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Abstract 
Background/Aims: Human parvovirus B19 (B19V) may cause inflammatory cardiomyopathy 
(iCMP) which is accompanied by endothelial dysfunction. The B19V capsid protein 
VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA) sequence. 
Lysophosphatidylcholine has in turn been shown to inhibit Na+/K+ ATPase. The present 
study explored whether VP1 modifies Na+/K+ ATPase activity. Methods: Xenopus oocytes 
were injected with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-
iCMP or cRNA encoding PLA2-negative VP1 mutant (H153A) and K+ induced pump current 
(Ipump) as well as ouabain-inhibited current (Iouabain) both reflecting Na+/K+-ATPase activity 
were determined by dual electrode voltage clamp. Results: Injection of cRNA encoding VP1, 
but not of VP1(H153A) or water, was followed by a significant decrease of both, Ipump and 
Iouabain in Xenopus oocytes. The effect was not modified by inhibition of transcription with 
actinomycin (10 µM for 36 hours) but was abrogated in the presence of PLA2 specific blocker 
4-bromophenacylbromide (50 µM) and was mimicked by lysophosphatidylcholine (0.5 - 1 
µg/ml). According to whole cell patch clamp, lysophosphatidylcholine (1 µg /ml) similarly 
decreased Ipump in human microvascular endothelial cells (HMEC). Conclusion: The B19V 
capsid protein VP1 is a powerful inhibitor of host cell Na+/K+ ATPase, an effect at least partially 
due to phospholipase A2 (PLA2) dependent formation of lysophosphatidylcholine. 
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Introduction

Infection with human parvovirus B19 (B19V), a member of the Erythroviruses within 
the family of Parvoviridae [1], is common, as reflected by the high prevalence of specific 
immunoglobulin G (IgG) antibodies in young children (5% to15%), adults (60%) and 
seniors older than 69 years (85%) [2]. B19V infection may result in erythema infectiosum 
(fifth disease), hydrops fetalis and transient aplastic anaemia [3, 4]. B19V infection is 
associated with further diseases [5-7], such as arthritis [8, 9], hepatitis [10-14], vasculitic 
syndromes [15, 16], and neurological disorders [14, 17]. Most importantly, B19V infections 
are associated with acute and chronic myocarditis [18-26]. Endothelial B19V-infection may 
result in isolated left ventricular diastolic dysfunction [27]. Infection of pregnant women may 
result in maternal and fetal myocarditis, congenital abnormalities, stillbirth and abortion 
[28-31]. The severe course of the antenatal disease has been related to the preference of 
B19V for proliferating tissues [32]. 

Cellular entry of B19V requires blood group P-antigen [33] together with α5β1 
integrin and Ku80 autoantigen [34, 35]. B19V thus infects mainly erythroid progenitor 
cells expressing high levels of P antigen as well as the coreceptors α5β1 integrin and 
Ku80 autoantigen. Moreover, non-erythroid cell lineages, such as fetal myocytes, follicular 
dendritic cells and endothelial cells may be infected by B19V [33-36]. In patients with fatal 
inflammatory cardiomyopathy (iCMP) B19V genomes could be detected in endothelial cells 
(ECs) of myocardial tissue predominantly of small intramyocardial arteries and venoles, but 
not in cardiac myocytes or epicardial coronaries [19, 26]. The presence of B19V genomes 
is paralleled by expression of the adhesion molecule E-selectin, margination, adherence, 
penetration, and perivascular infiltration of the heart by T-lymphocytes and macrophages 
[19, 26]. 

The DNA genome of B19V contains three open reading frames (ORFs). The first ORF 
encodes the NS1 protein with transcriptional and helicase activities [1, 37, 38] and functions 
as transactivator on cellular and viral promoters [39]. NS1 presumably largely accounts for 
host cell apoptosis [40-42]. The other two ORF located in the 3´-half of the B19V genome 
encode the major VP1 and minor VP2 structural capsid proteins [37], which are important 
for the viral life cycle [4, 43]. A highly conserved domain of VP1 shares homologies to 
the catalytic site and Ca2+-binding loop of secreted phospholipase A2 (sPLA2) [44-46]. A 
PLA2 like motif was found in VP1 of a wide variety of parvoviruses [45-47]. Viral PLA2 is 
presumably required for viral entry and nuclear targeting of the viral genome, production of 
eicosanoids [46, 47] and virus infectivity [46]. A mutation at position 153 with a histidine to 
aspartic acid (H153A) exchange abolishes enzyme activity of vPLA2 [46, 47] and results in 
loss of infectiosity [46].

In a previous study, VP1 has been shown to upregulate Ca2+ entry [48]. The effect was 
abolished by loss of function mutation of the PLA2 like motif and was mimicked by the 
phospholipase A2 product lysophosphatidylcholine (1 µg/ml) [48]. Lysophosphatidylcholine 
is further known to down-regulate Na+/K+ ATPase activity [49]. The present study thus 
explored, whether expression of VP1 influences Na+/K+ ATPase activity and whether this 
effect is sensitive to inhibition of PLA2 and is mimicked by lysophosphatidylcholine. 

Materials and Methods

Plasmids
B19V DNA was isolated from deparaffinized myocardial tissue of a patient with fatal B19V-associated 

inflammatory cardiomyopathy after proteinase K digestion, phenol/chloroform extraction and ethanol 
precipitation (accession number: DQ225150). For cloning of the pWHE163-VP1 plasmid the respective 
region was amplified by PCR using a high fidelity polymerase system (Roche, Basel, Switzerland).
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Voltage clamp in Xenopus oocytes
Wild-type VP1 and PLA2-negative VP1(H153A) mutant were subcloned from pCMV vector into pGHJ, 

a Xenopus oocyte expression vector using AflII - XbaI restriction sites. Constructs encoding wild-type VP1 
and PLA2-negative VP1(H153A) mutant were used for the generation of cRNA as described previously [50, 
51]. Xenopus oocytes were prepared as previously described [52, 53]. cRNA encoding VP1 and VP1(H153A)  
(10 ng) was injected on the first day after preparation of the Xenopus oocytes [54]. All experiments were 
performed at room temperature (about 22° C) 3 days after the injection. Two-electrode voltage-clamp recordings 
were performed at a holding potential of -30 mV for determination of the endogeneous Na+/K+-ATPase activity. 
The data were filtered at 10 Hz and recorded with a GeneClamp 500 amplifier, a DigiData 1300 A/D-D/A 
converter and the pClamp 9.2 software packages for data acquisition and analysis (Axon Instruments, Foster 
City, CA, USA) [55]. The oocytes were maintained at 17°C in ND96 solution containing 88.5 mM NaCl, 2 
mM KCl, 1 mM MgC12, 1.8 mM CaC12, 5 mM HEPES, tretracycline (Sigma, 0.11 mM), ciprofloxacin (Sigma, 4 
μM), gentamycin (Refobacin© 0.2 mM), theophylline (Euphylong©, 0.5 mM) and sodium pyruvate (Sigma, 
5 mM), pH was adjusted to 7.5 by addition of NaOH. The flow rate of the superfusion was 20 ml/min, and a 
complete exchange of the bath solution was reached within about 10 s. To determine electrogenic transport by 
Na+/K+-ATPase, the oocytes were incubated for 6 hours in a potassium-free solution containing 96 mM NaCl, 1.8 
mM CaCl2, 1 mM MgCl2, 5 mM HEPES and 25 mM sucrose titrated to the pH 7.5 using NaOH [56]. Subsequently, 
the oocytes were exposed to the same solution containing, in addition, 5 mM BaCl2 (replacing 10 mM sucrose) 
for inhibition of K+ channels. Then, 5 mM KCl (replacing 10 mM sucrose) was added in the continuous presence 
of BaCl2. Where indicated, ouabain (1 mM) was added to inhibit the K+-induced outward current. 

Endothelial  Cell Culture 
Human microvascular endothelial cells (HMEC) were maintained in Dulbecco´s modified Eagle´s 

Medium supplemented with 10 % (v/v) heat-inactivated foetal calf serum, 1 % non-essential amino acids,  
1 % L-glutamine, 5 mM glucose, 100 units/ml penicillin, 100 µg/ml streptomycin, 1 µg/ml hydrocortisone, 
10 ng/ml endothelial cell growth supplement, 300 µU/ml hygromycin and 300 µg/ml G418 (Calbiochem, 
Bad Soden, Germany) in an atmosphere containing 5 % CO2 at 37 °C. All cell culture reagents were purchased 
from Invitrogen (Karlsruhe, Germany). Cells were allowed to recover for 16 hours prior to experiments. 
Thereafter cells were harvested and analyzed for whole cell patch clamp. 

Patch clamp 
Cells were cultured for 24 hours at appropriate cell densities (2x107 cells/ml) in mini dishes and 

ouabain-sensitive currents (Iouabain) reflecting Na+/K+-ATPase activity was determined by whole cell patch 
clamp recording. Patch clamp experiments were performed at room temperature in voltage-clamp, fast 
whole cell mode [57]. Cells were continuously superfused through a flow system inserted into the dish. 
The bath was grounded via a bridge filled with Ringer solution. Borosilicate glass pipettes (2- to 4-MΩ 
resistance; Harvard Apparatus, UK), heat polished manufactured by a microprocessor-driven DMZ puller 
(Zeitz, Augsburg, Germany), were applied in combination with a MS314 electrical micromanipulator (MW, 
Märzhäuser, Wetzlar, Germany). The currents were recorded on an EPC-9 amplifier (Heka, Lambrecht, 
Germany) and analyzed with Pulse software (Heka) and an ITC-16 Interface (Instrutech, Port Washington, 
NY). Currents were recorded at an acquisition frequency of 10 kHz and 3 kHz low-pass filtered.

To measure Na+/K+ ATPase activity ouabain (1 mM) sensitive outward currents were recorded.  
The pipette solution used contained (in mM): 30 NaCl, 20 KCl, 70 CsCl, 5 MgCl2, 5 HEPES, 5 Na2ATP and  
5 ethylene glycol tetraacetic acid (EGTA) (pH 7.2, CsOH). The external solution contained (in mM): 60 NaCl, 
80 TEA-Cl, 1 MgCl2, 2.5 CaCl2, 5 NiCl2, 5 BaCl2, 5 glucose, 10 HEPES (pH 7.4, CsOH), and 0.5 EGTA. Na+/K+ 
ATPase currents were elicited by switching to a bath solution that contained (in mM): 60 NaCl, 80 TEA-Cl, 
5 KCl, 1 MgCl2, 2.5 CaCl2, 5 NiCl2, 5 BaCl2, 5 glucose, 10 HEPES (pH 7.4, CsOH). The currents were measured 
at -40 mV.

Statistical analysis
Data are provided as means ± SEM, n represents the number of oocytes/cells investigated. All 

experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data 
were obtained. As the expression of proteins may vary between different batches of oocytes, statistical 
comparisons were always made between oocytes from the same batch. No statistical comparisons were 
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made between different series of experiments done in different batches of oocytes. Data were tested for 
significance using analysis of variance (ANOVA) or Student’s unpaired two-tailed t-test, as appropriate. 
Results with p < 0.05 were considered statistically significant.

Results

To elucidate the effect of VP1 on Na+/K+-ATPase activity, VP1 was expressed in Xenopus 
oocytes and K+-induced pump currents (Ipump) as well as ouabain inhibited currents (Iouabain) 
taken as a measure of Na+/K+-ATPase activity. To achieve K+ depletion, Xenopus oocytes 
were preincubated for 6 hours in K+-free solution, superfused for a few minutes with K+-
free bath solution and subsequently with a K+ free solution containing the K+-channel 
blocker Ba2+ (5 mM) to prevent K+ fluxes through K+ channels. The readdition of K+ in the 
continued presence of Ba2+ was followed by an outwardly directed pump current (Ipump) due 
to electrogenic extrusion of 3 Na+ in exchange for 2 K+ (Fig. 1). Ipump was suppressed in the 
presence of the Na+/K+-ATPase inhibitor ouabain (1 mM). Accordingly, inhibition of the Ipump 
by application of ouabain (1 mM) was followed by an inward current (Iouabain). Both Ipump and 
Iouabain were significantly smaller in Xenopus oocytes injected with cRNA encoding VP1 than in 
oocytes injected with PLA2-negative VP1(H153A) or water (Fig. 1). Thus, VP1 inhibited the 
endogenous Na+/K+-ATPase in Xenopus oocytes. 

Further experiments addressed whether the effect of VP1 on Xenopus oocyte Na+/K+ 
ATPase current was due to its phospholipase A2 (PLA2) activity. Treatment of Xenopus oocytes 
for 3 and 6 hours with PLA2 specific inhibitor 4-bromophenacylbromide (50 µM) prior to the 
experiment abrogated the effect of VP1 expression on both, Ipump and Iouabain (Fig. 2). Fitting 
the normalized Ipump and Iouabain currents of the VP1 expressing Xenopus oocytes to Boltzmann 
function yielded 4BPB half times of inhibition amounting to 154 and 170 minutes, respectively.

Since the PLA2 like motif of VP1 is known to generate lysophosphatidylcholine, additional 
experiments were performed to explore whether Na+/K+ ATPase activity of Xenopus oocytes 
is sensitive to lysophosphatidylcholine. As a result, incubation of Xenopus oocytes with 0.5 
and 1 µg/ml lysophosphatidylcholine for 5 minutes prior to the measurements decreased 
significantly both, Ipump and Iouabain (Fig. 3A, B). The effect of lysophosphatidylcholine on Na+/
K+ ATPase activity was dose-dependent, fitting the normalized values of K+-induced current 
Ipump to an exponential decay function yielded a half maximal inhibitory concentration of 
lysophosphatidylcholine IC50 amounting to 59 ng (Fig. 3C).

Fig. 1. Decrease of Na+/K+-ATPase 
activity in Xenopus oocytes by VP1 
expression.  A. Original tracings 
recorded in oocytes injected with 
water (i), with cRNA encoding VP1 
(ii) or with cRNA encoding mutated 
VP1(H153A) (iii). The arrows 
indicate the addition of the respective 
solutions. B. Arithmetic means ± SEM 
(n = 9-22) of the K+-induced current 
(left bars) and ouabain-inhibited 
current (right bars) measured in 
Xenopus oocytes injected with water 
(white bars), with cRNA encoding 
VP1 (black bars) or with cRNA 
encoding mutated VP1(H153A) 
(grey bars). ** indicates statistically 
significant (p<0.01) difference from 
water-injected Xenopus oocytes 
(ANOVA).
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Additional series of experiments were performed in human microvascular endothelial 
cells (HMEC). In those cells the Na+/K+ ATPase activity was recorded utilizing whole cell patch 

Fig. 2. Effect of VP1 expression on Na+/K+-ATPase activity in Xenopus oocytes in the presence of PLA2 inhibitor 
4-bromophenacylbromide (4BPB). Arithmetic means ± SEM (n = 5-11) of the K+-induced current (A) and 
ouabain-induced current (B) measured in Xenopus oocytes pretreated for 0, 1, 3 and 6 hours with specific 
phospholipase A2 inhibitor 4BPB (4 bromophenacyl bromide, 50 µM) and injected with water (white bars) or 
with cRNA encoding wild type VP1 (black bars). 

Fig. 3. Inhibition of Na+/K+-ATPase activity by lysophosphatidylcholine. A. Original tracings recorded in Xenopus 
oocytes without (i) or with (ii) prior lysophosphatidylcholine (1 µg/ml) treatment for 5 minutes. The arrows 
indicate the addition of the respective solutions. B. Arithmetic means ± SEM (n = 14) of the K+-induced current 
(left bars) and ouabain-inhibited current (right bars) measured in Xenopus oocytes whithout (white bars) 
or with (black bars) lysophosphatidylcholine treatment (1 µg/ml) for 5 minutes. ** indicates statistically 
significant (p<0.01) difference from untreated Xenopus oocytes (unpaired t- test). C. Lysophosphatidylcholine 
dose-response curve. Arithmetic means ± SEM (n = 10-14) of the K+-induced current measured in Xenopus 
oocytes pretreated for 5 minutes with 0, 10, 100, 500 and 1000 ng/ml lysophosphatidylcholine. *,** indicates 
statistically significant (p<0.05, 0.01) difference from untreated Xenopus oocytes (unpaired t- test). The data 
points were fitted with the exponential decay function with IC50 of 59 ng. D. Original tracings of K+-induced 
currents (K+) with subsequent inhibition by ouabain (Ouab) in whole cell patch clamp on human microvascular 
endothelial cells (HMEC) non-treated h (i) or treated with (ii) lysophosphatidylcholine (1 µg/ml) for 5 minutes. 
The arrows indicate the addition of the respective solutions. E. Arithmetic means ± SEM (n = 10-18) of the 
K+-induced current measured in HMEC whithout (white bar) or  with (black bar) lysophosphatidylcholine 
treatment (1 µg/ml) for 5 minutes.*** indicates statistically significant (p<0.001) difference from untreated 
cells (unpaired t- test).

A B
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clamp. According to those experiments, Ipump was significantly (p<0.001) down-regulated by 
treatment with lysophosphatidylcholine (1 µg/ml) (Fig. 3D, E). Thus, similar to its effect on 
Xenopus oocytes, lysophosphatidylcholine decreased Na+/K+ ATPase activity in endothelial 
cells. 

In order to test whether the effect of VP1 on Na+/K+ ATPase activity of Xenopus oocytes  
required transcription, experiments were performed in the presence of actinomycin  
(10 µM, added 36 hours prior to the experiment). In the presence of actinomycin, expression 
of VP1 significantly decreased both Ipump (by 79 ± 19%, n=9-14, Fig. 4A, B) and Iouabain  
(by 76 ± 23%, n=9-14, Fig. 4A, B). Since the effect of VP1 was seemingly stronger in the presence 
of actinomycin than in its absence (Fig. 1), we tested the effect of lysophosphatidylcholine  
(1 µg/ml) in actinomycin-treated oocytes (Fig. 4C, D). Pretreatment of Xenopus oocytes with 
lysophosphatidylcholine (1 µg/ml) for 5 minutes in the presence of actinomycin inhibited 
Ipump  (by 72 ± 13%, n=11-14 Fig. 4C, D) and Iouabain (72 ± 22%, n=9-14, Fig. 4C, D) in Xenopus 
oocytes to a similar extent as VP1. 

Fig. 4. Decrease of Na+/K+-ATPase activity in Xenopus oocytes by VP1 expression in presence of actinomycin.  
A. Original tracings recorded in oocytes pretreated for 36 hours with 10 µM actinomycin and injected with water 
(i) or with cRNA encoding VP1 (ii). The arrows indicate the addition of the respective solutions. B. Arithmetic 
means ± SEM (n =9-14) of the K+-induced current (left bars) and ouabain-inhibited current (right bars) measured 
in Xenopus oocytes pretreated for 36 hours with 10 µM actinomycin and injected with water (white bars) or with 
cRNA encoding VP1 (black bars). ** indicates statistically significant (p<0.01) difference from water-injected 
Xenopus oocytes (unpaired t- test). C. Original tracings recorded in oocytes injected with water pretreated 
for 36 hours with 10 µM actinomycin and then incubated without (i) or with (ii) lysophosphatidylcholine  
(1 µg/ml) for 5 minutes prior to experiments. The arrows indicate the addition of the respective solutions.  
D. Arithmetic means ± SEM (n =11-14) of the K+-induced current (left bars) and ouabain-inhibited current (right 
bars) measured in Xenopus oocytes injected with water and pretreated for 36 hours with 10 µM actinomycin 
and then incubated without (white bars) or with (black bars) lysophosphatidylcholine (1 μg/ml) for 5 minutes 
prior to experiments. ** indicates statistically significant (p<0.01) difference from water-injected Xenopus 
oocytes (unpaired t- test). 
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Discussion

The present experiments disclose a novel action of the B19V capsid protein VP1, i.e. 
inhibition of the Na+/K+ ATPase. The present observations further provide some insight into 
the mechanism involved in the inhibition of Na+/K+ ATPase activity. The VP1 protein contains 
a phospholipase A2-like motif [44, 47]. As shown earlier [48], the effect of VP1 on Ca2+ entry 
depended on phospholipase A2 activity of VP1, as it was abolished by mutation of the PLA2 
motif, where histidine was replaced by alanine in the putative catalytic site (H153AVP1). As 
shown previously [48], the mutation completely abolished the effect of VP1 overexpression 
on Ca2+ entry. Moreover, the effect of VP1 overexpression was mimicked by addition of 
lysophosphatidylcholine, a product of phospholipase A2 [48]. The present study provides 
both pharmacological and genetic evidence that intact PLA2 is similarly required for the VP1 
induced down-regulation of Na+/K+ ATPase activity. Moreover, the present study reveals that 
the effect of VP1 on Na+/K+ ATPase activity is mimicked by lysophosphatidylcholine. 

Myocardial endothelial cells have previously been shown to be targets for parvovirus 
B19 [19, 26]. Accordingly, parvovirus induced acute myocarditis may result in a clinical 
course mimicking myocardial infarction which results from dysregulation of endothelial and 
vascular smooth muscle cell function [19, 26]. 

The presently observed inhibition of the Na+/K+-ATPase may well contribute to 
endothelial dysfunction. Inhibition of the pump is expected to increase cytosolic Na+ 
concentration and decrease cytosolic K+ concentration [58, 59]. As endothelial cells express 
Na+/Ca2+ exchangers [60], an increase of Na+ is expected to increase cytosolic Ca2+ activity. 
As a matter of fact, ouabain [61], lysophosphatidylcholine [48], and VP1 expression [48] 
have been shown to increase cytosolic Ca2+ activity, an effect, however, in part attributed to 
stimulation of Ca2+ entry through cation channels [48, 61]. Excessive Ca2+ entry is in turn 
known to trigger suicidal cell death [62-65].

As endothelial cells express Ca2+ sensitive K+ channels [66], an increase of cytosolic Ca2+ 

activity could activate those channels leading to (transient) hyperpolarization, Cl- exit and 
thus cell shrinkage due to cellular loss of KCl with osmotically obliged water [58, 59].  The 
dissipation of Na+ and K+ gradients following inhibition of Na+/K+-ATPase should, however, 
eventually lead to cell swelling [58, 59]. The decline of intracellular K+ activity following 
sustained impairment of Na+/K+-ATPase decreases the K+ equilibrium potential resulting in 
depolarization of the cell membrane [58, 59]. The outside positive cell membrane potential 
difference is required to drive Cl- exit and to maintain the low cytosolic Cl- concentration, which 
outweighs the high concentration of osmotically active organic substances. The depolarization 
following inhibition of the Na+/K+-ATPase leads to cellular accumulation of Cl- and thus to cell 
swelling [58, 59]. Cell swelling during compromized Na+/K+-ATPase activity depends on the 
rate of Na+ entry [58, 59].  At least in theory, if the cell is completely Na+ impermeable, cytosolic 
K+ and Cl- concentrations approach an equilibrium, which does not require maintenance 
by continued activity of Na+/K+-ATPase. Following stimulation of Na+ entry, however, Na+/
K+-ATPase activity is required for prevention of increasing cytosolic Na+ concentration and 
subsequent cell swelling [67]. 

The increase of cytosolic Na+ activity following impaired Na+/K+-ATPase activity further 
dissipates the chemical gradients for Na+ coupled transport processes [68]. Impairment of 
the Na+/K+-ATPase activity by pharmacological inhibition [69], by hypothermia [70] or by 
cellular energy depletion [71], further decreases the K+ conductance, an effect accelerating 
the depolarization and loss of driving force for Na+ coupled transport processes. 

Inhibition of endothelial cell Na+/K+ ATPase by ouabain affects the expression of a 
wide variety of genes. Among those, the expression of several transcription factors (Fos, 
Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity 
phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, and cyclin L1 were regulated 
by inhibition inhibition of Na+/K+ ATPase even if increases of cytosolic Ca2+ activity were 
prevented by Ca2+ chelation. The influence of Na+/K+ ATPase inhibition on expression of 
metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16, however, required 
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cytosolic Ca2+ [72]. Moreover, cardiotonic steroids such as ouabain may trigger endothelial 
cell death by mechanisms other than inhibition of Na+/K+ ATPase mediated ion fluxes and 
respective alteration of the cytosolic Na+ and K+ concentrations [73]. Inhibition of Na+/K+ 
ATPase may activate p38 kinase [74], which is in turn well known to trigger suicidal death of 
a variety of cells[75-82].

In conclusion, the present observations demonstrate that the phospholipase A2 activity 
of the parvoviral B19 protein VP1 leads to down-regulation of Na+/K+ ATPase activity, an 
effect likely participating in the pathophysiology of parvovirus B19 infection.
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