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ABSTRACT: 

In this paper, an innovative framework, based on both spectral and spatial information, is proposed. The objective is to improve the 

classification of hyperspectral images for high resolution land cover mapping. The spatial information is obtained by a marker-based 

Minimum Spanning Forest (MSF) algorithm. A pixel-based SVM algorithm is first used to classify the image. Then, the marker- 

based MSF spectral-spatial algorithm is applied to improve the accuracy for classes with low accuracy. The marker-based MSF 

algorithm is used as a binary classifier. These two classes are the low accuracy class and the remaining classes. Finally, the SVM 

algorithm is trained for classes with acceptable accuracy. To evaluate the proposed approach, the Berlin hyperspectral dataset is 

tested. Experimental results demonstrate the superiority of the proposed method compared to the original MSF-based approach. It 

achieves approximately 5% higher rates in kappa coefficients of agreement, in comparison to the original MSF-based method. 

1. INTRODUCTION

Imaging spectroscopy, also known as hyperspectral imaging, is 

concerned with the measurement, analysis, and interpretation of 

spectra acquired from either a given scene or a specific object at 

a short, medium, or long distance by a satellite sensor over the 

visible to infrared and sometime thermal spectral regions 

(Shippert, 2004). Recent technological improvements in spatial, 

spectral, and radiometric resolution of spectrometer imagers 

beget the need of developing new methods for land cover 

classification. A large number of researches are presented for 

classification of hyperspectral images (Senthil et al., 2010; 

Shackelford and Davis, 2003; Shrestha et al., 2005). However, 

they can be categorized in two major groups of the spectral or 

pixel-based and the spectral-spatial approaches. While the pixel- 

based techniques, e.g. the classic Maximum Likelihood and 

Support Vector Machines (SVM) classifiers, mainly emphasize 

the independence of pixels, the spectral-spatial approaches, e.g. 

Geographic Object-Based Image Analysis (GEOBIA) (Blaschke 

et al., 2014) and Minimum Spanning Forest (MSF) (Tarabalka  

et al., 2010) classifiers, employ both the spectral characteristics 

and the spatial context of the pixels. The importance of applying 

spatial patterns has been identified as a desired objective by 

many scientists devoted to multidimensional data analysis. 

These approaches have been studied from various points of 

views. For instance, several possibilities are discussed in 

(Landgrebe, 2003) for the refinement of results obtained by 

pixel-based techniques in multispectral imaging. This is 

normally done through a second step, based on a spatial context. 

Such contextual classification is extended also to hyperspectral 

images by distinguishing amongst certain land cover classes 

(Jimenez et al., 2005; Negri  et al., 2014). 

The pixel-based classification methods are often unable to 

accurately differentiate between some classes with high spectral 

similarity. This is mainly because; they take only the spectral 

information into account. Consequently, methods that can 

exploit the spatial information are crucial for producing more 

accurate land cover maps (Carleer and Wolff, 2006; Jensen, 

2004; Shackelford and Davis, 2003). Many researchers have 

demonstrated that the use of spectral-spatial information 

improves  the  classification  results,  compared  to  the  use    of 

spectral data alone, in hyperspectral imagery (Fauvel et al., 

2012; Huang and Zhang, 2011; Paneque-Gálvez et al., 2013; 

Plaza et al., 2009; Rajadell et al., 2009; Tarabalka et al., 2011). 

In the early studies on spectral-spatial image classification, the 

spectral information from the neighborhoods are extracted by 

either fixed windows (Camps-Valls et al., 2006) or 

morphological profiles (Fauvel et al., 2008), and used to classify 

and label each pixel. 

Segmentation techniques are the powerful tools for defining the 

spatial dependencies among the pixels and for finding the 

homogeneous regions in an image (Gonzalez and Woods,  

2002). An alternative way to achieve the accurate segmentation 

is to perform a marker-based segmentation (Gonzalez and 

Woods, 2002; Soille, 2003). The idea behind this approach is to 

select either one or several pixels that belong to each spatial 

object. Each spatial object is often referred to as either a region 

seed, or a marker of the corresponding region. These regions, 

then, grow from the selected seeds. In this way, every region, in 

the resulting segmentation map, is associated with one region’s 

seed. Marker-based segmentation significantly reduces the over- 

segmentation and has, as a result, led to a better accuracy rate. 

Tarabalka et al. have proposed an efficient approach for 

spectral-spatial classification using the MSF grown from 

automatically selected markers (Tarabalka et al., 2010). They 

used a pixel-wise SVM classification in order to select the most 

reliable classified pixels as markers. In this framework, a 

connected components labeling is applied on the classification 

map. Then, if a region is large enough, its marker is determined 

as the P% of pixels within this region with the highest 

probability estimates. Otherwise, it should lead to a marker only 

if it is very reliable. A potential marker is formed by pixels with 

estimated probability higher than a defined threshold. 

In this paper, a modified spectral-spatial classification approach 

is proposed to improve the spectral-spatial classification of 

hyperspectral images. The method benefits from both MSF and 

SVM classifiers in an integrated framework. In the proposed 

approach, the SVM pixel-based algorithm is first used to 

classify hyperspectral images. Afterwards, for classes with   low 
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accuracy, the marker-based MSF (MMSF) spectral-spatial 

algorithm is used to improve their accuracies. 

The rest of this paper is organized as follows. Section II 

describes the original MSF-based approach for spectral-spatial 

classification of hyperspectral images. In section III, the 

proposed classification scheme is presented. Experimental 

results and discussion are discussed in Section IV and, finally, 

conclusions are drawn in section V. 

Where, PA is class-specific producer's accuracy. In classification 

procedure, the high error rate of certain classes is not only an 
index of low accuracy between the set of classes, but also 

depends on the population of each class. Therefore, a 
classification measure, named   can be defined for each class i 
as follows: 

(2)

2. MMSF APPROACH

MSF spectral-spatial algorithm grown of markers is used to 

improve classes' classification in SVM algorithm. In MSF, each 

pixel is considered as a vertex,       , of an undirected graph,   
  , where V and E are sets of vertices and edges, 

respectively, and  W is a mapping of the set of the edges E  

into    . Each edge    of this graph connects a couple of 

vertices i and j, corresponding to the neighboring pixels. 

Furthermore, a weight is assigned to each edge  , which  

indicates the degree of dissimilarity between two vertices (i.e., 

two corresponding pixels) connected by this edge. We have  

used an Eight-neighborhood and a Spectral Angle Mapper 

(SAM) measure for computing the weights of edges, as 

described   in   (van   der   Meer,   2006).   Given   a   graph   
 ,  the  MSF  rooted  on  a  set  of        distinct    vertices 

   consists      in      finding      a      spanning      forest 

of  , such that each distinct tree of  is grown from one root  , 

and the sum of the edges' weights of is minimal (Stawiaski, 

2008). 

In order to obtain the MSF rooted on markers, additional 

vertices  i.e.                ,  are  introduced.  Each   additional  

vertex  is connected by the edge with a null weight to the 

pixels representing a marker . Furthermore, an additional root 

vertex  is added and is connected by the null-weight edges to 

the vertices (see Figure 1). The minimal spanning tree of the 

constructed graph induces a MSF in G, where each tree  is 

grown on a vertex  . Finally, a spectral-spatial classification 

map is obtained by assigning the class of each marker to all the 

pixels grown from this marker. 

0 

Figure 1. An example of addition of extra vertices  ,   and r to 

the image graph for the construction of an MSF rooted on 

markers 1 and 2; non-marker pixels are denoted by ―0.‖ 

3. PROPOSED FRAMEWORK

In the proposed framework, which hereinafter is called MSF- 

SVM algorithm, the hyperspectral image is first classified using 

SVM algorithm. Then, the error rate for each class is computed 

as: 

Er=1- PA (1) 

Where and are,  respectively,  the  error  rate  and  the 

population size for class i, and N is the number of classes. In 

this  study,  class  i  has  low  accuracy  if  .   The  above 

valuehas been estimated by trial and error. 

For this algorithm, it is in particular importance to mention that 

the labeling  of  each  pixel  is  first  decided  using  the 

algorithm.   is  used  for  classifying  the  image  into  two 

classes: a class with maximum value and the rest of classes. 

Moreover,  for  the  condition  'if   ',  if  the  answer  is  

negative,  the   pixel   label   can   be   found   using   the 

algorithm.            is  used to improve the class  with      value 

less  than  class  of    algorithm.  This  decision  making 

process is continued using other MMSF algorithms until the 

answer is negative for the pixel label which is determined by 

SVM algorithm. 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The Berlin hyperspectral dataset was used for the experiments. 

Table 1 presents the main characteristics of this dataset 

 Dataset Berlin 

Sensor HyMap 

Context Urban area 

Spatial coverage 300×300 

Spatial Resolution (m) 3.5 

Number of bands 114 

   Number of classes 5 

Table 1. The main characteristics of the Berlin dataset. 

In experiments, to create a map of markers for MSF algorithm, 

each connected component of the SVM classification map, i.e. 

8-neighborhood connectivity, is analyzed. If this region contains

more than 20 pixels, 5% of its pixels with the highest estimated

probability are selected as the marker for this component

(Tarabalka et al., 2010). Otherwise, the region marker is formed

by the pixels with estimated probability higher than  a  threshold

. The threshold is equal to the lowest probability within the

highest 2% of the probabilities for the whole image. In the next

step, the image pixels are grouped into the MSF using the

spectral angle dissimilarity measure, built from the selected

markers (van der Meer, 2006). Moreover, in order to compare

the results of the proposed MSF-SVM algorithm, we have

implemented independently SVM and MMSF algorithms for

image classification.

The accuracies of the classification maps are generally assessed 

by computing the confusion matrix using the reference data. 

Based on this matrix, several criteria have been used to evaluate 

the efficiency of algorithms (Congalton, 1991; Story and 

Congalton, 1986). These measures are a) the overall accuracy 

(OA), which is the percentage of correctly classified pixels, b) 

the Kappa coefficient of agreement (κ), which is the percentage 

of agreement corrected by the amount of agreement that could 

be  expected  due  to  chance  alone,  and  c)  the   class-specific 

1 1 0 

0 0 0 

0 0 2 
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producer's accuracy, which is the percentage of correctly 

classified samples for a given class. 

 

It should be noted that, the training samples for MSF-SVM are 

divided in two subsets: a subset for the training SVM and a 

subset for finding the classes with low accuracy. We have 

chosen 20% exiting training samples of each class for training 

the SVM and the remaining for its testing. 

 

Five thematic land cover classes are identified in the Berlin 

dataset (see Figure 2.d): Vegetation, Build-up, Impervious, Soil 

and Water. For each class, we have randomly chosen 30% of  

the labeled samples for training and use the other 70% for 

testing purposes. 

 

A pixel-based classification was performed using the multiclass 

SVM classifier with the Gaussian radial basis function (RBF) 

kernel. The penalty parameters C and (which constitute the 

spread of the RBF kernel) are estimated using a five-fold cross 

validation: C = 200 and             . 

 

Figures. 2.a, 2.b and 2.c show the classification maps of SVM, 

MMSF, and the proposed MSF-SVM algorithm, respectively.  

As can be seen, the map of the MSF-SVM algorithm contains  

far more homogeneous regions when compared with the maps 

obtained by other methods (see Figure 2.c). These results can 

show the importance of using spatial information throughout the 

classification procedure. 
 

 

 

 
Figure 2. Berlin dataset: (a) SVM Classification map, (b) 

MMSF Classification map, (c) MSF-SVM Classification map 

(d) reference map and (e) the legend. 

 

Table 2 shows the assessment parameters of SVM  

classification, the overall accuracy, the kappa coefficient, and 

the class-specific producer's accuracy parameters. As can be 

seen, Build-up and Impervious classes have proposed parameter 

( greater than  or  equal  to  0.5.  This  increase  in  the  

parameter , as mentioned in section 3, is related to the large 

population and high error rate class. Also, the proposed MSF- 

SVM algorithm has resulted in a) up to an approximately 7% 

higher rate of accuracy for the SVM, and b) up to an 

approximately 4% higher rate of accuracy for the MMSF in the 

OA (see Figure 3). 

 

           
SVM MMSF MSF-SVM 

OA(%) - - 85.6 88.3 92.7 
(%)  - - 79.3 83.7 88.8 

Vegetation 2236.4 0.31 93.9 95.6 96.8 
Build-up 7015.5 0.97 78.6 89.8 94.1 

Impervious 7249.6 1 80.3 85.8 91.7 

Soil 1055.9 0.14 85.9 89.7 86.2 

  Water  528.5  0.07  96.7  97.0  96.7  

Table 2. The SVM assessment parameters and the classification 

accuracies obtained on the Berlin dataset 
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Figure 3. The global accuracies of different methods. 

 

In Table 2, all the class-specific producer's accuracy rates for  

the proposed MSF-SVM algorithm are higher than 90%. An 

exception is the accuracy rates for the Soil class; these rates are 

slightly reduced when compared with the MMSF results. This 

reduce in accuracy can be due to the low number of pixels and 

the high dispersion of Soil class in the image. In addition, the 

spectral complexity of the Berlin dataset is effective in this case. 

Moreover, in all classes, the MMSF classification accuracy rates 

are much higher than those of the SVM. In Build-up and 

Impervious classes, (see Tab. 2), the improvements of about 

16% and 11% in the producer's accuracies are obtained in 

compared with the SVM algorithm. This shows the importance 

of using spatial information in these two classes. 

 

 

5. CONCLUSION 
 

In this study, a framework for the spectral-spatial classification 

of hyperspectral images has proposed. In proposed   framework, 

i.e. MSF-SVM, the hyperspectral image is first classified using 

SVM algorithm. Then, the MMSF spectral-spatial algorithm is 

used to improve the accuracy for classes with low accuracy. The 

experiments have been conducted using Berlin benchmark 

image in the hyperspectral remote sensing community acquired 

by HyMap in 2003. The results demonstrate that the proposed 

MSF-SVM algorithm generally improves the classification 

accuracy rates when compared to the classic SVM algorithm  

and the original MSF method. The kappa coefficient obtained 

for the MSF-SVM algorithm is approximately 5% and 9% 

higher than the MMSF and SVM algorithms, respectively. 
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