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1. Introduction
Ischemia/reperfusion (I/R) is a common cause of acute 
renal failure occurring in various clinical situations such as 
trauma, renovascular surgery, hypovolemic shock, and renal 
transplantation (1). Excessive reactive oxygen species (ROS) 
generated in the reperfusion phase and reduced antioxidant 
capacity lead to a situation known as oxidative stress (2,3).
The endoplasmic reticulum (ER), as an important 
intracellular organelle responsible for protein synthesis, 
folding, trafficking, and modification, is susceptible to 
many stresses such as ischemia, oxidative stress, nutrient 
depletion, toxins, and hypoxia. These endogenous or 
exogenous disturbances can result in unfolded/misfolded 
protein accumulation and the subsequent activation of an 
unfolded protein response (UPR) (4–7). Glucose-regulated 
protein (GRP) 78 (also known as BiP: immunoglobulin 
heavy-chain-binding protein) is a central modulator of 
the UPR that normally binds to and prevents aggregation 
of unfolded/misfolded proteins in the ER (6,8). It is a 

chaperone member of the heat shock protein 70 (HSP70) 
family (9), and it normally binds to 3 ER-stress transducers 
and transmembrane proteins including inositol-requiring 
enzyme 1 (IRE1), double-stranded RNA-activated protein 
kinase-like ER kinase (PERK), and activating transcription 
factor 6 (ATF6). With unfolded protein aggregation, GRP78 
releases these proteins and activates the UPR pathways, 
depending on the severity and duration of ER stress. 
While the induction of UPR reestablishes ER homeostasis, 
the ER-associated degradation (ERAD) system tries to 
clear misfolded proteins from the ER (10). In response 
to ER stress, IRE1, having endoribonuclease and kinase 
activity, cleaves X-box binding protein 1 (XBP1) mRNA 
unconventionally to splice out 26 nucleotides and activate 
XBP1, which is a member of the leucine zipper protein 
(bZIP) transcription factor family that can be induced by 
ATF6 (11). In addition, XBP1 has an important role in cell 
differentiation (12) and oxidative stress prevention (13), 
and it is necessary for survival in hypoxic conditions (14).
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Since excessive ROS generation results in various cellular 
damages, every agent with antioxidant capacity might be 
of beneficial value in ROS detoxification and ER-stress 
reduction (2,3,15).
Pomegranate (Punica granatum L.), belonging to the 
family Punicaceae, is a medicinal and ancient fruit 
with high antioxidant capacity and total polyphenol 
contents including gallic acid, ellagic acid, gallagic acid, 
punicalin, and punicalagin (16,17). Punicalagin, mainly 
found in pomegranate peel and carpellary membrane, 
is the most abundant polyphenol (18–20). Although 
it is well known for antioxidant properties (17,21–23), 
due to its high molecular weight (MW = 108) and the 
presence of 16 hydroxyl groups in its structure, it can 
also exhibit antiinflammatory (24), hepatoprotective (22), 
antigenotoxic (25), anticarcinogenic (26,27), inhibition of 
tumor growth (28,29), antimicrobial (30), and antiviral 
(31) activities.
Considering the antioxidant capacity of pomegranate 
and also the critical role of antioxidants in modulating 
ER stress, this study was conducted to underscore the 
molecular changes of ER-stress profile during I/R and 
the effect of pomegranate pith and carpellary membrane 
(PPCM) aqueous extract in an in vivo model of renal I/R 
injury.

2. Material and methods
2.1. Pomegranate extract
Pith and carpellary membranes of pomegranate (Punica 
granatum L.) fruit (Kashmar district, Khorasan province) 
were separated and dried at room temperature. A 6.25% 
suspension of the resulting powder was prepared in sterile 
distilled water and stirred for 36 h. The undissolved 
particles were discarded through centrifugation and 
filtering to obtain a 3.75% filtrate, as revealed through 
measuring the dry mass of the remaining solution.
2.2. Total phenolics measurement
The total phenolics concentration of PPCM was determined 
by the Folin–Ciocalteu method (32). Briefly, 50 mg of the 
dried powder was extracted with 100 mL of acidified water 
(0.3% HCl) before subsequent filtration. Filtrate was then 
mixed with equal amounts of the Folin-Ciocalteu reagent 
(Sigma), while 2.0 mL of sodium bicarbonate was added 
and mixed thoroughly. Absorbance was measured at 725 
nm and the values were derived from a standard curve 
prepared using tannic acid (0–1.0 mg/mL in acidified 
methanol:water) after 2 h. Values were expressed as mg/g 
tannic acid equivalents (mg/g of TAE).
2.3. Animals, treatment, and experimental design
The study was performed in adult male Wistar rats 
weighing 250 to 300 g, prepared from the Faculty of 
Veterinary Medicine Animal House (Ferdowsi University 
of Mashhad, Iran) after 3 days of acclimatization upon 

arrival. Animals were subjected to standard conditions 
of temperature and humidity and they had free access to 
food and water during the treatment period. The rats were 
randomly assigned to 4 groups (n = 6), named Control 
(Ctrl), Ischemic (Isc), pomegranate pith and carpellary 
membrane (PPCM) aqueous extract treatment, and an 
ischemic group that received PPCM (PPCM/Isc).
In the PPCM and PPCM/Isc groups, rats received PPCM 
aqueous extract (250 mg/kg BW) by oral intubation twice 
a day for 10 days, while in the Isc and Ctrl groups, rats 
received similar volumes of distilled water as a placebo.
On posttreatment day 11, animals were anesthetized 
using ketamine (40 mg/kg) and xylazine (10 mg/kg) 
intraperitoneal injections and underwent a midline 
abdominal incision followed by isolation of renal vascular 
pedicles. The right renal artery was permanently occluded 
in all groups, in order to abolish the interference of right 
kidney activity in the measurement of serum biochemical 
factors. In groups Isc and PPCM/Isc, the left renal vessels 
were occluded to induce ischemia for 60 min using a 
transient suture, followed by a reperfusion phase for 
150 min. In groups Ctrl and PPCM, the same surgical 
protocol was performed without inducing I/R in the left 
kidney. During the experiment, rats were reanesthetized 
if necessary and kept at a steady body temperature. After 
taking the intracardiac blood samples, the left kidney 
was harvested, washed in RNase free water and stored at 
–80 °C. All experiments followed Ferdowsi University of 
Mashhad Animal Care Committee guidelines and were 
approved by the Ferdowsi University of Mashhad Animal 
Care Committee.
2.4. Renal function assays
Serum was obtained from intracardiac blood samples by 
centrifugation (Eppendorf, 5810R, Germany). Plasma urea 
nitrogen and creatinine levels were measured using an 
autoanalyzer (Targa 3000, Biotecnica Instruments, Rome, 
Italy) in order to assure the efficacy of the I/R procedure.
2.5. Ferric reducing/antioxidant power assay
The ferric reducing/antioxidant power (FRAP) assay 
measures the change in absorbance at 593 nm owing to 
the formation of a blue colored Fe(II)-tripyridyltriazine 
compound from the colorless oxidized Fe(III) form by the 
action of electron-donating antioxidants (33).
The FRAP reagent consisted of 300 mM acetate buffer (3.1 
g sodium acetate + 16 mL glacial acetic acid, made up to 
1 L with distilled water; pH 3.6), 10 mM TPTZ in 40 mM 
HCl, and 20 mM FeCl3.6H2O in the ratio of 10:1:1.
Briefly, 50 μL of blood serum was added to 1.5 mL of freshly 
prepared and prewarmed (37 °C) FRAP reagent in a test 
tube and incubated at 37 °C for 10 min. The absorbance of 
the blue-colored complex was read against reagent blank 
(1.5 mL FRAP reagent + 50 μL distilled water) at 593 nm. 
Standard solutions of Fe(II)  in the range of 100 to 1000 
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mM were prepared from ferrous sulfate (FeSO4.7H2O) in 
distilled water. The data  were expressed  as mmol ferric 
ions reduced to ferrous form per liter (FRAP value) (34).
2.6. Total RNA extraction and RT-PCR
For RNA extraction, 50–100 mg of kidney tissue was 
homogenized and total RNA was isolated from 200 µL 
of homogenized suspension using the High Pure RNA 
Isolation Kit according to manufacturer’s directions (Roche 
Applied Science, Germany). cDNA was synthesized from 1 
µg of the RNA using MMLV reverse transcriptase, Random 
Hexamer Primer, and RNase inhibitor (all reagents from 
Fermentas, Canada).
For quantity assessment, RNA and cDNA samples were 
analyzed by a NanoDrop spectroscopy analyzer (Epoch, 
Biotech, USA). Extracted total RNA was also checked for 
18S and 28S rRNA band visualization by 2% agarose gel 
electrophoresis.
2.7. PCR and real-time RT-PCR
Amplification of XBP1, GRP78, and GAPDH mRNA 
using Primus 96 gradient (Biotech, Germany) with Taq 
polymerase (Fermentas) was assessed and normalized 
against GAPDH (housekeeping gene). The primers 
were forward (5’ -ATAATCAGCCCACCGTAA - 3’) 
and reverse (5’ - CCAATTCATTCCTCGTGT - 3’) for 
GRP78 (Bip), which were designed (Primer Premier v5, 
Biosoft International) according to the NCBI mRNA 
sequences bank (GenBank ID: S63521.1); forward (5’ 
-AGTTCAACGGCACAGTCAAG - 3’) and reverse 
(5’ -TACTCAGCACCAGCATCACC - 3’) for GAPDH 
(GenBank ID: NM_017008.3) (35); and forward (5’ - 
TTACGAGAGAAAACTCATGGGC - 3’) and reverse 
(5’ -GGGTCCAACTTGTCCAGAATGC - 3’) for XBP1 
(GenBank ID: NM_001004210.1) (36). All PCR products 
were separated by 2% (GAPDH and GRP78) or 4% (XBP1) 
agarose gel electrophoresis and detected by a Syngene gel 
imaging system (Ingenius LHR, UK).
Transcript levels of GRP78 in real time were assessed 
using SYBR Green Maxima (SYBR Green/ROX qPCR 

Master Mix, Fermentas) and the Real-Time Rotor-Gene 

6000 Rotary Analyzer (Corbett, Australia) according 
to the manufacturer’s directions (Fermentas) and 
were normalized against mRNA levels of GAPDH as 
housekeeping gene.
2.8. Statistical analysis
Relative fold changes in GRP78 transcript levels were 
assessed via the 2 ∆∆−Ct method and analyzed with one-way 
ANOVA followed by the Tukey–Kramer test (GraphPad 
InStat Version 3.0, GraphPad Software Inc., USA). P < 0.05 
was considered as significant.

3. Results
3.1. Total phenolics of PPCM
Polyphenols, including hydrolysable tannins and 
ellagitannins, account for the main known antioxidant 
properties of pomegranate (37). The PPCM aqueous extract 
was found to contain 224 ± 5 mg/g total polyphenolics, 
expressed as tannic acid equivalents (TAE, mg/g of TAE).
3.2. Ischemia causes renal injury
Plasma urea and creatinine concentrations were measured 
in all experimental animals after inducing I/R, revealing 
that 60 min of ischemia followed by 150 min of reperfusion 
phase can acutely damage the kidney tissue, as suggested 
by an increase in plasma urea and creatinine in ischemic 
groups compared to sham operated littermates (Figures 
1A and 1B, P < 0.001).
3.3. PPCM increased the antioxidant capacity of plasma
Renal I/R caused a significant reduction in the FRAP value 
of plasma as compared with sham-operated animals (2.53 
± 0.04 versus 1.48 ± 0.05 µmol/mL, P < 0.001). The aqueous 
extract of pomegranate PPCM increased the antioxidant 
power (FRAP value) of plasma (Figure 2, P < 0.001).
3.4. I/R lowers GRP78 (BiP)
After RNA extraction and reverse transcription into 
cDNA, the mRNA levels of GRP78, as a central regulator 
of UPR, were evaluated in real time. Results suggested that 

Figure 1. Renal injury induced by I/R. Rats were subjected to 60 min of ischemia and 150 min of reperfusion in the ischemic group. 
After surgery, serum clinical parameters (urea and creatinine) were measured in the ischemic and sham operated groups. Results 
are expressed as means  ± SEM. ***: P < 0.001 as compared to sham group, n = 6. 
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I/R can significantly down-regulate GRP78 in rat kidneys 
compared to control littermates (P < 0.05), as evidenced 
by lowered mRNA relative fold change, as well as band 
comparisons on a 2% agarose gel electrophoresis (Figure 
3A and 3B).
3.5. GRP78 expression is down-regulated by PPCM 
aqueous extract
Real time RT-PCR underlined that PPCM aqueous extract 
administration (250 mg/kg) for 10 days significantly 
down-regulated GRP78 expression compared to the 
control group (P < 0.001). Electrophoresis on a 2% agarose 
gel also revealed the same results emphatically (Figure 3A 
and 3B).
3.6. XBP1 is activated via mRNA splicing during I/R in 
the rat kidney
Ischemia evokes ER stress, which can lead to the induction 
of XBP1 mRNA transcription (11,38). This activation 
is characterized by unconventional XBP1 splicing and 
removal of 26 nucleotides. In order to examine the role of 
XBP1 mRNA as a UPR target for IRE1 activation in ER-
stress conditions, we used conventional PCR followed by a 
4% agarose gel electrophoresis, showing a single unspliced 
band for XBP1 (U) (289 bp) in the control and PPCM 
treatment groups, emphasizing the absence of ER stress. 
In the ischemic group, on the other hand, the spliced XBP1 
(S) (263 bp) revealed the activation of IRE1 during ER 
stress in the kidneys (Figure 4).
3.7. PPCM extract decreased the XBP1 splicing
While splicing of XBP1 mRNA was visible in groups that 
underwent I/R, PPCM treatment decreased the XBP1 
spliced (S) form, underscoring its protective effects in 

contributing to the subsequent lessened ER stress in the 
treatment group (Figure 4).

4. Discussion
I/R is one of the main causes of acute renal failure (39), 
which occurs during different cardiovascular disorders 
such as hypovolemic shocks, renal transplantation, 
trauma, and emboli. Besides the direct effects of ischemia, 
reactive oxygen species produced during the reperfusion 
phase play the main critical role in pathogenesis of tissue 
disorders accompanied by I/R (3,40). Considering the key 
role of the ER in protein synthesis and proper folding, 
cellular stresses such as hypoxia, glucose depletion, and 
oxidative damage may lead to ER dysfunction and the 
accumulation of unfolded/misfolded proteins, which are 
categorized as ER stress (41). In response to these linked 
events, UPR as an adaptive or proapoptotic response will 
be activated (5,6).

Herein, we have focused on transcription levels of 
the UPR markers GRP78 and XBP1 after induction of 
I/R in rat kidneys. One hour of ischemia followed by 150 
min of reperfusion phase could significantly reduce the 
expression of GRP78 mRNA, while XBP1 splicing was 
obviously activated during this time period. Bilecová-
Rabajdová et al. reported that the levels of GRP78 as an 
antiapoptotic gene decreased after 1 h of ischemia and 1 h 
of reperfusion phase, while these levels increased up to 24 
h after I/R. The mRNA levels of Gadd153 as a proapoptotic 
gene, on the other hand, were increased at the first time 
point and decreased to the lowest levels 24 h after the 
induction of I/R (42). In another study, pretreatment 
with UPR inducers such as tunicamycin and thapsigargin 
induced XPB1 splicing at 1 or 2 h after ischemia in the rat 
kidney, while the peak levels of GRP78 mRNA were seen 
at 6 h after I/R. This up-regulation could protect proximal 
tubular cells from I/R-induced injuries (43). Moreover, 
treatment with CdCl2 was able to induce GRP78 and ATF4 
mRNA levels in a time- and dose-dependent manner. 
Although ATF4 transcript levels are increased after 2 
h of I/R, GRP78 mRNA began to increase after 4 h and 
was at maximum levels at 6 h after I/R (44). While down-
regulation of GRP78 transcript levels in our study was 
consistent with these results, there was no possibility for 
subjecting in vivo models to longer periods of reperfusion 
and different time courses. In contrast to these findings, 
studying the activation of UPR under hypobaric hypoxia 
conditions at different time points revealed decreased 
XBP1 splicing along with down-regulation of GRP78 (45).

Exposure to hydrogen peroxide in XBP1-deficient 
cells resulted in down-regulation of the antioxidant 
catalase, enhanced ROS generation, and prolonged p38 
phosphorylation, which underscores the protective effects 
of XBP1 via catalase expression (13). Although it seems 
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that XBP1 splicing is dependent on a special region of 
the GRP78 promoter, an increase in the spliced form of 
XBP1 occurs before changes in GRP78 transcript levels 
(11). Herein, we have seen the XBP1 splicing (as UPR 
activation marker) after 60 min of ischemia and 150 min 
of reperfusion phase, which emphatically resembles the 
results of previous investigations. Furthermore, Skhoda et 
al. suggested that GRP78 redistribution in the cells at early 
time points occurs independently from GRP78 protein 
resynthesis (46). Finding a way to study in vivo models for 
longer time periods can offer more detailed information 
about UPR activation.

The excessive generation of ROS and subsequent 
oxidative stress during I/R can cause a decline in 
antioxidant enzymatic defense mechanisms (3,40,47-
49). In this regard, each antioxidant (endogenous or 
exogenous) that lessens ROS production or scavenges the 
free radicals contributing to reduced ER stress can be used 
as a possible therapy for ameliorating renal I/R injuries 
(2,3,39,50,51). In recent decades, the effects of various 
antioxidants (natural or chemical) on I/R accompanied 
injuries were assessed using the measurement of total 
antioxidant capacity, catalase, superoxide dismutase, 
glutathione peroxidase, total oxidant status, oxidative 
stress index, myeloperoxidase, or malondialdehyde as 

a lipid peroxidation marker. Pretreatment with garlic 
oil (39), Nigella sativa (52), NZ-419 (5-hydroxy-1-
methylimidazoline-2,4-dion) (53), vitamins C and E 
(54,55), and cepharanthine (56) could ameliorate these cell 
injuries. Punica granatum L. is a rich source of polyphenol 
contents with antioxidant capacity and various therapeutic 
effects (57,58). Tzulker et al. demonstrated that the 
antioxidant activity of the whole pomegranate fruit was 
higher than the levels found in aril juice and this activity 
in the peel’s homogenate was much greater than that of 
the aril juice (16). Compared to other common fruit juices, 
pomegranate showed greater antioxidant capacity (59) 
with no toxicity in human volunteers and animal models 
(60,61). Our results underscored the high amount of total 
phenolic compounds in PPCM (224 ± 5 mg/g). As an 
indicator of antioxidant capacity, we have also shown the 
reduction of FRAP values in plasma following I/R, while 
a significant increase in antioxidant capacity was seen in 
littermates pretreated with PPCM aqueous extract. These 
results underline the robust antioxidant properties of this 
extract in ameliorating the effects of ROS on ER stress 
pathways.

To date, there is no evidence regarding the ER 
chaperone’s expression and the effect of antioxidants 
during acute renal failure injuries.
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In the present study, pretreatment with PPCM aqueous 
extract (250 mg/kg) for 10 days (twice a day) significantly 
reduced GRP78 mRNA levels. A possible explanation 
might be the reduction of GRP78 to the basic levels with 

no possibility for further decrease. It is currently unclear 
if pomegranate extract can reduce GRP78 expression via 
other pathways, although it is possible that inflammation 
responses can play a role in this reduction. While I/R could 
induce the XBP1 splicing, pomegranate extract was able 
to reduce the XBP1 spliced form compared to unspliced 
XBP1, underscoring lessened ER stress. Although detailed 
molecular mechanisms by which PPCM aqueous extract 
down-regulate GRP78 mRNA levels await future studies, it 
seems plausible to conclude that pretreatment with PPCM 
may have potential protective effects against I/R-induced 
ER stress, although this protection at the molecular level 
needs further studies using less severe models of renal 
injury, more brutal pretreatment protocols with higher 
doses of PPCM, and/or longer periods of pretreatment 
time in order to achieve complete protection of kidney 
tissue according to a clinical viewpoint.
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Figure 4. XBP1 splicing during I/R and effects of pomegranate. 
XBP1 splicing was detected by conventional PCR on a 4% agarose 
gel electrophoresis system. Sixty minutes of ischemia followed by 
reperfusion for 150 min induced splicing of XBP1, as revealed 
by 2 bands of 289 bp and 263 bp, while oral administration of 
PPCM aqueous extract lowered the spliced XBP1, underscoring 
its potential beneficial effects during I/R in rat kidney. Ctrl: 
control, Isc: ischemic, PPCM: pomegranate pith and carpellary 
membrane (PPCM) aqueous extract treatment, PPCM/Isc: 
PPCM aqueous extract treatment/ischemic.
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