w

ijij

ijij

<−
∂
∂⋅

∂
∂

−Δ−=Δ
 (19) 

Due to this ‘backtracking’ weight-step, the derivative is 
supposed to change its sign once again in the following 
step. In order to avoid a double punishment of the update 
value, there should be no adaptation of the update value 
in the succeeding step. In practice, this can be achieved by 

setting 0)1( =−
∂
∂ t
w
E

ij

 in the ijΔ  update rule above. The 

partial derivative of the total error is given by: 
 


= ∂

∂
=

∂
∂ P

1p ij

p

ij

)t(
w
E

2
1)t(

w
E  (20) 

 
Hence, the partial derivatives of the errors must be 
accumulated for all P training patterns. This means that 
the weights are updated only after the presentation of all 
training patterns. The α  (weight-decay) parameter 
determines the relationship of two goals, namely to 
reduce the output error (the standard goal) and to reduce 
the size of weights (to improve generalization). The 
composite error function is: 
 

 
=

α
=

+−=
ON

1j j,i

2
ij

2
pjpj

P

1p
w

10
1)ed(

2
1E  (21) 

 

For comparison purposes, the classical PID controller was 
used for trajectory control of the AUV. The PID controller 
was initially tuned using the Ziegler-Nichols method; the 
PID parameters are given in Table 3.  
 
4. Simulation results 
 
This section presents simulation results of the AUV 
system with neural network based controller for rudder 
deflection, yaw angle, theta angle and depth change. 
Figures 6(a)-(c) show the responses of these parameters 
without any controller and in the presence of a PID 
controller and the proposed RNF control system, 
respectively. 
 
Figure 6(a) shows the rudder deflection of the AUV for 
sinusoidal input signal. The response of the AUV 
unstable behaviour (shown with dashed lines) is also 
seen in Figure 6(a). Figure 6(b) depicts the response of 
rudder deflection of the AUV for sinusoidal input 
signal using the standard PID controller. As seen in the 
Figure , the system response does not show unstable 
behaviour, but the desired sinusoidal input signal does 
not follow. The results show that the proposed RNF 
control system has better performance in terms of 
adapting a sinusoidal input signal. Figure 7(a) shows 
rudder deflection of the AUV for a random input 
signal; in Figure 6(a) the response of the AUV is 
unstable behaviour. The result of the PID controller for 
rudder deflection of the AUV is shown in Figure 7(b). 
As seen in Figure 7(b), the rudder deflection response 
of the AUV with the PID controller does not track the 
desired random input signal. Figure 7(c) shows the 
result of the RNF control system. The graph shows a 
small overshoot error between the desired random 
input signal and the proposed control system. 
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Figure 6. Rudder deflection of AUV for sinusoidal input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF 
control system response 
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Figure 7. Rudder deflection of AUV for random input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF control 
system response 
 
Figures 8(a), (b) and (c) indicate the yaw angle result 
without any controller and with the PID controller and 
the proposed RNF control system for a sinusoidal input 
signal. As seen in the Figure s, the yaw angle response of 

the AUV does not show unstable behaviour, whereas the 
proposed RNF control system exactly follows the desired 
sinusoidal input signal. 
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Figure 8. Yaw angle of AUV for sinusoidal input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF control 
system response 
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Figures 9(a), (b) and (c) show the yaw angle without any 
controller, and with the standard PID controller and the 
proposed RNF control system in the case of a random 

input signal. As depicted in Figure 9(c), some differences 
can be seen between the proposed control system 
response and the desired random input signal.  

 

 

 

 
Figure 9. Yaw angle of AUV for random input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF control system 
response 
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The response of the theta angle of the AUV for a 
sinusoidal input signal is given in Figures 10(a), (b) and 
(c). As shown in the Figure s, the proposed control system 
has the best performance in terms of adapting to the 

sinusoidal input signal. Figures 11(a), (b) and (c) present 
the response of the theta angle for a random input signal. 
The results prove that the proposed RNF control system 
is suitable for controlling the theta angle. 

 

 

 

 
Figure 10. Theta angle of AUV for sinusoidal input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF control 
system response 
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Figure 11. Theta angle of AUV for random input signal (a) Uncontrolled response (b) PID controller response, and (c) RNF control 
system response 
 
Finally, Figures 12(a), (b) and (c) show the results of the AUV’s depth change. According to simulation results, the 
proposed control system has excellent performance for controlling the AUV parameters. 
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Figure 12. Depth change of AUV (a) Uncontrolled response (b) PID controller response, and (c) RNF control system response 
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5. Conclusions 
 
A robust control system with a neural network was 
designed for trajectory controlling of an AUV system. 
Four parameters of the system were analysed and 
controlled by the proposed control system structure. 
 
For comparison, the standard PID controller, tuned using 
the Ziegler-Nichols method, was also employed to 
control the AUV. The results of both control systems 
showed that the use of the proposed robust neural 
feedback control system was effective in controlling the 
AUV and more robust than the PID controller. The strong 
performance of the proposed RNF control system was 
due to the inclusion of both linear and non-linear neurons 
in the network. As shown by the simulation results, the 
proposed control system can effectively track a given 
trajectory for experimental applications. 
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