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Abstract: The rising prevalence of Alzheimer’s disease (AD) is rapidly becoming one of the largest health and eco-
nomic challenges in the world. There is a growing need for the development and implementation of reliable biomark-
ers for AD that can be used to assist in diagnosis, inform disease progression, and monitor therapeutic efficacy. 
Preclinical models permit the evaluation of candidate biomarkers and assessment of pipeline agents before clinical 
trials are initiated and provide a translational opportunity to advance biomarker discovery. Fast and inexpensive 
data can be obtained from examination of peripheral markers, though they currently lack the sensitivity and consis-
tency of imaging techniques such as MRI or PET. Plasma and cerebrospinal fluid (CSF) biomarkers in animal models 
can assist in development and implementation of similar approaches in clinical populations. These biomarkers may 
also be invaluable in decisions to advance a treatment to human testing. Longitudinal studies in AD models can 
determine initial presentation and progression of biomarkers that may also be used to evaluate disease-modifying 
efficacy of drugs. The refinement of biomarker approaches in preclinical systems will not only aid in drug develop-
ment, but may facilitate diagnosis and disease monitoring in AD patients.
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Introduction

Alzheimer’s disease (AD) represents a looming 
crisis as the number of victims continues to 
increase and limited treatments are available. 
There is a critical need for advances in the 
treatment of AD and in the tools used to detect 
cases early and monitor progression. Studies 
of AD populations show that biomarkers, includ-
ing imaging approaches [1-3] and evaluation of 
cerebrospinal fluid (CSF) and blood [4-6], have 
value in diagnosis and tracking disease pro-
gression. Numerous candidate markers have 
been identified such as CSF or plasma levels of 
Beta-amyloid protein (Aβ) and phosphorylated 
tau (ptau); however, many lack the specificity 
necessary to be used diagnostically or do not 
correlate with clinical progression. An opportu-
nity exists with the animal model systems that 
are employed in the study of AD mechanisms to 
examine potential biomarkers. Many of the 
investigations of mechanisms in AD also pro-
vide suitable targets for evaluation of novel 
treatment efficacy in both animal models and 

clinical populations. Investigation of potential 
biomarkers in animal model systems lends 
itself to examination of mechanisms underlying 
correspondence between central pathology 
and peripheral markers. Moreover, relation-
ships in animal models can be explored 
between peripheral biomarkers and readily 
available neuropathology; these can be trans-
lated into human studies where biomarkers are 
accessible but neuropathology is often not.

Biomarkers can assist in monitoring the pro-
gression of AD and inform treatment approach-
es as the disease advances. Aβ targets, for 
example, may be more appropriate very early in 
the disease course and tau targets may be 
more relevant later in the disease. The complex 
evaluation and staging of treatment of AD 
requires assessment in animal models exhibit-
ing core pathological features. 

In this review we highlight several candidate 
biomarkers in AD that have been evaluated in 
preclinical animal models. Several potential 

http://www.AJND.us


Alzheimer’s disease biomarkers in animal models

109	 Am J Neurodegener Dis 2013;2(2):108-120

biomarkers have been suggested related to 
core disease pathologies (Aβ and tau), as well 
as those associated with AD risk factors (such 
as microglial and immune activation). We also 
discuss the need for greater evaluation of can-
didate biomarkers in preclinical systems in par-
allel with the investigations of brain pathology 
that is the central approach to animal models 
of AD. 

Peripheral markers

The amyloid cascade hypothesis posits that 
early accumulation of Aβ leads to synaptic dys-
function, neurodegeneration, and cognitive 
deficits [7, 8]. Although substantial evidence 
exists to support this hypothesis, the mecha-
nisms underlying the pathogenic contributions 
of Aβ remain elusive. Whether the deposition of 
Aβ into insoluble plaques or smaller, soluble 
species of Aβ drive neurodegeneration is 
unclear; however, recent evidence suggests Aβ 
oligomers (oAβ) may be more neurotoxic [9-11]. 
Early work with Tg2576 mice demonstrated a 
reduction in CSF and plasma levels of Aβ42 
[12], findings which mirror AD patient data. In 
PDAPP mice, Aβ42 levels positively correlated 
with the abundance of plaques [13], contrary to 
what has been found in AD [14]. Canines repre-
sent a strong model for investigating disease-
state mechanisms as they develop age-related 
Aβ deposition and cognitive deficits, which 
show similarities to human AD [15]. CSF Aβ42 
and oAβ levels decreased with age and inverse-
ly correlated with plaque load, indicating these 
markers may reflect brain amyloidosis [16]. 
These observations mirror those in humans. In 
aged canines with mild cognitive impairment 
(MCI), plasma Aβ42 levels were increased com-
pared to unimpaired or severely impaired dogs 
[17].

The detection and quantification of Aβ species 
in vivo has encountered difficulties, and ques-
tions have been raised about the feasibility of 
reliably measuring oligomers in CSF [18]. 
Specific ELISAs have been developed for the 
quantification of Aβ levels, which have been 
demonstrated to increase with age in the brains 
of transgenic (Tg) AD mice [18, 19]. However, 
depending on the specific antibodies utilized, 
oAβ has not been consistently detected in 
human CSF [18, 20]. Using flow cytometry, the 
increased presence of Aβ has been reported in 
the CSF of AD patients compared to controls 

[21]. The reliable quantification of Aβ species 
from biological fluids could serve as an impor-
tant measure of therapeutic efficacy in preclini-
cal models, underscoring the import of the 
development of a precise detection technique.

One of the principal enzymes responsible for 
amyloidogenesis, β-site amyloid precursor pro-
tein cleaving enzyme 1 (BACE1), has promise 
as a therapeutic target. Novel techniques for 
quantifying BACE1 levels from the CSF and 
plasma are emerging, permitting a primary 
measure of target engagement [22, 23]. 
Inhibitors of BACE1 decreased CSF and plasma 
levels of Aβ40 and Aβ42 in mice, guinea pigs, 
and non-human primates [23-26]. Levels of 
soluble amyloid precursor protein β (sAPPβ) are 
also decreased in plasma following BACE inhibi-
tion in rhesus monkeys [23], while mixed results 
have been observed from human AD plasma 
[23, 27]. An inhibitor of cathepsin B, one of the 
enzymes in the β-secretase complex along with 
BACE1 [28], reduced Aβ40 and Aβ42 in the 
CSF and plasma of guinea pigs [29]. Extending 
these findings and approaches to Tg models of 
AD could offer additional insight into therapeu-
tic candidate efficacy and mechanisms of dis-
ease. BACE1 activity can be measured in 
human CSF permitting it to be used as a mea-
sure of target engagement by inhibitors of this 
enzyme.

Inhibition of gamma-secretase has been a tar-
get of therapeutic development despite initial 
high-profile failures [30]; more recent drugs 
have attempted to avoid Notch-related toxicity 
and side effects [31, 32]. Peripheral measure-
ment of Aβ following administration of gamma-
secretase modulators could provide a fast and 
reliable readout in addition to behavioral out-
comes. Gamma-secretase modulators and 
inhibitors have been shown to reduce CSF and 
plasma Aβ levels in non-Tg rats and guinea pigs 
[33-35], reinforcing the utility of investigating 
peripheral biomarkers in animals and clinical 
trials. Using stable-isotope-labeling kinetics 
(SILK) methods, a gamma-secretase inhibitor 
was shown to reduce CSF Aβ production in rhe-
sus monkeys without a subsequent rise in Aβ 
production [36]. Because gamma-secretase 
inhibitors lead to altered proteolysis of APP and 
the generation of shorter Aβ fragments (i.e. Aβ 
(1-15)), assays that target these isoforms may 
provide a reliable measure of drug activity, as 
has been demonstrated in canine CSF [37].



Alzheimer’s disease biomarkers in animal models

110	 Am J Neurodegener Dis 2013;2(2):108-120

A number of immunotherapies have been 
developed and tested in AD models, most of 
which target amyloid pathology. Central immu-
notherapy may produce secondary, undesir-
able immune responses, and it is important to 
evaluate markers of inflammation as possible 
indicators of an adverse response. Plasma lev-
els of interleukin (IL)-10, an anti-inflammatory 
cytokine, have been found to be increased fol-
lowing Aβ immunotherapy in Tg2576 mice [38, 
39]. In contrast, T cell infusions specific for Aβ 
or administration of granulocyte colony stimu-
lating factor (GM-CSF) reduced plasma levels 
of IL-4, TNF-α, and other cytokines [40, 41].
Inflammatory mechanisms and their peripheral 
markers can be further explored with parallel 
observations in humans and animals.

Isoprostanes, which reflect lipid peroxidation 
and oxidative stress [42], are elevated in plas-
ma from Tg2576 mice in advance of plaque for-
mation [43], suggesting isoprostane levels may 
have utility as a predictive biomarker.

Microgliosis is an important indicator of drug 
activity and a common pathological finding in 
AD [44]. Although microglial activity may be 
assessed with neuroimaging techniques, 
important information can be quickly and inex-
pensively obtained through peripheral mea-
sures. In rhesus monkey plasma, a non-viral Aβ 
vaccine did not alter chemokine (C-C motif) 
ligand 2 (CCL2) expression [45]. More studies 
may benefit from investigation of microglial 
markers in the future. However, care must be 
taken in the interpretation of immune respons-
es from mice as recent evidence suggests they 
may not translate well to human inflammatory 
diseases [46].

Currently the measurement of tau and phos-
phorylated tau (p-tau) from human or animal 
fluids is restricted to the CSF. Studies with Tg 
mice or rats have demonstrated elevated CSF 
p-tau and tau levels with age [47, 48]. Recent 
work has indicated promising data in the devel-
opment of assays to reliably quantify ptau and 
tau from plasma and serum that would signifi-
cantly advance the utility of blood-based mark-
ers [49].

Imaging

Imaging approaches in AD models have demon-
strated strong correspondence with findings 

from AD populations, suggesting these tech-
niques may have considerable translational 
utility. Imaging studies may complement behav-
ioral and postmortem readouts in animals, 
especially in the evaluation of treatments 
designed to target different stages of patho-
logical severity. Several imaging approaches 
have been employed in animal models of AD, 
including positron emission tomography (PET), 
magnetic resonance imaging (MRI), and mag-
netic resonance spectroscopy (MRS). 

Fluorodeoxyglucose (FDG)-PET imaging shows 
consistent patterns in AD making it a suitable 
measure of drug efficacy in patients and animal 
models. Similar to AD, reduced FDG uptake has 
been observed in PDAPP mice [50-52], PSAPP 
mice [53], 3xTg-AD mice [54], and PLB1 mice 
[55]. However, null effects in other studies sug-
gest the small size of mouse brains may limit 
the utility of FDG-microPET in mice [56, 57].

Radiolabeled amyloid imaging agents provide a 
measure of plaque load and may serve to longi-
tudinally track changes in amyloidosis during 
clinical trials. Despite initial difficulty with 
uptake and retention of Pittsburgh compound 
B (PIB) in Tg AD mice [58, 59], recent studies 
indicate PSAPP mice display strong, age-relat-
ed amyloid loads with PIB [60], while others 
have demonstrated that a high specific radio-
activity facilitates PIB-microPET imaging in 
APP23 mice [61, 62]. Additional investigations 
have demonstrated utility in voxel-based analy-
ses of plaque load using PIB in APP/PS1 double 
transgenic mice [63]. Work with monkeys 
shows that amyloid burden can be observed 
with PIB in multiple species [64]. An alternative 
radiotracer, 2-(1-{6-[(2-18F-fluoroethyl)(methyl)
amino]-2-naphthyl}ethylidene)malononitrile 
(FDDNP), binds to plaques and tangles, display-
ing increased retention in aged macaques [64] 
and Tg AD rats [65]. FDDNP binding to tangles 
has not been demonstrated in animal models; 
another ligand --- 18F-THK523 --- binds selec-
tively to tangles in Tg mice expressing mutant 
tau [66].

A novel amyloid imaging probe recently 
approved by the US Food and Drug 
Administration (FDA) for use in PET imaging, flo-
rbetapir (AmyvidTM), shows robust labeling in 
monkeys and PSAPP mice [67]. Another study 
with florbetapir revealed strong retention in the 
cortex, hippocampus, and striatum of PSAPP 
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mice [68], areas rich in plaques. Each of these 
amyloid imaging agents could act as signpost 
markers of disease progression or determine 
Aβ immunotherapy efficacy. There is a consis-
tent inverse correlation between CSF Aβ levels 
and brain amyloid load as demonstrated with 
amyloid imaging, indicating that the fluid mark-
er is a good guide to this central aspect of AD.

The microglial probe 11C-(R)-PK11195 binds to 
the 18 kDa translocator protein (TSPO), also 
known as the peripheral benzodiazepine recep-
tor, which reflects neuroinflammation [69]. 
PSAPP mice display progressively increased 
retention of this ligand, which mirrored the 
postmortem abundance of microglia [70]. Work 
with other TSPO probes suggests microgliosis 
may be more closely associated with tau 
pathology than amyloid pathology in mutant 
tau or APP mouse models, respectively [71]. 

MRI provides superior spatial resolution com-
pared to PET, indicating it may be better suited 
to microimaging in Tg mice. Similar to AD popu-
lations, several Tg AD mouse lines have shown 
reduced volume of several brain structures 
including the hippocampus and cortex [72-77]. 
Other approaches to model AD also revealed 
brain atrophy with MRI, including aged rabbits 
chronically administered Aβ42 [78] and mon-
keys administered streptozotocin, a drug that 
disrupts insulin signaling and induces a diabe-
tes phenotype and AD pathologies [79]. 
Because MRI-detected atrophy is progressive, 
a staging could be established which correlates 
with tau pathology or other markers of neuro-
degeneration and permits the evaluation of 
various stage-dependent therapeutics (i.e. MCI 
vs. advanced AD).

A variation on MRI, arterial spin labeling (ASL), 
is able to quantify differences in regional cere-
bral blood flow, which is typically reduced in AD 
[80-82]. Similarly, Tg mouse models of AD dis-
play cerebral hypoperfusion compared to wild-
type (WT) mice during ASL-MRI [83, 84]. 
Combined with other imaging techniques or 
fluid biomarkers, ASL-MRI may assist in diagno-
sis and evaluation of clinical trial outcomes.

Using MRI, amyloid-specific contrast agents 
can visualize in vivo plaque load. A variety of 
approaches have been used to image plaques 
in Tg AD mice by coupling amyloid compounds 
to specific probes, including gadolinium to Aβ 

[85-89], 19F or 1H amyloidophilic agents [90, 
91], and nanoparticle-based probes [92-94]. 
Although these compounds have not yet been 
tested in AD patients, their utility for measuring 
amyloid burden during testing of pipeline 
agents should be investigated. The enhanced 
spatial frequency associated with MRI makes it 
preferable to PET-based probes, especially for 
detecting subtle, region-specific differences. 
Plaques have also been visualized in AD mouse 
models without the help of a contrast agent 
because of their high iron content using high 
field intensity MRI [95-99]. Concerns about the 
consistency of interplaque metal content and 
non-specific arterial binding limit the applica-
tion of this approach [99, 100]. 

Deficits in axonal transport have been discov-
ered in Tg2576 and 3xTg-AD mice before Aβ 
and tau pathology with manganese-enhanced 
MRI (MEMRI) [101, 102]. Although it has not 
been demonstrated that these changes can be 
visualized in AD, this technique may prove use-
ful for detecting early neuronal impairments in 
at-risk, aged individuals. Using ultra-high field 
diffusion tensor imaging (DTI), gray and white 
matter degeneration were observed in PSAPP 
mice [103], similar to what has been found in 
AD brains.

Proton magnetic resonance spectroscopy (1H-
MRS) quantifies neurochemical biomarkers 
that are different in AD compared to age-
matched controls [104, 105]. AD mouse mod-
els show a similar pattern of metabolite chang-
es [106], with decreased levels of N-acetyl 
aspartate (NAA) and increased levels of taurine 
[107]. Other studies show increased ratios of 
myoinositol and decreased ratios of NAA levels 
compared to total creatine [108-112]. Because 
NAA levels likely reflect neuronal viability [113], 
1H-MRS data may serve as an early marker for 
neurodegeneration or conversely, as a mea-
sure of the neuroprotective potential of thera-
peutic agents. Accordingly, chronic administra-
tion of non-steroidal anti-inflammatory drugs 
(NSAIDs) to aged PSAPP mice mitigated the 
decrease in NAA and glutamate levels, while 
reducing plaque burden [114]. 

Atrophy as measured by MRI and reduced 
metabolism as assessed by FDG-PET progress 
in the course of AD and correlate with cognitive 
decline. This contrasts with amyloid PET where 
the burden of pathology is relatively stable 
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throughout the MCI and dementia phases of 
AD. This may make MRI and FDG-PET more rel-
evant as outcome measures for clinical trials, 
especially for agents not targeting amyloid-
related processes. 

Future directions

Proteomic approaches allow the unbiased 
investigation of a multitude of fluid biomarkers 
simultaneously in order to increase diagnostic 
and prognostic accuracy, as well as identify 
novel targets. With advances in mass spec-
trometry (MS) and microarray techniques, many 
groups have recently undertaken proteomic 
examinations in the CSF and serum/plasma of 
AD and MCI patients. Although some results 
have been inconsistent, levels of several pro-
teins have been found to differentiate AD com-
pared to controls, including various apolipopro-
teins, α1-antitrypsin, and β2-microglobulin 
[115-121]. Proteomic analyses have been used 
to differentiate AD from other dementias [122] 
and predict progression of MCI to AD [123]. 
Although proteome-based studies of plasma 
and serum suggest AD may be sensitively char-
acterized with this approach [124-128], few of 

these reports have been replicated or 
confirmed. 

Proteomic analyses in animal systems are pre-
liminary. A study in tau Tg mice investigated the 
proteome in blood plasma at a presymptomatic 
and symptomatic age. A few proteins were iden-
tified as potential biomarker candidates such 
as adenosine triphosphate (ATP) synthase and 
adenosine kinase [129]. Examining the pro-
teome both in multiple preclinical models and 
AD could lead to the characterization of a bio-
marker panel specific to the disorder. 

MicroRNAs (miRNAs) have also been implicat-
ed in AD pathogenesis and suggested as a 
putative biomarker [130, 131]. In non-Tg mice 
fed a high-fat diet, decreased expression of 
multiple miRNAs was observed in the serum 
[132]. Substantial translational work is required 
before miRNAs can be used in the clinic; how-
ever, the approach is advancing rapidly.

Alternative approaches have emerged recently 
that have considerable promise in investiga-
tions of cellular variations in core pathological 
markers. For example, attention is being direct-
ed towards the measurement and understand-
ing of post-translational modifications of Aβ. Tg 
mice carrying the Arctic APP mutation provide 
an opportunity to study protofibrillar Aβ42; the 
development of protofibril-specific assays has 
permitted the quantification of CSF protofibril-
lar Aβ in these mice [133, 134].

Conclusions

The use of several animal model systems has 
provided invaluable data regarding AD patholo-
gies and mechanisms involved in neurodegen-
eration. In this research, the primary focus has 
been on the examination of central tissues, 
and to a lesser extent on peripheral markers. 
For the investigations that have included 
peripheral measures, considerable progress 
has been made in the identification of needed 
biomarkers in AD. The literature documents the 
extensive effort that is underway in animal 
model systems to associate core pathological 
markers with less invasive and peripheral 
markers that may translate to the clinic readily 
(see Table 1). Given the progress that has been 
made, a greater emphasis in probing both cen-
tral and peripheral tissues in multiple animal 
model systems would be advantageous. This 

Table 1. List of biomarkers examined in AD animal 
systems
Biomarker Reference(s)
Aβ42 [12, 13, 16, 17, 23-

26, 29, 33-35]
Aβ oligomers [16]
Protofibrillar Aβ42 [133, 134]
Soluble APPβ [23]
Fragmented Aβ [37]
Cytokines [38-41]
Isoprostanes [43]
Tau [47]
Ptau [48]
FDG-PET [50-57]
Pittsburgh Compound B [58-64]
FDDNP [64, 65]
18F-THK523 [66]
Florbetapir [67, 68]
Microglial probes [70, 71]
MRI-based atrophy [72-79]
ASL-MRI [83, 84]
MRI amyloid contrast agents [85-94]
MRI amyloid without contrast [95-99]
Axonal transport via MEMRI [101, 102]
DTI [103]
1H-MRS metabolites [106-112, 114]
Proteome [129]
MicroRNAs [132]
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approach may also greatly accelerate transla-
tional efforts to impact clinical research. 
Equally pressing is the need for more data from 
animal systems investigating biomarkers that 
can be directly translated to human biomark-
ers. Continued progress is needed in investiga-
tions of the same and over lapping markers in 
animal models and clinical populations to serve 
as a translational bridge between animal mod-
els systems and clinical populations [135]. 
Given the emphasis on multiple brain regions in 
histological analyses of AD animal models and 
the speed at which studies can be carried out, 
a directed effort of evaluating candidate bio-
markers in parallel with central markers has 
tremendous potential to enlighten clinical AD 
biomarker approaches.
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