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Abstract

The Szabad(ka)-II 18 DOF walking robot and its simulation
model is suitable for research into hexapod walking
algorithm and motion control. The complete dynamic
model has already been built, and is used as a black box for
walking optimization in this research. First, optimal
straight line walking was chosen as our objective, since the
robot mainly moves in this mode. This case can be tested
and validated as well on the current version of our robot.
An ellipse-based leg trajectory has been generated for this
low-cost straight line walking. Currently a simple new
Fuzzy-PI controller with three input variables is being
constructed and compared with an previously used PI
controller. The purpose of defining the rules and its
optimization are to obtain a controller that provides
walking with higher quality. Both the compared controllers
have been optimized together with the parameters of the
leg trajectory. The particle swarm optimization (PSO)
method was chosen from several methods with our
benchmark-based selection research and the help of
specific test functions; moreover the previous research (the
comparison of genetic algorithm (GA) and PSO) also led to
this conclusion.

Keywords Hexapod Robot, Optimization Method Selec‐
tion, Walking Optimization, PSO, Fuzzy Control

1. Introduction

This research contributes to the development of the driving
control optimization of the Szabad(ka)-II mechatronic
device [1-7]. It deals with two issues: 1) finding a relatively
quick optimization method for a non-differentiable and
highly non-linear objective, i.e., the simulation model of the
Szabad(ka)-II robot; 2) optimizing hexapod walking with
the help of the simulation model in order to achieve an
adequate trajectory curve and an effective Fuzzy motor
control that can be later embedded into the robot’s micro‐
controllers. However finding a certain optimal solution
was not the focus; rather, the goal was to obtain a new
procedure that can be generally applied for the tuning of
robot controllers if the simulation model is available.

The improvement of the robot’s walking on rough terrain
is still in progress, including the designing of new legs
containing ground contact sensors. In the current research
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phase a relatively simple case - the straight-line tripod
walking on flat ground - was selected first to develop the
optimization system of the robot motion and control. In
order to obtain optimal parameter values, which can be
used for the building or design of a real robot, a proper
robot model is required.

Figure 1. Szabad(ka)-II hexapod robot

The current simulation model was introduced in [3], which
is a detailed kinematic and dynamic model of the real
Szabad(ka)-II robot (Fig. 1). The aim of this model is to
simulate the motion, and measure the walking quality (also
known as performance) in comprehensive situations.
Controller optimization with the help of the model is
important because the system’s performance mostly
depends on the controller’s efficiency [9] besides the
structural parameters. Numerous research studies have
defined the necessity and role of simulation, controller
optimization and fitness function, for example in the
conclusion of articles [8, 38]. The controllers and walking
trajectories - both developed in this model - can be imple‐
mented into the microcontroller of the real robot. The
model is validated by the dynamic measurements taken on
the real robot (as mentioned in [40], and to be published in
detail). Thus the expected deviation between the simula‐
tion and reality is known.

1.1 Reason for choosing fuzzy control

The previous research [1] constitutes the basis of this work,
which compares two optimization methods (GA and PSO)
on a robot-walking task with a PI controller. Some of the
most successful applications of fuzzy control have been
highly related to conventional controllers, such as propor‐
tional-integral-derivative (PID) controller [10]. Currently a
Fuzzy-PI controller is being introduced and both the
compared controllers are being tuned up with the selected
optimization method. The literature provides several
examples of the applicability of the fuzzy controller, and
most of these also apply the optimization for tuning up

Fuzzy parameters, for example: [8, 11-17]. Moreover one
publication deals with PID controller optimization [9]. The
main difference between fuzzy logic control (FLC) and
conventional control is that the former is not based on a
properly defined model of the system, but instead imple‐
ments the same control ‘rules’ that a skilled expert would
operate [10].

The Fuzzy inference system also proved to be suitable for
the tuning of the sliding mode control [18], especially in the
case of a non-linear system. Hexapod robots also have a
strongly non-linear and variable dynamic character, thus
the effective control with a Fuzzy type system is expected.

1.2 Fitness function

The most suitable optimum can be obtained primarily if the
quality definition is correctly determined. The specific
robot's walking optimality is measured by a certain fitness
function (also known as cost- or objective function). In the
previous research a fitness function was already defined
and used for the same problem [1, 5].

The tripod type [19] straight-line hexapod walking on even
ground is a simpler case. It has been assumed that in such
a case the robot moves towards a farther target point
without any manoeuvres and other operations. More
energy would remain for the other walking modes if the
energy consumption was minimized for straight line
walking. Thus the most important task will be to achieve a
fast and low-cost (low energy consumption) locomotion.
The presented fitness function (1) expresses the quality
measurement of these features. It is a concrete aggregation
of multi-objectives resulting in a global criterion (F) based
on the weighted product method. Generally the goals of
robot walking are [5]:

a. achieving the maximum speed of walking with as little
electric energy as possible, similarly to [20],

b. keeping the minimal torques on the joints and gears,

c. maintaining the currents of the motors as little discur‐
sive and spiky as possible, and

d. keeping the robot’s body acceleration at a minimum in
all three-dimensional directions.

In order to obtain the results in accordance with our
demands, the following should be emphasized (1): In the
fitness function the average velocity tag was squared in
order to emphasize it as much as the small energy con‐
sumption and the accelerations, i. e., these two aspects
influence the system oppositely.

F =
100000 ⋅ V̄ X

2

EWALK ⋅ FGEAR ⋅ F ACC ⋅ F ANG−ACC ⋅ ( | Z LOSS | + 0.03) (1)

Where V̄ X  - the average walking speed (in direction X);
EWALK  - electric energy is needed for crossing unit distance;
FGEAR - root mean square of the aggregated gear torques;
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F ACC  - root mean square of acceleration of the robot’s body;
F ANG−ACC- root mean square of angular acceleration of the
robot’s body; ZLOSS- loss of height in direction Z during the
walk. A more detailed description of this fitness function
can be found in [4, 5].

1.3 Leg trajectory for straight-line walking

The tripod-type hexapod walking [19] is the most appro‐
priate for a fast and low-cost locomotion. For this walking
a three-dimensional ellipse-based trajectory curve was
generated that defines the feet’s desired cyclic movement
in relation to the robot body. More detailed description of
this deformed half-ellipse trajectory can be found in [4].

The trajectory curve and the driving motor controller’s
behaviour directly influence both the real or simulated
movement. Since the change of the trajectory’s parameters
will influence the optimal values of the other parameters –
that is, the parameters are not independent – the optimal
parameter set should be found in the multi-dimensional
space. Therefore the chosen motor controllers and the
parameters of this trajectory (see Table 1) have been
optimized together. The similar trajectory optimization
attempt in [20] did not optimize the motor controller with
this trajectory; this is what is different in the current
research. The lower (min.) and upper (max.) bounds of
these parameters were defined empirically in most cases,
with the exception of the upper bound of the fourth ‘length
of the step’ (TB) parameter given by the structural dimen‐
sion of the robot.

Parameter Symbol Min. Max.

The cycle’s time duration in second TTIME 0.9 1.7

Length of step – stride, in meter TB 0.1 0.18

Height of walk trajectory in meter TH 0.01 0.04

Lift (A) and cycle (A+B) ration TA/(A+B) 0.45 0.75

Lowpass FIR filter strength, order in
millisecond, (integer parameter)

TFIR 4 300

Table 1. Trajectory parameters and its bounds

1.4 Optimization issue

This paper further describes an effort to search for the best
optimization method that can most effectively solve the
mentioned problem (the best result in terms of performed
time and achieved fitness value).

The optimization speed is very important for our system,
because the simulation of one second with Szabad(ka)-II
dynamic model takes four minutes in an up-to-date PC
with a i7-2600K processor (i.e., Simulink solver with 0.2ms
time step, model of 18 DC motor, 18 inverse dynamics, etc.).
This means one optimization process lasts for several days,
and searching for the best optimization method with
adequate parameters would last several months.

Chapter 2 briefly presents the benchmarking of the opti‐
mization methods applied on different test functions.
Multi-dimensional quick test functions have been selected
for the benchmark, which have similar non-linear, discon‐
tinuous, integer, etc. characters as in the case of the walking
simulation of the Szabad(ka)-II robot. Based on the research
in Chapter 2 the best possible optimization method could
be chosen for the current robot walking.

2. Selection of optimization methods

There are numerous multi-parameter optimization meth‐
ods, and it is generally difficult to choose the best because
the performance of each method is problem-dependent
[21]. Based on our experience [1, 4, 5] and literature [8,
21-24] the heuristic and hybrid methods are promising for
a non-linear, multi-parameter system. Table 2 lists the
selected methods that are currently under test and com‐
parison. Moreover while trying to select the best method
the existence of public Matlab implementation [25-30] was
taken into account in order to avoid algorithm implemen‐
tation and obtain quick results:

• Genetic algorithm (GA) can be applied to solve problems
that are not well suited for standard optimization
algorithms, including problems in which the objective
function is discontinuous, non-differentiable, stochastic,
or highly nonlinear [30].

• Particle swarm optimization (PSO) is one of the most
important swarm intelligence paradigms [12]. The PSO
uses a simple mechanism that mimics swarm behaviour
in bird flocking and fish schooling to guide the particles
to search for globally optimal solutions [16]. There is no
built-in PSO algorithm in Matlab, and thus external
source exploration was needed. Considering the charac‐
teristics of the available implementations, [27] seems to
be the good choice. It is easy to learn, has the ordinary
Matlab-like syntax, and has only the necessary options.

• The pattern search (PS) algorithm supported in Global
Optimization Toolbox by Matlab [29].

• Gravitational search algorithm (GSA) is a never-heuris‐
tic optimization method, which is constructed based on
the law of gravity and the notion of mass interactions
[31].

• Simulated annealing (SA) models the physical process of
heating a material and then slowly lowering the temper‐
ature to decrease defects, thus minimizing the system
energy [28].

• Teaching‑learning‑based optimization (TLBO) is a
population-based, new, efficient optimization method,
which works on the effect of the influence of a teacher on
learners. [32]

• Tabu search (TS) is a heuristic method but is still very
limited for dealing with continuous problems. The
directed tabu search (DTS) is a continuous TS that also
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uses the Nelder-Mead method and adaptive pattern
search. [33]

• The new version of ‘multistart clustering global optimi‐
zation method’ (called GLOBAL) utilizes the advantages
offered by Matlab, and the algorithmic improvements
increase the size of the problems that can be solved
reliably with it [25].

Method Symbol Source

Own implementation of Genetic Algorithm GA-IK [5]

Genetic Algorithm in Global Optimization Toolbox by
Matlab

GA [30]

Particle Swarm Optimization PSO [27]

Particle Swarm Optimization with Pattern Search hybrid PSO-PS [27]

Gravitational Search Algorithm GSA [31]

Simulated Annealing SA [28]

Pattern Search in Global Optimization Toolbox by Matlab PS [29]

Teaching‑learning‑based optimization TLBO [32]

Directed Tabu Search DTS [33]

Multistart clustering global optimization method
GLOBAL, with local search UniRandi

GLuni [25]

GLOBAL with local search FminSearch GLfmin [25]

GLOBAL with local search BFGS GLbfgs [25]

Table 2. Selected optimization methods for the benchmark on test functions

2.1 Test functions

Not all the selected optimization methods with various
configurations are worth running on the simulation model
of the Szabad(ka)-II robot, because it would take half a year
(see chapter 1.4). This led to the application of the methods’
benchmark on faster test functions, and offered a kind of
pre-selection of methods based on some key characteristic
behaviours. The current dynamic model of hexapod
walking - in view of character - is a multi-dimensional,
highly nonlinear, non-smooth, and a slightly mixed integer
problem, i.e., it:

• Has a minimum of seven dimensions: PI controller has
seven dimensions (5 trajectory+2 PI parameters), while
the Fuzzy-PI has 17 dimensions (5 trajectories+12 Fuzzy
parameters).

• Has non-continuous behaviour due to walking on six
legs and the ground contact.

• Has no random parts.

• Contains integer parameters, e.g., the trajectory param‐
eter TFIR is an integer type, see Table 1 and Table 4.

The ground contact model of the six legs – a critical part of
the dynamic model - has a discontinuous character as it can
be seen in formulae (2), (3) and (4). More details about this
ground contact model can be found in [3, 7]. The backlash

occurrence at the robot’s links and gears also has a non-
smooth feature.

FZ ={−kz −cz if z <0
0 if z ≥0

(2)

F NORM ={−Fz if Fz >0

0 if Fz ≤0
(3)

Fx ={−sgn(νX )δF NORM if |νX | −νd >0

0 if |νX | −νd ≤0
(4)

Therefore test functions have been selected based on the
mentioned aspects in order to ensure the testing of these
characters:

• smaller (marked with D4) and larger (D7) dimensions,

• continuous (C1) and discontinuous (C0),

• with integer (I1) and without integer (I0),

• with random (R1) and without random (R0).

Both of them can be seen in formulae (5) and (6); the rest
assemble from the mixing of presented function tags, the
exact optimum is known, and the various methods (run
with the same conditions) make efforts to find this set as
much as possible. Selected methods run as constrained
optimization, and the test function has been scaled in order
to support unified side constraints -1≤ x ≤ 1, except the
integer parameter, which has 0 ≤ x ≤ 10 ranges. These test
functions can be downloaded from the webpage [34].

The discontinuous (C0) and seven dimension (D7) func‐
tions are more interesting for the present problem. Bearing
in mind the previous facts and assumptions the D7C0R0I1
function is the closest to this simulation system as the
objective function. It is expected that the robot-walking
problem will be effectively optimized with the methods
providing better results for such a test function that has the
same characteristics as the problem. This assumption was
confirmed in this example.

2.2 Optimization benchmark on test functions

Each optimization method was run N=100 times with
various configurations on all test functions. The configura‐
tion refers to some main parameters of a certain optimiza‐
tion method, which was randomly selected in each case (for
example, in the case of GA: generations, population, elite
count, crossover type).

Fig. 2 shows the results in case of four-dimension test
functions, while Fig. 3 and Fig 4 illustrate the seven
dimension cases. The left-bottom corners represent the best
performance, i.e., the better fitness on the horizontal axis
and the smaller number of function calls on the vertical axis.
An acceptance condition was defined, and plotted with a
magenta line. Different performance clouds can be seen in

4 Int J Adv Robot Syst, 2014, 11:186 | doi: 10.5772/59102



cases of various types of functions. There are more methods
reaching acceptable results for the four-dimension problem
(Fig. 2). However, in case of seven dimensions (D7) and
discontinuous (C0) benchmark only the PSO, the PSO-PS
hybrid, and TLBO methods reach really acceptable results
(Fig. 3 and 4). The following findings can be obtained from
the clouds in Fig. 3 and 4:

• The PSO, PSO-PS, and TLBO methods provide the best
stable results for all the discontinuous functions.

• The PSO-PS hybrid method contains the good perform‐
ance of PSO and the stableness of PS. Thus this will be
the best choice for higher dimension problems, especial‐
ly in the case of D7C0R0I1 function (left-top graph in Fig.
4), which is most similar to the current robot model.

• The GL*, PS and DTS methods reach almost the best
results for the continuous functions without random
tags, but in other cases give a lower performance.

• The GA, GA-IK, GSA and SA methods do not reach
acceptable results in any case. The SA method seems to
be the weakest for all types of functions.

• The GA methods reach a lower performance but keep
roughly similar values for different test functions. This
reinforces the problem-independent character of GA.

• The GSA method is excellent only for the continuous
problems without an integer tag, but very weak for the
others.

f D4C0R0I 1(x | x∈R 4)= {| |1 +
10

round (x1) / 10−0.9 | + log2(| x2 + 1.3| + 1)

+
| round (x3)−8|

10 + sign(x4 + 0.4)
| x2≥ −0.3

| |1 +
10

round (x1) / 10−0.9 | + log2(|1.8− x2 | + 1)

+
| round (x3)−8|

10 + sign(x4 + 0.4)
| x2 < −0.3

(5)

f D7C1R1I 0(x |

x∈R 7)= | |1 +
1

x1−0.9 | + (x2 + 0.5)2 + | x3 + 0.2| + rand (1) | x4 + 0.6|

+log2(| x5 + 2| + 1) +
| x6−8|

10 + x7−0.6
| (6)
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Figure 2. Optimization benchmark on functions of four dimensions (D4) and without integer (I0) 
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The results of this benchmark contributed and confirmed
the effectiveness of the selected PSO method as mentioned
in papers [1, 11, 24, 15]. Similar benchmark efforts can be
found in [22] where the PSO also reaches a very good
performance level. In paper [11] a benchmark of optimiza‐

tion methods (ANFIS, PSO among others) was also applied
on a Fuzzy controller, not on the test functions. It also
confirmed the PSO usability for tuning the Fuzzy system.
The pattern search (PS) can refine the result from PSO
(compare PSO and PSO-PS clouds in Fig. 2, 3, 4). It runs
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after PSO and is initialized by the best entities of PSO. Thus,
the PSO-PS pair has become the best method for us.

3. Fuzzy-PI controller

First of all the design of a controller is primarily defined by
the fact that it should be implemented into the microcon‐
trollers of the real Szabad(ka) robot series. This means that
the memory and calculation demand of the controller
should be maintained within certain boundaries. From
another aspect only just the available measured quantities
can be used as input (of a Fuzzy controller) due to the given
sensor interface.

Based on previous research [6, 35] a Fuzzy controller with
some rules is enough for obtaining an improved result
compared with the simple PID controller. One of the key
things is the fact that Fuzzy can include more inputs, while
the PID has only one (the error of control variable). In case
of robot link control it is the angle error, i.e., the difference
between the desired and measured angle. Besides this the
absolute value of the motor current was put into the Fuzzy
inputs; it was possible since the electronics on the Sza‐
bad(ka)-II measures this. A similar solution [10] was found
in the literature; however the authors do not explain the
role of this current feedback. In addition, if required, the
derivative of angle error and the error of angle velocity
could be used as input or the measured angle value might
also be applied in case the controlling behaviour is different
in a certain angle section.

3.1 Fuzzy inputs and outputs

The block diagram in Fig. 5 shows the designed Fuzzy-PI
controlling cycle with the inputs and outputs. The three
selected inputs are: error angle (AERR), error velocity (VERR),
and motor current (IMA), while the two outputs are: pro‐
portional tag of voltage (FzzP), and integrative tag of
voltage (FzzI). A controller system with the same parame‐
ters and conditions should be provided for each 18 DC
motor of the robot. Currently this controller has been
implemented only on the dynamic model of Szabad(ka)-II
robot, when it was tested and optimized.
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3.2 Membership functions and rules

Fig. 6 presents the necessary membership functions (MFs)
and the eight rules defined by the authors, which mostly
determine the controlling character:

• The first rule refers to cases when there is no error angle
and the outputs come near to zero.

• The second rule ensures that if the velocity error is small
then the integration output tends toward zero.

• The third and fourth rules ensure the output activity in
order to decrease the control (angle) error.

• The fifth and sixth rules have an opposite influence to
the third and fourth rules, but only when the motor
current is high. These rules ensure a softer feature of
controlling when the currents or torques are great, and
thus can protect against electrical and mechanical
overload.

• The seventh and eighth rules reinforce the integrative
output activity for decreasing the velocity error when the
motor current is smaller.
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should select the necessary or dominant rules by tuning up
its weights.

2, 3, 4). It runs after PSO and is initialized by the best 
entities of PSO. Thus, the PSO-PS pair has become the 
best method for us.  
 
3. Fuzzy-PI Controller 
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by the fact that it should be implemented into the 
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Figure 5.Fuzzy-PI motor control loop in the dynamic model of 
Szabad(ka)-II robot 
 
3.2 Membership Functions and Rules  
 
Fig. 6 presents the necessary membership functions (MFs) 
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• The first rule refers to cases when there is no error 
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small then the integration output tends toward zero. 
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• The fifth and sixth rules have an opposite influence 

to the third and fourth rules, but only when the 
motor current is high. These rules ensure a softer 
feature of controlling when the currents or torques 
are great, and thus can protect against electrical and 
mechanical overload.  

• The seventh and eighth rules reinforce the 
integrative output activity for decreasing the velocity 
error when the motor current is smaller. 

The logic of these rules has been reinforced by earlier 
research [6], but on the other hand the optimization 
process should select the necessary or dominant rules by 
tuning up its weights. 
 

 
 

Figure 6. Rules of Fuzzy-PI controller: first input column is the 
error angle, second input column is the absolute motor current, 
third column is the error, first output column is the proportional 
tag, and second output column is the integrative tag. 
 

 

Figure 6. Rules of Fuzzy-PI controller: first input column is the error angle,
second input column is the absolute motor current, third column is the error,
first output column is the proportional tag, and second output column is the
integrative tag.

Fig. 7 illustrates the output surfaces of the built Fuzzy-PI
controller, where the aggregated effects of the previously
described rules can be observed.

3.3 Selecting fuzzy-PI parameters for optimization

The number of Fuzzy controller parameters depends on the
number of all MFs and rules. If it is assumed that the
defined rules are suitable, then only the weight of them
count as target parameters. Furthermore there is no need
to count separate parameter values for the symmetric MFs
and rules. According to this the current Fuzzy-PI controller
has 37 parameters in all:
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• 5 method type parameters: AndMethod, OrMethod,
ImpMethod, AggMethod, DefuzzMethod

• 9 MFs x 3 parameters (2 scale values+1 function type
value (trimf or gaussmf))

• weight of 5 rules (8 rules – 3 symmetry)

 

 
 

 
 

Figure 7. Outputs’ surfaces of Fuzzy-PI controller, above the 

proportional output, below the integrative output 
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Despite this the parameters of MFs have been reduced by 

the following method: only the range values of inputs 

and outputs have been changed, thus the internal MFs do 

not change relative to each other. For the modification of 

the range values it is also necessary to convert the 

parameters of the Fuzzy membership functions, for which 

the Fuzzy Toolbox’s strtchmf function can be applied. 

Additionally the MF types have been selected for 

optimization. The Matlab’s built-in Fuzzy Toolbox 

supports more MF types;however, the converting of one 

MF type into a second type is not a trivial task if the 

character is to remain. The Fuzzy Toolbox’s mf2mf 

function also cannot properly convert the MFs in all 

cases. From the original triangle MF (trimf) the gauss MF 

(gaussmf) can be converted in the easiest way, which is 

why only these two types were selected. The MF’s own 

parameters could also be changed, but it is not applied 

now because it needs a more complex solution due to the 

incomparable parameters of the different MF types. 

Table 3 contains the selected 12 main parameters of the 

current Fuzzy-PI controller with the target domains (Min, 

Max columns). 
Parameter Min Max Note 
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Lower 
Upper 
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Upper 

Output 2 (FzzI) range 500 10000 
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Upper 

Output 1 MF’s type 1 2 1-tri 
2-gauss Output 2 MF’s type 1 2 

Rule 1 weight 0 1  

Rule 2 weight 0 1  

Rule 3 and 4 weight 0 1  

Rule 5 and 6 weight 0 1  

Rule 7 and 8 weight 0 1  
 

Table 3. Fuzzy-PI controller parameters and its target 

boundaries 

The MF types of inputs have not been selected for 

optimization, partly because they only slightly influence 

the output surface, and partly because the selected shapes 

were intended. For example, the triangle shapes at 

positive MF and negative MF of angle error (AERR) are 

important for precise control.  
 

4. Results and Comparison 

 

4.1 Simulation  

 

The simulation model was introduced in [3], which is a 

detailed and 3D kinematic and dynamic model of the real 

Szabad(ka)-II hexapod robot, implemented in Simulink 

environment with the help of Robotics toolbox [39]. It 

includes the exact copy of the digital controller with the 

trajectory generator, DC motors and gears, rigid body 

dynamics, the ground contacts as an approximated 

model, ground surface, and in some degree the sensors 

(encoder, current measurement, and accelerometer). 

In the initial state of the chosen simulation case, the 

robot’s bottom point was 1mm above the ground; the legs 

were set to the initial points of the desired trajectories. 

The simulation time was selected for only three seconds 

in order to hasten the runtime as much as possible, but at 

Figure 7. Outputs’ surfaces of Fuzzy-PI controller, above the proportional
output, below the integrative output

Despite this the parameters of MFs have been reduced by
the following method: only the range values of inputs and
outputs have been changed, thus the internal MFs do not
change relative to each other. For the modification of the
range values it is also necessary to convert the parameters
of the Fuzzy membership functions, for which the Fuzzy
Toolbox’s strtchmf function can be applied. Additionally
the MF types have been selected for optimization. The
Matlab’s built-in Fuzzy Toolbox supports more MF types;
however, the converting of one MF type into a second type
is not a trivial task if the character is to remain. The Fuzzy
Toolbox’s mf2mf function also cannot properly convert the
MFs in all cases. From the original triangle MF (trimf) the
gauss MF (gaussmf) can be converted in the easiest way,
which is why only these two types were selected. The MF’s
own parameters could also be changed, but it is not applied
now because it needs a more complex solution due to the
incomparable parameters of the different MF types.

Table 3 contains the selected 12 main parameters of the
current Fuzzy-PI controller with the target domains (Min,
Max columns).

Parameter Min Max Note

Input 1 (A ERR) range 500 10000
Lower
Upper

Input 2 (I MA) upper range 1.0 6.0

Input 3 (V ERR) range 1000 30000
Lower
Upper

Output 1 (FzzP) range 200 5000
Lower
Upper

Output 2 (FzzI) range 500 10000
Lower
Upper

Output 1 MF’s type 1 2 1-tri

Output 2 MF’s type 1 2 2-gauss

Rule 1 weight 0 1

Rule 2 weight 0 1

Rule 3 and 4 weight 0 1

Rule 5 and 6 weight 0 1

Rule 7 and 8 weight 0 1

Table 3. Fuzzy-PI controller parameters and its target boundaries

The MF types of inputs have not been selected for optimi‐
zation, partly because they only slightly influence the
output surface, and partly because the selected shapes were
intended. For example, the triangle shapes at positive MF
and negative MF of angle error (AERR) are important for
precise control.

4. Results and comparison

4.1 Simulation

The simulation model was introduced in [3], which is a
detailed and 3D kinematic and dynamic model of the real
Szabad(ka)-II hexapod robot, implemented in Simulink
environment with the help of Robotics toolbox [39]. It
includes the exact copy of the digital controller with the
trajectory generator, DC motors and gears, rigid body
dynamics, the ground contacts as an approximated model,
ground surface, and in some degree the sensors (encoder,
current measurement, and accelerometer).

In the initial state of the chosen simulation case, the robot’s
bottom point was 1mm above the ground; the legs were set
to the initial points of the desired trajectories. The simula‐
tion time was selected for only three seconds in order to
hasten the runtime as much as possible, but at least to
enable the simulation of one and a half walking cycles. The
ground was even with a 0.9 friction constant. After the
simulation the fitness function runs and calculates the
specified quality of walking based on the simulation results
(robot movements, motor currents, link torques).
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4.2 Optimization results

The results of optimization can be seen in Table 4 for both
controller types (PI and Fuzzy-PI), and for two optimiza‐
tion cases with PSO-PS and PSO methods. The PSO-PS
method was selected for the current optimization case, the
reason described in Chapter 2. The PSO-specific parame‐
ters were: the number of generation was selected to
NG=70, the population size was NP=40, the inertia weight
w=0.9, the cognitive attraction c1=0.5, and the social
attraction c2=1.5. These parameters were selected partly
from the literature [1, 11, 23, 21, 24, 15], partly from own
experience.

Table 5 comprises the detailed partial results of the fitness
evaluation (1). However, the Fuzzy-PI-PSO method seems
to be the best one if only the lowest energy consumption
and the fastest movement is considered. But the lower
accelerations and stability are also important for the
quality, and that is why our fitness function (1) takes into
account all of these properties. In this respect the Fuzzy-PI-
PSO-PS has the best fitness value (without any significant
differences).

Parameter
Fzz-PI Fzz-PI PI PI

PSO-PS PSO PSO-PS PSO
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The cycle’s time duration  1.740 1.733 1.808 1.696 

Length of step 
0.163 0.161 0.168 0.142 

(stride) 

Height of walk trajectory 0.0364 0.0329 0.0397 0.0366 

Lift (A) and cycle 
0.564 0.544 0.574 0.577 

(A+B) ration 

Lowpass FIR filter strength 12 33 93 9 

P
I Proportional   0.454 0.340 

Integral   0.147 0.534 

F
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Input 1 range 5126 6369   

Input 2 upper range 4.4 1.465   

Input 3 range  11682 12103   

Output 1 range 2227 2620   

Output 2 range 2176 6362   

Output 1 MF’s type 2 2   

Output 2 MF’s type 1 2   

Rule 1 weight 0.066 0.234   

Rule 2 weight 0.996 0.281   

Rule 3, 4 weight 0.215 0.496   

Rule 5, 6 weight 0.385 0.258   

Rule 7, 8 weight 0.783 0.502   

Table 4. Optimized walking parameters: trajectory and controllers 

Fitness Property 
Fzz-PI Fzz-PI PI PI 

PSO-PS PSO PSO-PS PSO 

Gear torques  8.71 9.09 8.82 9.12 

Body acceleration  1.77 1.89 1.77 1.80 

Body angular acceleration  16.09 17.09 16.39 17.2 

Energy per meter  41.96 41.05 42.55 42.5 

Loss of height  -3.8e-3 -5.5e-3 -7.7e-3 -7.3e-3 

Mean velocity  0.156 0.163 0.152 0.152 

Fitness value 6.887 6.209 5.644 5.171 

Number of function calls 3872 1442 1776 645 

Table 5. Fitness values and function tags in cases of optimized PI and Fuzzy-PI system. More details can be found in [1]. 

4.3. PI and fuzzy-PI comparison 

Dummy Text Fig. 8 shows the time diagram of the robot movement (BX), velocity (BVX) acceleration (BAMag), and the 

summarized motor currents (ISUM) for five optimized cases: 

 Fuzzy-PI controller optimized with PSO-PS method (red) - the best Fuzzy solution, high fitness obtained by smaller 

energy consumption and smaller acceleration, see Table 5. 

 Fuzzy-PI controller optimized with PSO method (yellow) - the Fuzzy reached a little faster movement than the PI 

besides a roughly same power consumption and body acceleration. This was the main reason for the higher fitness 

value. 

 PI controller optimized with PSO-PS method (blue) – the best PI solution, the details can be seen in Table 5. 
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4.3 PI and fuzzy-PI comparison

Fig. 8 shows the time diagram of the robot movement (BX),
velocity (BVX) acceleration (BAMag), and the summarized
motor currents (ISUM) for five optimized cases:

• Fuzzy-PI controller optimized with PSO-PS method
(red)-the best Fuzzy solution, high fitness obtained by
smaller energy consumption and smaller acceleration,
see Table 5.

• Fuzzy-PI controller optimized with PSO method
(yellow)-the Fuzzy reached a little faster movement than
the PI besides a roughly same power consumption and
body acceleration. This was the main reason for the
higher fitness value.

• PI controller optimized with PSO-PS method (blue) – the
best PI solution, the details can be seen in Table 5.

• PI controller optimized with PSO method (green) – an
interesting trajectory can be observed, very similar to the
best Fuzzy-PI solution

• PI controller optimized with GA previously [1, 5] (grey)
– it is important to present the mentioned typical
hexapod gait problem, i.e., the significant fluctuation of
velocity.

Based on the comparison of these four optimized cases and
the other results obtained during the development it can be
concluded that some solutions reach the high fitness value
by higher speed, while others reach this value by smaller
energy and acceleration. In spite of the difference between
the presented four cases, both control methods in all given
solutions generate high quality walking: the fluctuation of
velocity is relatively small compared to a typical inade‐
quate hexapod walking, illustrated with grey in Fig. 8, and
found in [1, 5, 6]. Mostly the motor currents have different
curves due to the fact that the Fuzzy also includes the
current in the control decision.

The three-dimensional leg trajectory can be seen in Fig. 9,
related to the five mentioned optimized cases in Fig. 8. The
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ellipse-based desired trajectory was also plotted with a
little shift besides the simulated-regulated trajectory. The
simulated-regulated angle curves of three robot leg links
illustrated on the right  follow the desired angle curves

calculated with inverse kinematics. The explanation of the
presented link numeration can be found in Fig. 3 in paper
[36].

 
 

Figure 8.Comparison of optimized walking with PI and Fuzzy-PI controllers: movement (BX) at top-left, velocity (BVX) at bottom-left, 
summarized motor current (ISUM) at top-right, and magnitude of 3D body acceleration (BAMag) at bottom-right 

 

 
Figure 9. Leg trajectory curves of four optimized cases: the desired and simulated trajectory curves (left), simulated angles of three links 

(right)
5. Conclusion 
 
During this research the authors gained experience in the 
field of robot control optimization. A new and more 
widely usable method was created for (pre)selecting the 

potentially best optimization method(s) used for a given 
problem. The test functions for a benchmark were created 
including those mathematical characteristics that are 
interesting or typically describe the examined objective 
function (chapter 2.1). The selection of these 
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5. Conclusion

During this research the authors gained experience in the
field of robot control optimization. A new and more widely
usable method was created for (pre)selecting the potential‐
ly best optimization method(s) used for a given problem.
The test functions for a benchmark were created including
those mathematical characteristics that are interesting or
typically describe the examined objective function (chapter
2.1). The selection of these characteristics was the key point,
since certain methods provide significantly different
performance levels for different test functions with various
characteristics (see chapter 2.2). It can be observed that the
parameters of the optimization method also have an
influence, because the random change of these parameters
formed a cloud for each method (see coloured clouds in
Fig. 2, 3, 4). The best set of these parameters can also
probably be deducted from these benchmark results.

In the current demonstrated case the objective function is
the straight-line walking quality of the Szabad(ka)-II robot
with a Fuzzy controller in virtual simulation space using
the dynamic model. The design vector (parameters to be
optimized) of this system contains both parameters of the
trajectory and the controller. If the optimization methods
were tested directly on this simulation model, the compu‐
tation would take some months (see chapter 1.4) due to the
model’s complexity i.e., it is specifically computationally
expensive [3]. Contrary to benchmarking on fast test
functions this takes a much shorter time: only a few hours.
Thus the optimization of the robot model has been run only
with the benchmark-selected methods. The PSO and PSO-
PS methods were selected as best for the function having
similar characteristics as the robot walking system. The
PSO-PS method proves to be effective compared with the
earlier optimization attempts [1, 4, 5], giving significantly
better results, independent of the controller type (see
chapter 4.2). Previously the GA optimization method was
used for the same walking problem, and the results (fitness)
were significantly worse F=3.78 [1]. This research pointed
to the fact that a suitable method should be found for each
optimization problem, thus reaching the best results
quickly-hopefully the optimum.

Besides, this research also confirmed that a well-defined
Fuzzy type controller is a more customizable motor
controller than a simple PI controller. A relatively simple
Fuzzy-PI controller was constructed based on previous
experience [6] (see chapter 3) in order to implement it into
the microcontrollers of the real robot without any resource
problems. After the optimization procedures - run with
similar conditions - the Fuzzy-PI controller reached nearly
22% better walking quality (FFZZ=6.88/FPI=5.64 ≅ 1.22). Of
course, the obtained controller itself is not sufficient to
drive the robot with various gaits and on various terrains,
and was not tested yet on the hardware. Nevertheless the
current attempt shows the way to the optimal, Fuzzy-based
robot motion controller.

The well-defined quality formulation and proper weight‐
ing of fitness function tags (objectives) are important
according to our experience. The next major research task
intends to focus on the following issues: which simulation
cases and fitness functions can result in such a trajectory
and controller that ensures similar effective functioning,
which is robust for various environmental influences.
These environmental parameters are the robot weight,
walking direction, type and slope of the ground, etc.
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