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Abstract Robots are expected to be operated in
environments where they coexist with humans, such as
shopping malls and offices. Both the safety and efficiency
of a robot are necessary in such environments. To achieve
this, pedestrian behaviour should be
predicted. However, the behaviour is uncertain and
cannot be easily predicted. This paper proposes a
probabilistic method of determining pedestrian trajectory
based on an estimation of pedestrian behaviour patterns.
The proposed method focuses on the specific behaviour
of pedestrians around the robot. The proposed model
classifies the behaviours of pedestrians into definite
patterns. The behaviour patterns, distribution of the
positions of the pedestrians, and the direction of each
behaviour pattern are determined by learning through
observation. The behaviour pattern of a pedestrian can be
estimated correctly by a likelihood calculation. A robot
decides to move with an emphasis on either safety or
efficiency depending on the result of the pattern
estimation. If the pedestrian trajectory follows a known
behaviour pattern, the robot would move with an
emphasis on efficiency because the pedestrian trajectory
can be predicted. Otherwise, the robot would move with

accurately
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an emphasis on safety because the behaviour of the
pedestrian cannot be predicted. Experimental results
show that robots can move efficiently and safely when
passing by a pedestrian by applying the proposed
method.

Keywords Pedestrian Modelling, Trajectory Generation,
Robot Safety, Mobile Robot

1. Introduction

Robots are expected to be operated not only in factories,
but also in environments where they coexist with
humans, such as shopping malls and offices. The safety of
robots that work in environments where humans exist
needs to be guaranteed; that is, collision with pedestrians
should be avoided. In order to avoid collision with
pedestrians, robots need to control their velocity.
However, keeping the velocity of the robot low reduces
its efficiency. On the other hand, increasing the velocity
of the robot reduces safety. This requires a trade-off
between the efficiency and safety of the robot.

Int. j. adv. robot. syst., 2013, Vol. 10, 310:2013


http://crossmark.crossref.org/dialog/?doi=10.5772%2F56668&domain=pdf&date_stamp=2013-01-01

Predicting the trajectories of pedestrians is an effective
method of solving this problem. If the trajectory could be
predicted, robots would be able to perceive the probability
of collision. By controlling its velocity according to the
probability of collision, the robot can satisfy both safety and
efficiency. Since the 1980s, many researchers have studied
collision avoidance in dynamic environments [1-4]. In most
of these studies, however, pedestrians were regarded as
“moving obstacles”, and very simple predictions of the
behaviours of pedestrians were conducted. The behaviours
of pedestrians are affected by the existence of robots.
Therefore, the behaviour of pedestrians in human-robot
environments must be different from that in environments
where no robots exist. An accurate prediction cannot be
achieved without considering the behaviour of pedestrians
in environments where robots exist.

Therefore, it is necessary to consider the behaviour of
pedestrians in environments where robots exist to operate
robots safely and efficiently. Pacchierotti et al. carried out
an experimental survey of some optimal parameters such
as the robot speed and passing distance between a robot
and human [5]. Although the study is beneficial in certain
circumstances, it cannot answer the question of how robots
move in human-robot environments. A mathematical
model that can be used to predict pedestrian behaviour is
necessary. Mathematical models of pedestrians have been
actively studied. There are roughly two types of pedestrian
models. One is based on cellular automaton [6-8], and the
other on social forces [9, 10]. Kirkland et al. used the social
force model to simulate the influence of robots on crowd
dynamics [11]. Their study showed the possibility that
properly controlled robots could control human crowds.
The social force model can simulate crowd behaviour,
although the microscopic behaviours produced by the
model are less human-like. Zanlungo et al. expanded the
social force model by explicitly considering the prediction
of collision in generating human-like behaviours [12]. Guy
et al. expanded the concept of velocity obstacles for
planning the motion of mobile robots [13] to modelling the
collision avoidance behaviour of virtual humans [14, 15].
Ondfej et al. proposed a pedestrian behaviour model that
considers the vision of the pedestrian [16]. Although these
models can simulate human behaviour, they cannot
appropriately predict human behaviour. This is because
the models were not developed to predict human
behaviour, but crowd simulation.

In the real world, pedestrian behaviours are essentially
uncertain. To predict pedestrian behaviour, a pedestrian
model that considers the wuncertainty is required.
Although there have been some studies on probabilistic
pedestrian behaviour models [17-20], they focused on
long-term prediction for planning the path of mobile
robots and did not deal with the specific behaviour of
pedestrians around the robots.
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The objective of this study is to develop a probabilistic
model that can predict the behaviour of a pedestrian in a
human-robot environment. Our proposed model deals
with the behaviour of a pedestrian around a robot. The
model considers the behaviour of the pedestrian as
probabilistic in order to cope with its uncertainty. In
addition, the proposed strategy for generating the
trajectory of the robot is given below. If the behaviours of
pedestrians can be accurately predicted, a robot would be
able to perceive the probability of collision. In that case,
the robot may move with an emphasis on efficiency.
However, if the behaviours of pedestrians cannot be
predicted, the robot would not be able to perceive the
probability of collision, therefore, the robot must move
with an emphasis on safety. Robots can achieve both
safety and efficiency using the proposed strategy.

In section 2, some parameters related to the behaviour
patterns of pedestrians are defined and a model of the
behaviour patterns is presented. Section 3 proposes a
method for generating the trajectory of a robot based on
the prediction of the behaviour of pedestrians. In section
4, experiments for learning the model parameters and
verifying the proposed model are described and
discussed. The paper is concluded in section 5.

2. Pedestrian Model
2.1 Behaviour Patterns

How do human pedestrians pass by each other on
pavements? Individuals usually decide their trajectory based
on the prediction of the position and velocity of the other
person. If the prediction fails, they would get stuck and not
be able to smoothly pass by each other. It is natural to
consider an extra process in the prediction, namely, the
prediction of the behaviour pattern. Here, we assume that
the behaviour patterns of pedestrians express their intention
and that there are a finite number of patterns of how a
human passes by a robot. Based on these assumptions, we
propose a pedestrian behaviour model of a situation in
which a human and a robot pass by each other.

2.2 Modelling

The proposed model is described by M = (Q, S, O, A, B),
where Q, S, O, A and B are respectively a set of behaviour
patterns g; a set of positionss; a set of output directions

0; a set of position output distributions a, (S); and a set of

direction output distributions b, (S,O), respectively.

These terms are explained in detail below.
2.2.1 Behaviour Pattern

Behaviour pattern g describes the alternatives to select

from in the bypass situation. The behaviours of
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pedestrians are classified into certain patterns according
to the different ways of passing by a robot, such as
“swerving to the left” and “walking straight without
avoidance.” Here, we assume that pedestrian behaviours
can be classified based on their position and travel
direction relative to the robot.

2.2.2 Position

Pedestrian position s is the position of the pedestrian in
the robot-centred coordinate system, which moves with
the robot. In the rest of this paper, we basically consider
the pedestrian position and velocity in the robot-centred
coordinate system. Here, the y-axis is defined as the
travel direction of the robot. A space is discretized into
square cells. When the pedestrian position is determined

as (x”,y”) by a sensor, sis described using the cells as
follows:

s=(a, ), 1)

where X, <x” < X_,, and ¥ <y'< Y,,, (Fig.1).
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Figure 1. Discretized coordinate space.

R
Figure 2. Discretized output direction.
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2.2.3 Output Direction

The output direction o is the travel direction of a
pedestrian relative to the robot. The direction is also
discretized into a finite number of directions (Fig. 2). The
definition of o is as follows:

o="vy )

P

v
where 0 < arctan —; <0

v

X

and y=0,1,---,c—1 cis

v+l

the number of partitions, and 6, = 6,.v} and v} are the
components of the pedestrian velocity relative to the
robot.

2.2.4 Position Output Distribution

The position of the pedestrian relative to the robot is an
important factor in estimating pedestrian behaviour
pattern, therefore, the set of position output distributions

is defined as 4 = {aq (S)}.aq (s) is the distribution to
the output s when the behaviour pattern is g. a, (s)

satisfies the following conditions:

Max

Figure 3. Example of position output distribution.
0<a, (s
>4, (s)=1 )

s

Figure 3 shows an example of the position output
distribution. In this example, the pedestrian is often on the
right side of the robot. The example corresponds to a single
behaviour pattern, therefore, the number of distributions is
equal to the number of behaviour patterns.

IN

1 )

2.2.5 Direction Output Distribution

The pedestrian travel direction varies with the behaviour
pattern. The direction output distribution is defined as
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B= {bq (s, 0)}. bq (s,o) is the probabilistic distribution that
outputs the direction o when the pedestrian is at position s

in patterng. b, (s, 0) satisfies the following equation:

> b, (s,0)=1 (5)

o

Figure 4 shows an example of direction output
distribution. In this case, the pedestrian is likely to move
toward the lower left. The distribution is defined for each
cell of each behaviour pattern.

2.3 Learning Model Parameters

Learning the model parameters consists of the following
three steps:

1) Behaviour data collection by the robot.

2) Classification of the collected data.

3) Determination of the distributions of the position and
direction outputs.

Max

Figure 4. Example of direction output distribution.

Pedestrian walking trajectories are collected from the
moving robot. The collected trajectories are used for
pattern classification and the determination of the

distributions. For parameter learning, the input data /" is

obtained by the following observation:

I(;" = {(ST »0- )

Here, g is a behaviour pattern; m is an ID of the collected

=01} (6)

trajectory, and 7 is a time step.
The obtained trajectories are classified into a finite
number of patterns. Here, the classification is manually

performed.

For each behaviour pattern g, the position output

distribution a q(s) is determined. The distribution is
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basically produced by determining the frequency of the
existence of pedestrians in each cell. To compensate for
insufficient learning data, the following calculations are
performed for each cell. For each learning data

1 ;n, N (S);" is the number of observations of pedestrians

in cell s; thus,

_a,(s)
aq (S) - 25 a; (S) (7)
where
a;(s) =L EN(s) 1/ (s.57) ®)
1 1 T
flx,pn 5 exp[—— x—p) S (x=pw)| 9
()= el e

Here, s’ = (a/ B ) and S is a covariance matrix, which is

a free parameter of the model. The calculations (Egs. (6),
(7) and (8)) are performed in each cell for each behaviour
pattern.

The direction output distribution B = {bq (s,o)} is also

determined for each behaviour pattern. The distribution
is produced by a procedure similar to that of the position

output distribution. First, N (s,o): , which is the number
of each output direction o for each cell s, is counted. The
following calculations are then performed:

B b!(s,0)
b, (s.0)= S5 (0) (10)
by (s.0)=3_b/(s"0) f (55") (1)
b!(s,0)=>N(s,0') Zg[@,szOl] (12)

l 00

gOm) == 2

exp

0—p+2mn)
S ””)] 13)

where g(0, 1) is a wrapped normal distribution [24] and

These
calculations are performed for each behaviour pattern.

¢ is the number of directional partitions.
3. Trajectory Generation of Robot

3.1 Strategy

Robots should satisfy the requirements of both safety and
efficiency. In other words, if a robot can accurately predict
pedestrian behaviours, they should move with an emphasis
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on efficiency (efficient mode), otherwise, they should give
priority to safety (safe mode). If a pedestrian walks
according to a modelled behaviour pattern, the robot
would be able to predict the trajectory of the pedestrian. If
the pedestrian does not follow any of the modelled
behaviour patterns, or the behaviour pattern cannot be
determined, it would be difficult for the robot to predict
the trajectory. For example, the trajectory of somebody that
does not perceive the robot, or of a tottering person, cannot
be predicted, and such a person is very dangerous to the
robot. Therefore, the robot must give priority to safety. In
these cases, our strategy is for the robot to move as if the
unpredictable person walks according to the behaviour
pattern of the highest likelihood. This may enable the robot
and the pedestrian to smoothly pass by each other.

3.2 Estimation of Pedestrian Behaviour Pattern

If the robot observes a pedestrian behaviour and obtains
the trajectory data I = {(si,oi) |i=0, 1,"',7’}, the
likelihood that the behaviour would follow the pattern g

at time 7 is calculated from the following equation:

B =114, (5, (s.0,) (14)

Based on the above equation, the candidate pattern g’ is

calculated as follows:

q" =argmax b/ (15)

q

If the likelihood ratios Pq / Pq for every behaviour pattern

q #= q’ are higher than a predetermined threshold value,

the robot would identify the candidate as the behaviour
pattern followed by the pedestrian. Otherwise, the
pedestrian behaviour pattern would not be identified and
the robot would move in the safe mode.

3.3. Prediction of Pedestrian Trajectory

If the pedestrian behaviour pattern is identified, the robot
would predict the walking trajectory of the pedestrian
according to the direction output distribution of the
identified pattern. Here, we assume that the pedestrian
walking speed does not vary significantly during a short
period, and therefore predict the future position of the
pedestrian as follows;

pt = pt—l + Opredict pt—l " At (16)
A ~\T
Opreict = (cos 0,sin 0) (17)
A 20+1
0 — M (18)
c
0 = argmaxb, (s,o) (19)

o
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where p, is the pedestrian position in the continuous
coordinate system at time ¢, and p, corresponds to the cell s

in the discretized space; At is the time interval; 0 and 0
describe the direction of the highest likelihood in cell s of the
discretized and continuous representation, respectively.

3.4. Velocity Control and Robot Trajectory Generation

As mentioned earlier, a robot decides on either the safe or
efficient mode based on the estimation of the pedestrian
behaviour pattern. That is, if the behaviour pattern is
identified, the robot selects the efficient mode, otherwise,
it selects the safe mode.

3.4.1. Efficient Mode

If the pedestrian behaviour pattern is identified, the robot
can predict its future trajectory as mentioned in section 3.3.

In the efficient mode, we set the ellipse-shaped warning
area (the lengths of the minor and major axes are a2 and b,
respectively) around the future robot position f steps
after the current situation. If the predicted pedestrian
position p, is within the warning area at time step, a

virtual repulsive force Frep in the vertical direction of the

predicted pedestrian trajectory will act on the robot in the
current situation (time step 0), as shown in Fig. 5. The
robot moves according to the resultant of the repulsive
force F and the attractive force of its goal point F,

rep goal *

3.4.2. Safe Mode

If the pedestrian behaviour pattern cannot be identified,
the robot would select the safe mode. There are two
situations in which the robot cannot identify the
pedestrian behaviour pattern. One is
pedestrian behaviour is similar to two or more patterns.
Another is when the behaviour is not similar to any
pattern. In both situations, the pedestrian may begin to
follow a certain behaviour pattern at the next time step.
In these situations, and for this study, the robot implicitly
guides the pedestrian to follow the behaviour pattern of
the highest likelihood at the present time. This may
enable the robot and pedestrian to smoothly pass by each
other because the learned behaviour patterns are the
natural pedestrian trajectory for bypassing the robot.

when the

In the safe mode, we set a larger ellipse-shaped warning
area (the lengths of the minor and major axes are a’'(> @)
and b'(> b), respectively). If a pedestrian is in the warning
area at the present time, the repulsive force in the vertical
direction of the current predicted pedestrian trajectory
would act on the robot, as shown in Fig. 6. The robot
would move according to the resultant of the repulsive

force F,, and the attractive force of its goal point F, .
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Figure 5. The repulsive force acting on the robot in efficient
mode.

warning area
Figure 6. The repulsive force acting on the robot in safe mode.

4. Experiments

To verify the proposed model, three experiments were
conducted. The first experiment was to determine the
model parameters. The second one was to verify the
methods of estimating pedestrian behaviour patterns and
predicting pedestrian trajectories. The trajectory
generation method was implemented on a robot and
verified by the third experiment.

4.1 Experimental Setup

All the experiments were conducted in a hallway of
width 5 m and length 12 m. To analyse the trajectories of
the robot and pedestrians, two laser range finders (LRFs;
UTM-30LX, Hokuyo Automatic) were installed at
diagonally opposite corners of the experimental
environment. The sensors were at a height of 60 mm. The
detection of the robot and pedestrians was based on the
algorithm of Zhao and Shibasaki [21], and the registration
of the two range images was based on that of Okatani
and Deguchi [22]. The omni-directional mobile robot

Int. j. adv. robot. syst., 2013, Vol. 10, 310:2013

ZEN of width 450 mm, length 450 mm and height 720
mm was used for the experiments. The robot was
equipped with an LRF, which was the same as those
installed in the environment.

The experimental environment was divided into 48 x 20
cells, each measuring 250 mm x 250 mm. The number of
partitions for the pedestrian output direction ¢ was 72.
These parameters were determined by considering the
balance between computational time and prediction
accuracy. The time interval Af was set at 100 ms for
experiments 1 and 2, and 300 ms for experiment 3.

4.2 Experiment 1: Learning Model Parameters

The purpose of this experiment was the determination of
pedestrian behaviour patterns and the model parameters.
Eight healthy volunteers participated in the experiment.

4.2.1. Experimental Procedure

First, a participant and the robot stood at the middle of
opposite ends of the hallway (Fig. 7). The participant then
started walking toward the other end (the starting point
of the robot). The robot simultaneously started moving in
the opposite direction. In the experiment, 15 different
robot velocities were tested. The different velocities were

achieved by combining the following values of v} and

r

Uy

vy =—100,-50,0,50, and 100 mnv/s

vy = 400,600, and 800 mm/s

The 15 velocities were contained in a single experimental
set, and two sets were used for each participant. In each
experimental set, the order of the velocities was
randomly determined. As a result, a participant and the
robot passed by each other 30 times.

1Zm

4
Lax >

Figure 7. The experimental environment for learning model
parameters (experiment 1).
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4.2.2. Results

By the observations of the experiments, six behaviour

patterns were confirmed. The patterns were as follows:

A) Participants walked head on and swerved to the left
side of the robot.

B) Participants walked head on and swerved to the right
side of the robot.

C) Participants walked straight on the left side of the
robot.

D) Participants walked straight on the right side of the
robot.

E) Participants crossed in front of the robot from the
right to the left.

F) Participants crossed in front of the robot from the left
to the right.

Figure 8 shows examples of the six observed trajectory
patterns. In the figures, the trajectories were plotted in
the robot-centred coordinate system. All the obtained
trajectories were classified into the six patterns by the
experimenter based on the relationship between the
robot and the trajectories of the participants. Based on the
results of this experiment, the position and direction
output distributions were determined.

4.3. Experiment 2: Estimation of Pedestrian Behaviour
Pattern and Prediction of Pedestrian Trajectory

The purpose of this experiment was to verify the
proposed method for estimating pedestrian behaviour
pattern. Four healthy volunteers participated in the
experiment.

12 12 ¢

121 : 1 ¢
10 101 ¢ w04
2 H
8l | 8 ; 81 ¢
61 ! 61 64 -
H H :
41 i 44 44
2{ | 2] " 2 !
13 1 i I
0, @ | 0l'e 0{ ‘s
-2 0 2 -2 0 2 -2 0 2
(A) Swerve to (C)Walkon  (E) Cross from
the left the left side right to left
127 12 ; 124
10 - g 10 i 104 3
] 2
] ; 1
81 8 1| %%
61 % | 6 R B
4- ‘g 4 ! 49
€ » 3
21 % 2 : 214
oL =2 | of o 01 e
-2 0 2 200 2 -2 0 2(m)

(D) Walk on
the right side

(F) Cross from
left to right

(B) Swerve to
the right

Figure 8. Observed pedestrian behaviour patterns.
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Figure 9. Experimental environment for estimation of behaviour
patterns (experiment 2).

4.3.1. Experimental Procedure

Unlike in experiment 1, there were three starting points
of a participant and his goal point was anywhere at the
opposite end of the hallway (Fig. 9). The participant was
given instructions about his starting point and how to
avoid the robot (by moving to the right or left) before
each trial. The instructions prompted the six behaviour
patterns of experiment 1 shown in Table 1. The
participant and the robot started moving at the same
time. In the experiment, three different robot velocities

(’U; = 400,600, and 800 mm/s) were tested. In this case,

the robot moved parallel to the wall along the middle of
the hallway. As a result, 18 experimental trials (three start
positions x two avoidance directions x three robot
velocities) were conducted for each participant. The order
of the trials was randomly determined.

4.3.2. Results

Figure 10 shows the variation in the rate of correct
estimations. Here, correct estimation means that the
determined candidate pattern was the same as the
experimental one. The behaviour pattern was correctly
estimated by 10 steps, or in 1.0 s, from the beginning of
about 90% of the trials. When the participants started
from S,, the time required for correct estimation was
longer. In these patterns (A and B), it was difficult to
judge whether the participant would swerve to the left or
right until he began avoidance.

To identify the behaviour pattern, a threshold value
needed to be determined, as stated in Section 3.2. The
value was determined to be 1.0 x 10%, which was higher
than the maximum likelihood ratio when the candidate
was not correct (3.4 x 10?).
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Starting Avoidance Correspc?ndmg
. o behaviour
point direction
pattern

S, Left

S, Right F
S, Left A
S, Right B
S, Left E
S, Right D

Table 1. Experimental conditions and corresponding behaviour
pattern.

10
0.8
0.6

0.4

Rate of correct estimation

Time steps

Figure 10. The variation in the rate of correct estimation with
time.

Figure 11 shows the variation in the difference between
the real and predicted participant positions. In the figure,
three prediction timings (five, 10 and 15 steps from the
beginning) are compared. When the
trajectories were predicted at five steps from the
beginning, the difference between the real and predicted
positions increased with time and reached about 1.0 m at
60 steps from the beginning. On the other hand, when the
predictions were made at 10 and 15 steps from the
beginning, the differences did not exceed 400 mm until 60
steps from the beginning. This verified the effectiveness
of the proposed trajectory prediction method based on

participant

estimating the pedestrian behaviour pattern. As shown in
Fig. 10, the rate of correct pattern estimation was about
80% at five steps, and 90% and 97% at 10 and 15 steps,
respectively. This correct pattern estimation resulted in
accurate trajectory prediction.

4.4. Experiment 3: Robot Trajectory Generation

The purpose of this experiment was to verify the

usefulness of the proposed model of pedestrian
behaviour patterns and the trajectory generation method
of the robot from the viewpoints of safety and efficiency.

Five healthy volunteers participated in this experiment.

Int. j. adv. robot. syst., 2013, Vol. 10, 310:2013

1000
O t=5 o t=10 t=15

400

200

Difference between real and
predicted positions (mm)

"[‘A
5 30 35 40 45 50 55 60

Time steps

Figure 11. The variation in the difference between real and
predicted experimental participant positions with time.

4.4.1. Experimental Procedure

To simulate a variety of situations in this experiment, the
participant was given instructions about his starting

point(S,,S,or S, ) and goal point (G,,G,or G, ), as shown
in Fig. 12. The starting point of the robot was the middle
of the bottom end (Gz). The robot moved parallel to the

wall, unless it had to control its velocity to avoid a
participant.

The participant and robot started moving at the same
time. Two maximum speeds of the robot were used, 600
mmy/s and 800 mm/s. The robot observed its surrounding
environment using the installed LRF and determined the
position of the participant by the method presented in
[23]. Here, the LRF detected the waist of the participant,
whereas the legs of the pedestrians were detected in [23].
a,b,a’and b’, which are the lengths of the minor and
major axes of the warning areas, were empirically set at
500, 2000, 1000 and 6000 mm, respectively. The
magnitude of F,

«p Was empirically set at 100. In the
efficient mode, the robot predicted the next 10 steps. In

other words, the robot predicted the next 3 s.

To verify the usefulness of the proposed method, we
compared it with the trajectory generation algorithm
based on a simple prediction of the pedestrian
trajectories. The simple prediction assumed that the
pedestrians moved in a straight line at a constant speed
after the moment of prediction.

Proposed|Linear uniform
Robot (Mean) 234.9 347.7
Robot (SE) 62.7 97.0
Participants (Mean)| 525.5 537.7
Participants (SE) 90.1 88.0

Table 2. Mean and standard error of lateral displacements of the
robot and participants (mm).

www.intechopen.com
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Figure 12. Experimental environment for robot trajectory
generation (experiment 3).

Consequently, 36 trials (two algorithms x two maximum
robot speeds x three starting points x three goal points)
were conducted for each participant.

4.4.2. Results

Examples of the observed trajectories of the participants
and the robot are shown in Figs. 13 and 14.

As shown in Fig. 13, a participant did not avoid the robot
until both were close to each other. Thus, the robot could
not identify the participant behaviour pattern and
selected the safe mode to avoid collision. The robot did
not clash with the participant in any of the trials.

On the other hand, Fig. 14 shows a case in which the
participant avoided the robot at an early stage of the trial.
In this case, the robot could identify the participant
behaviour pattern and selected the efficient mode. As a
result, the robot moved in almost a straight line with little
avoidance.

For quantitative evaluation, the lateral displacements of
the robot and participants were analysed. Figure 15 and
Table 2 show the average lateral displacement of the
robot and participants. In the experiment, the lateral
displacement was defined as the distance from the
farthest point of the observed trajectory to the line
segment between the starting and goal points.

As shown here, the average robot displacement of the
proposed model was shorter than that of the linear
uniform model. The results were analysed by a paired ¢-
test. According to the test, there was a significant
difference between the two models (p < 0.01).
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Figure 14. Examples of the observed trajectories of participant

This means that a robot could efficiently move in a
human-robot environment based on the proposed model.
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Figure 15. Lateral displacements of the robot and participants.

However, if the participants had followed a longer path,
the proposed model would not have been good. As
shown in Fig. 15 and Table 2, the participant lateral
displacements were virtually the same for the two
methods. According to the paired t-test, the difference
between the proposed model and the linear uniform
model was not significant (p = 0.54). These results
indicate that the robot using the proposed model did not
cause the participants to follow a longer path than
necessary. Moreover, in experiment 2, where we used a
non-interacting robot, the average participant lateral
displacement was 1215 mm (SD = 241.5 mm). This also
shows that the robot using the proposed model can
reduce the walking effort of the pedestrians.

These results show that the proposed model of
pedestrian behaviour patterns and the trajectory
generation method of the robot can be used to achieve
both safety and efficiency.

5. Conclusion

In this paper, a model of pedestrian behaviour patterns
was proposed. Based on the model, our robot estimates
pedestrian behaviour patterns and predicts their
trajectory. The robot selects either the efficient or the safe
mode depending on its estimation of the pedestrian
behaviour pattern, and generates its
Experimental results showed that robots could achieve a
balance between safety and efficiency by applying the
proposed method when passing by a pedestrian.

trajectory.

In this study, pedestrian behaviours were manually
classified into six behaviour patterns, and the collision
avoidance method only deals with the nearest person. In
future work, the classification will be done automatically
to deal with unknown behaviour patterns. We also plan
to extend the proposed model to deal with multiple
persons and other stationary and moving obstacles. In
shopping malls, there are wandering and rushing
pedestrians, people with handicapped movement,
children, people in wheelchairs, etc.; to interact properly
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with all of them, the robot must take into consideration
the distinct movements. A comparison of the proposed
model with novel collision avoidance methods [3, 4]
should also be undertaken. Finally, we will apply the
method to operating the robot in the real world, for
example, in shopping malls and offices.
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