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Abstract Detection and tracking strategies based on 
monocular vision are proposed for autonomous aerial 
refuelling tasks. The drogue attached to the fuel tanker 
aircraft has two important features. The grey values of 
the drogue’s inner part are different from the external 
umbrella ribs, as shown in the image. The shape of the 
drogue’s inner dark part is nearly circular. According to 
crucial prior knowledge, the rough and fine positioning 
algorithms are designed to detect the drogue. Particle 
filter based on the drogue’s shape is proposed to track the 
drogue. A strategy to switch between detection and 
tracking is proposed to improve the robustness of the 
algorithms. The inner dark part of the drogue is 
segmented precisely in the detecting and tracking process 
and the segmented circular part can be used to measure 
its spatial position. The experimental results show that 
the proposed method has good performance in real-time 
and satisfied robustness and positioning accuracy. 
 
Keywords Positioning, Monocular Vision, Visual 
Detection, Visual Tracking, Particle Filter, Aerial 
Refuelling 
 

1. Introduction 
 
Aerial refuelling, also referred to as in-flight refuelling 
(IFR) or air-to-air refuelling (AAR), is an operation 
whereby fuel is transferred from one aircraft (the tanker) 
to another aircraft (the receiver) during flight. IFR is an 
important method for extending the flying distance and 
speed of the aircraft and is widely used in military 
aircraft. In unmanned aerial vehicles (UAV), autonomous 
air-to-air refuelling is needed to ensure flight endurance. 
There are two kinds of hardware configurations used for 
aerial refuelling: the first configuration, called the boom-
and-receptacle refuelling system, includes a rigid boom 
extending from the tanker aircraft, with a probe and 
nozzle at its distal end. The boom also includes airfoils 
controlled by a boom operator stationed on the refuelling 
aircraft. The airfoils allow the boom operator to actively 
manoeuvre the boom with respect to the receiver aircraft, 
which flies in a fixed refuelling position below and aft of 
the tanker aircraft [1-5]. The second configuration, called 
the probe-and-drogue refuelling system, includes a 
refuelling hose which has a drogue deposited at its end 
trailed behind the tanker aircraft and a probe installed on 
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the receiver aircraft. The probe must be placed or docked 
into the drogue in order to refuel successfully [6-9]. 
Autonomous aerial refuelling relies on three key 
technologies: target detection, tracking and measurement, 
in order to allow the receiver aircraft to determine control 
strategies to enable a robust and safe approach and 
coupling. The attempt described in this paper is to 
provide detection and tracking strategies for the probe-
drogue autonomous aerial refuelling based on monocular 
vision.  
 
In this paper, the drogue’s detection and tracking 
strategies based on monocular vision are proposed for 
autonomous aerial refuelling tasks. Two important 
features of the drogue are used to design the detection 
and tracking strategies. The first feature is that the grey 
values of the drogue’s inner part are almost the same 
and are different from the external umbrella ribs. The 
second feature is that the shape of the drogue’s inner 
dark part is nearly circular. The drogue’s detection 
algorithm includes two parts: the drogue’s rough 
location algorithm and the drogue’s fine positioning 
algorithm. The rough location algorithm is used to 
define the potential regions in which the drogue may be 
located, while the drogue’s fine positioning algorithm is 
used to find the drogue in the potential regions 
accurately if the drogue is in the image. Particle filter is 
widely used in target tracking because of its robustness 
[10-13]. A new particle filter algorithm based on the 
drogue’s shape was proposed to track the drogue. In the 
new particle algorithm, unique principles of state 
transition are defined to ensure tracking robustness even 
when the drogue’s position or size changes significantly 
in two adjacent frames. A switch strategy between 
detection and tracking was proposed to improve the 
algorithm’s robustness, which provides the link between 
detection and tracking. This is critical when the tracking 
has failed or the drogue is not in the image. 
 
The paper is organized as follows. Section 2 gives an 
introduction to previous works. Section 3 describes the 
drogue’s detection strategy. Section 4 describes the 
drogue’s tracking strategy. Section 5 describes the switch 
strategy between detection and tracking. Section 6 
presents the experimental results and Section 7 concludes 
the main points of the research. 
 
2. Previous Works 
 
Machine vision methods used for autonomous aerial 
refuelling tasks are becoming increasingly popular 
[6,7,14-17]. Advantages of using machine vision methods 
for autonomous aerial refuelling tasks include the 
potential for installation without modification being 
required to the target aircraft and increased measurement 
precision. 

 
 Figure 1. The probe-and-drogue refuelling system 
 
The researchers have developed a variety of different 
machine vision method for the probe-drogue 
autonomous aerial refuelling system (shown in Figure 1). 
John Valasek et al. [6] developed a vision-based 
navigation sensor and system for autonomous aerial 
refuelling tasks. For application to the endgame docking 
problem of automated aerial refuelling of aircraft, a 
VisNav sensor (a position-sensing diode) was mounted 
on a receiver aircraft and a set of LED beacons were 
mounted on a drogue being trailed from a tanker aircraft. 
When light energy from an individual beacon on the 
drogue was focused on the surface of the position-sensing 
diode, it generated an electrical current, which was 
measured with four pickoff leads, one on each side. The 
six-degrees-of-freedom position and attitude of the sensor 
aircraft with respect to the drogue can be computed by 
the four position-sensing signals. The main disadvantage 
of the method proposed in [6] is that some modifications 
to the tanker equipment must be made to provide 
electrical power for beacons, since there is no such power 
in the hose to which the drogue is attached. Fravolini et al. 
[18] proposed a docking control scheme for autonomous 
aerial refuelling of UAVs using a probe-drogue refuelling 
system. The docking control scheme was based on a 
fuzzy sensor fusion strategy featuring GPS and machine 
vision data. The GPS was used to measure the relative 
position between the tanker and the receiver and the 
machine vision was used to measure the relative camera-
drogue distance. Some markers were placed in the 
drogue to measure its position and orientation. However, 
GPS receivers may be affected by interference from 
electronic devices and GPS signals may be blocked by the 
tanker. Lorenzo Pollini et al. [19] placed light emitting 
diodes (LEDs) on the drogue and used a CCD webcam 
with an infra-red filter to identify the LEDs. Hager and 
Mjolsness’s (LHM) algorithm [20] was used to determine 
iteratively the translation vector as well as the 
transformation matrix between the 3D reference systems 
on the object and the camera, respectively. As in [6], the 
main disadvantage in [19] is that some modifications to 
the tanker equipment are required. Carol Martinez et al. 
[7] proposed a vision-based strategy for autonomous 
aerial refuelling tasks. The proposed strategy consisted of 
four stages: detection, initialization, tracking and 3D 
position estimation. The detection stage was composed of 
two algorithms: one based on edge-image template 
matching using the normalized cross correlation (NCC) 
method, and the second based on image threshold 
segmentation. The detection method is time-consuming 
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because the drogue images with different variations, such 
as scale, illumination and position, must be contained in 
the template images. It is impossible to contain all the 
conditions of the drogue in the template images, so in 
order to decrease the failure of detection, an experience 
threshold was used to segment the image to detect the 
inner part of the drogue when the edge-image template 
matching method failed. However, the experience 
threshold is hard to define because the illumination of the 
scene may change significantly. The tracking algorithm 
was a Hierarchical Multi-Parametric and Multi-
Resolution implementation of the Inverse Compositional 
Image Alignment technique HMPMR-ICIA [21].
 
3. Detection Strategy 
 
3.1 Rough Location of the Drogue 
 
The aim of rough location is to define the potential 
regions in which the drogue may be located. According to 
prior knowledge, the rough location stage is composed of 
two algorithms: this first based on image segmentation 
using a series of thresholds, and the second based on 
contour features of the image regions segmented by 
image segmentation using a series of thresholds. 
 
It is impossible to define an accurate experience threshold 
used to segment the image to detect the inner part of the 
drogue because the illumination of the scene may change 
significantly. So a series of thresholds are used to segment 
the same image, as follows: 
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where f is the input images, F is the set of output images 
which include {gT0, gT1, …, gTN-1}. {T0, T1, …, TN-1} are a 
series of thresholds used to segment the input image, as 
follows: 

0kT T k T= + Δ                                    (4) 
 
where ΔT is an increment of the threshold.  

 
Then all the contours of the output images are extracted, 
and the set of the contours is expressed as C = {c0, c1, …, cn-

1}. The contour of the inner part of the drogue is nearly 
circular, so aspect ratios of the minimum enclosing 
rectangles of contours are used to define the potential 
contours of the drogue from the set C, as follows: 
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where Ratio(ci) is the aspect ratios of the minimum 
enclosing rectangle of the contour and TRatio is threshold of 
the aspect ratios of the minimum enclosing rectangle. L(ci) 
is the length of the minimum enclosing rectangle, TL1 is 
the lower bound of the length of the minimum enclosing 
rectangle and TL2 is the upper bound of the length of the 
minimum enclosing rectangle. W(ci) is the width of the 
minimum enclosing rectangle, TW1 is the lower bound of 
the width of the minimum enclosing rectangle and TW2 is 
the upper bound of the width of the minimum enclosing 
rectangle. 0 1 1{ , , , }nC c c c ′−′ ′ ′ ′=  is the set of the drogue’s 
potential contours, that is to say, the position in which the 
drogue is located can be obtained from the positions of C′ . 
 
In order to improve the speed of detection, the Multi-
Resolution (MR) hierarchical structure [22] is used. The 
MR structure is created by repeatedly downsampling the 
images by a factor of two in order to create the different 
levels of the pyramid. The number of levels pL is defined, 
taking into account the size of the drogue in the image. 
The general idea of the acceleration strategy is that the 
rough location of the drogue is conducted at the lowest 
resolution level. The advantage of using the MR structure 
is that many small error contours will not be segmented 
out at low resolutions. 
 
3.2 Fine Positioning of the Drogue 
 
3.2.1 Location of Edge Points of the Drogue’s Inner Dark Part 
 
To every contour in the set of C′ , the circular least-square 
fitting [23] is used to obtain the contours’ centres, as 
follows: 
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where (cicentX, cicentY) are the coordinates of the centre of the 
contour ic′ and (xi, yi) is the point in the contour ic′ . Some 
contours in the set 0 1 1{ , , , }nC c c c ′−′ ′ ′ ′=  may belong to the 
same object because a series of thresholds are used to 
segment the same image. Thus, the distance between 
different contours in the set C′ can be used to eliminate 
unnecessary contours, as follows: 
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where Td is a threshold for eliminating unnecessary 
contours, { }0 1 1

, , , l
l l l l

n
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−
=  is the set of contours after 

eliminating unnecessary contours and the function u(t) is 
defined in (9). The set of the centres of contours Cl can be 
expressed as { }0 1 1, , ,

lc n
cent cent centC c c c −=  . 

 

 
Figure 2. Location of edge points of the drogue’s inner dark part. 
 

 
Figure 3. Three coordinate systems 
 
In order to obtain the location of edge points of the 
drogue’s inner dark part, some half-lines are assumed to 
start at the point ( ( )12 pL− *cicentX, ( )12 pL− *cicentY) in the set Cc at 
the highest resolution level, and extend outward. The 
amplification coefficient from the lowest resolution level 
to the highest resolution level is ( )12 pL− , and pL is the 

number of levels of the pyramid. The angles between 
adjacent half-lines are equal. A small rectangle moves 
along every half-line, and the small rectangle is divided 
into two equal rectangles. The one near the point ( ( )12 pL−

*cicentX, ( )12 pL− *cicentY) is called the interior rectangle, while 
the other, further from the point ( ( )12 pL− *cicentX, ( )12 pL− *cicentY), 
is called the exterior rectangle. The ratios of the sum of 
the pixel values in the exterior rectangle to the sum of the 
pixel values in the interior rectangle are calculated when 
the small rectangle is moved along every half-line. All the 
ratios in the same half-line are compared to each other to 
find the position in which the ratio of the small 
rectangle’s two parts is maximal, as follows: 
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where p is the point in the half-line k, ( )Ratio p is the ratio 
of the point p in the half-line k and maxk

p is the position 

corresponding to the maximal ratio in the half-line k. 
Then, the edge points corresponding to the jth contour in 
the set Cl or the jth centre in the set Cc can be expressed as
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Most of directions of the half-lines are neither horizontal 
nor vertical, so coordinate transformations are used to 
calculate the coordinates of small rectangles in half-lines 
whose directions are not horizontal or vertical. Figure 3 
shows three coordinate systems; the coordinate system 
(X0, Y0) is centred on the upper-left corner of the image, 
the X0 axis points to the right horizontally and the Y0 axis 
points vertically downwards. The coordinate system (X1, 
Y1) is centred at the point (x1, y1) which is the translation 
relative to the point O0. The X1 axis is parallel to the X0 
axis and the Y1 axis is parallel to the Y0 axis, but their 
directions are opposite. The coordinate system (X2, Y2) is 
centred at the point (x1, y1). The X2 axis overlaps with the 
half-line i and the Y2 axis is perpendicular to the X2 axis. 
 
The coordinates of the point A are (a0, b0) in the 
coordinate system (X0, Y0), (a1, b1) in the coordinate 
system (X1, Y1) and (a2, b2) in the coordinate system (X2, 
Y2). The relationship between (a1, b1) and (a2, b2) is: 
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and the relationship between (a0, b0) and (a1, b1) is: 
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From (14) and (15), the relationship between (a0, b0) and 
(a2, b2) can be obtained as follows: 
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The parameter θ is the angle between the X1 axis and the 
X2 axis. The coordinates of points in the coordinate 
system (X0, Y0) can be calculated by equation (16) if the 
coordinates in the coordinate system (X2, Y2) are known 
in advance. 
 

 
Figure 4. The rectangle Recti used to calculate the integral image 
 
In order to improve the computing speed, the integral 
image is used to calculate the ratio of the small rectangle’s 
two parts. The Recti in Figure 3 and Figure 4 is the 
rectangle that is used to calculate the integral image in the 
half-line i. The height of the rectangle Recti is the same as 
the heights of the small rectangles which move along the 
half-lines in Figure 2: all are H. The widths of the small 
rectangles are W and the width of the rectangle Recti is 
W+Ns. Ns is the moving time of the small rectangle in 
every half-line. The integral image of the rectangle Recti is 
calculated as follows: 
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where s(y) is the sum of the y-th column pixels, ii(H, y) is 
the value of the last line of the integral image. In Figure 4, 
l1 is the boundary of the small rectangle’s two parts, l2 is 
the left side of the small rectangle and l3 is the right side 
of the small rectangle. The value of the integral image at 
location 2 is the sum of the pixels in rectangle A. The 
value of the integral image at location 1 are the sum of the 
pixels in rectangle A+B and the value of the integral 
image at location 3 is the sum of the pixels in rectangle 
A+B+C. Therefore, the sum of the pixels in rectangle B is 
ii1- ii2 and the sum of the pixels in rectangle C is ii3- ii1. 
The ratio of the small rectangle’s two parts is (ii3- ii1)/ (ii1- 
ii2), while ii1, ii2, ii3 are the values of the integral image at 
locations 1, 2 and 3 respectively. 
 
3.2.2 Getting Rid of the Bad Edge Points Using Vector Angles 
 
The bad edge points of the drogue’s inner dark part may 
be detected because of image noise or the partial 
occlusion of the drogue. Assume that the detected edge 
points of the drogue’s inner dark part are the red points 
{1, 2, …, 16} shown in Figure 5. We define the vectors as  
{1 2


, 2 3


, …, 15 16
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, 16 1


}. As shown in Figure 5, the 

vector angle θ1 of the detected edge point 1 is the angle 
between the vector 16 1


 and the vector 1 2


 . The vector 

angle θ7 of the detected edge point 7 is the angle between 
the vector 6 7


 and the vector 7 8


. In the same way, we 

can obtain other vector angles. The types of the bad edge 
points are diverse, but the bad edge points which own 
larger vector angles are representative. In Figure 5, the 
points 4, 8, 13 and 15 are the typical bad edge points 
which produce larger vector angles. The vector angles can 
therefore be used to get rid of the bad edge points, as 
follows: 
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where P={p0, p1, …, pn1} is the set of the remaining edge 
points after getting rid of the bad edge points using 
vector angles, np is the number of the edge points detected 
in Section 3.2.1, n1 is the number of the remaining edge 
points after getting rid of the bad edge points using 
vector angles, θT is the threshold of the vector angles, θi is 
the vector angle of the edge point and the function u(t) is 
defined in (9). The bad edge points 4, 8, 13 and 15 in 
Figure 5 can be eliminated by equation (18). 
 

 
Figure 5. Vector angles of edge points 
 
3.2.3 Location of the Drogue Using RANSAC 
 
The styles of the bad edge points are diverse, so some bad 
edge points cannot be eliminated by vector angles. For 
example, the bad point 9 in Figure 5 cannot be eliminated 
by the vector angle because the vector angle θ9 is less 
than the threshold θT of the vector angles. The shape of 
the drogue’s inner dark part is nearly circular, so good 
edge points can be determined by this prior knowledge. 
RANSAC [24], an abbreviation for “random sample 
consensus”, is an iterative method to estimate parameters 
of a mathematical model from a set of observed data 
which contains outliers. Each contour l

ic in the set of lC

corresponds to a set Pi={pi0, pi1, …, pin1} of the remaining 
edge points after getting rid of the bad edge points using  
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Figure 6. Location of the drogue using RANSAC 
 
vector angles. The good edge points of Pi of the contour l

ic
can be determined by the RANSAC method. The weight 
Wimax is defined as the number of good edge points of Pi of 
the contour l

ic and Wimax can be explained as a posteriori 
probability, also expressible as the probability of the 
contour l

ic being the contour of the drogue. Then the 
contour *

lc with the highest probability Wmax is identified, 
as follows: 
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A threshold TW is used to define whether the set lC
includes the contour of the drogue, as follows: 
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where S is the state of detection, S=1 indicates there is a 
drogue in the image and S=0 indicates there isn’t a 
drogue in the image. The pseudo-code of the algorithm 
for location of the drogue using RANSAC is presented in 
Figure 6. 
 
4. Tracking Strategy 
 
The tracking algorithm is based on particle filters which 
are sequential Monte Carlo methods [25] based on point 

mass. Particle filters are suitable for any non-linear 
system that could be represented by a state model. The 
tracking object is the inner dark part of the drogue in the 
tracking algorithm, so the centre of the inner dark part of 
the drogue can be defined as the state xt of the drogue at 
time t. 
 
4.1 Selection of Particles and State Transition 
 
The disturbance of the drogue is uncertain when in the 
air, so it is hard to establish the accurate motion model of 
the drogue during air-to-air refuelling. The state xt-1 of the 
drogue at time t-1 is selected as the particle at time t. The 
number of the particle is Nin+ Nex. Nin is the number of 
particles called interior particles whose range of state 
transition is limited to the interior of the circle Ccir whose 
centre is xt-1 and radius is r, while Nex is the number of 
particles called exterior particles whose range of state 
transition is limited to some half-lines in the exterior of 
the circle Ccir. In Figure 7, the half-lines to which exterior 
particles whose range of state transition is limited are 
assumed to start at the position which is l away from the 
centre xt-1, and extend outward. The angle between two 
adjacent half-lines is θ and the distance between two 
adjacent exterior state transition particles in the same 
half-line is sΔ . The process of state transition of inner 
particles is as follows: 
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where ink

tx is the interior state transition particle, ( ),in ink k
t tX Y

is the coordinate of ink
tx , Rran is a random variable which 

obeys a uniform distribution U (0, r), ranθ is a random 
variable which obeys a uniform distribution U (0, 2π ) and 
(Xt-1, Yt-1) are the coordinates of xt-1. The process of state 
transition of exterior particles is as follows: 

 

 
Figure 7. Principles of state transition 
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                        (22) 

 
where exij

tx is the exterior state transition particle which is 
the jth particle in the ith half-line, ( ),ex exij ij

t tX Y is the 

coordinate of exij
tx . 

 
4.2 Particle weights and posterior probability 
 
The particle weights of state transition particles in Section 
4.1 can be calculated through the following steps: 
1) Obtain the set { }10 1

max max max max, , , p

j j j j

nP p p p −=  corresponding 

to the jth state transition particles with the same 
technique in Figure 2. 

2) Eliminate the bad edge points of every set max j
P using 

vector angles with the same method in Section 3.2.2, 
and the remaining edge points of the set max j

P can be 

expressed as { }1 10 1, , , n
j j j jP p p p −=  . 

3) Calculate weights of state transition particles using 
the RANSAC method with the same method in Sec-
tion 3.2.3, and the weight of jth state transition parti-
cle can be expressed as Wjmax. 

4) A threshold TP is used to get rid of bad state transi-
tion particles as follows: 
 

max max
max

max0

j j
j P

j
P

W W T
W

W T
 ≥=  <

                           (23) 

 
5) Calculate the state weight at time t and normalize the 

weights of state transition particles as follows: 
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=
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                               (24) 

 
where Wt is the weight of the state xt used to access the 
performance of tracking. The posterior probability at time 
t can be understood as the drogue’s state xt and the 
drogue’s state xt can be calculated as follows: 
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
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                                  (25) 

 
where ( Xt, Yt ) are the coordinates of the drogue’s state xt, 
( Xit, Yti) are the coordinates of the state transition 
particles, rit is the radius calculated with the same method 

in Section 3.2.3 corresponding to the ith state transition 
particles and rt is the radius of the inner dark part of the 
drogue at time t. 
 
5. Switch Strategy between Detection and Tracking 
 
The detection stage must be enabled automatically to 
detect the drogue either at the start of the run or when the 
drogue has gone out of the field of view of the camera, or 
alternatively because the tracking algorithm has failed to 
track the drogue. Therefore, performance assessment 
criteria should be defined to switch between detection 
algorithm and tracking algorithm. The detection and 
tracking algorithm is initiated with a lost status L=1(i.e.. 
no drogue has been detected). The detection algorithm is 
then enabled to find the drogue. The drogue is detected 
successfully when the state of detection S=1 in Section 
3.2.3, then the lost status is L=0 and the tracking algorithm 
is enabled. The performance assessment criteria of the 
tracking algorithm can be defined according to the 
weights of the drogue’s states in ks successive frames as 
follows: 

1

( ( ))
st k

i
t

i t
L u W Tδ

+ −

=

= −                              (26) 

 

where δ(t) is defined in (3), u(t) is defined in (9), Wi is the 
state weight at time I and Tt is a fixed threshold. If the lost 
status is L=0, the tracking algorithm continues running. If 
the lost status is L=1, the tracking algorithm is stopped 
and the detection stage is enabled in the region of interest 
(ROI) of the image. The lost status is L=0 and the tracking  
 

 
Figure 8. The proposed visual detecting and tracking system for 
air-to-air refuelling 
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algorithm is enabled if the drogue is detected successfully, 
otherwise the lost status is L=1 and the detection stage is 
enabled in all regions of the image. The process of the 
strategy for switching between detection and tracking is 
shown in the proposed visual detecting and tracking 
system for air-to-air refuelling in Figure 8. 
 
6. Experimental Results 
 
In this section, experiments were conducted on the real 
drogue of air-to-air refuelling at different air scenes. 
The performance of our method was compared to the 
performance of the algorithm proposed by Carol 
Martinez et al. [7]. Three experiments were carried out 
to detect and track different drogues at different air 
scenes. Speed of processing and percentage of correct 
location are compared between Carol Martinez’s 
method and ours. The speed indicators were the 
average time tfave of processing each image, the 
maximum time tmax, the minimum time tmin and the 
average time tave between the adjacent outputs when 
the drogue was in the image. The percentages of 
correct location are compared between Carol 
Martinez’s method and ours at different location error 
thresholds. The proposed algorithm was developed in 
C++ and the OpenCV libraries were used for managing 
image data and the experiments were carried out on a 
PC with a AMD Athlon (tm) II X4 645 Processor and a 
3.1GH clock. 
 

 
Figure 9. Edge templates at air scene 1 in the method of Carol 
Martinez et al 
 

 
Figure 10. Nine result frames at air scene 1 in our method 
 

 
Figure 11. The processing time at the air scene 1 
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6.1 At Air Scene 1 
 
125 frames of images with 1440×900 pixel size were 
used in the experiment at air scene 1. The experimental 
data were obtained from the website 
http://www.youtube.com/watch?v=nWmFpLVl8MQ. 
Eleven edge templates as shown in Figure 9 were used to 
find the drogue in the lowest resolution image in the 
image pyramid, the number of pyramid levels was pL=3 
and the threshold used to segment the image was 85 in 
Carol Martinez’s method [7]. In our method, the number 
of pyramid levels in the application was pL=3, the lowest 
threshold was T0=20, the number of thresholds was k=53 
and the increment of the threshold was ΔT=3 in equation 
(4), The aspect ratio was TRatio=0.7, the lower bound of the 
length of the minimum enclosing rectangle was TL1=4 and 
the upper bound of the length of the minimum enclosing 
rectangle TL2 was equal to one third of the image’s height 
in (6). The lower bound of the width of the minimum 
enclosing rectangle was TW1=4 and the upper bound of the 
width of the minimum enclosing rectangle TW2 was equal 
to one third of the image’s width in (7) and (8). The 
threshold for eliminating unnecessary contours was 
Td=1.5 in (12); the number of the half-lines corresponding 
to each contour was 20, the length of each half-line was 60, 
the height of the small rectangle was three and the width 
of the small rectangle was eight in Section 3.2.1, The 
threshold of the vector angles was θT =80° in (18); the 
threshold TW was 15 in (20); the number of samples was 
ns=5 and the threshold Tr was six in the pseudo-code in 
Section 3.2.3, The number of interior particles was Nin=20, 
the number of exterior particles was Nex=45, the radius of 
the circle Ccir was 15 and the parameter l was 15. The 
distance between two adjacent exterior state transition 
particles in the same half-line was Δs=22. Three exterior 
particles were in the same half-line and the angle between 
two adjacent half-lines was θ=24° in 4.1. The threshold TP 
was 15 in 4.2; the threshold Tt was 15 in Section 5. 
 
Nine result frames in our method are shown in Figure 10. 
The magnified target is displayed in the top-right corner 
of the frame in Figure 10. The green circle segmented in 
detecting and tracking process is the inner dark part of 
the drogue, the white point is the green circle’s centre and 
the red points are the state transition particles in Figure 
10. The comparison of processing time of each frame 
between our method and the method of Carol Martinez et 
al. is shown in Figure 11. The processing time of each 
frame in our method is clearly less than the processing 
time in the method of Carol Martinez et al. The 
processing time in our method is not affected by the scale 
of the drogue in the image. In Figure 11, the cyan triangle 
is the detection time (about 16ms) in ROI in the 116th 
frame and the nine magenta pentagrams stand for the 
detection time (less than 172ms) in the whole images in 
our method. The green squares represent the time in 

which no data is output (or the algorithm thinks there is 
no target in the frame) in Carol Martinez’s method. As 
shown in Figure 11, no data is output from the 32th frame 
to the 39th frame, though the targets in these frames are 
clear in Carol Martinez’s method, while our method gives 
the drogue’s positions in the entire frames. In the method 
of Carol Martinez et al., the processing time is affected by 
the size of the reference image. The detecting algorithm 
finds the first reference image with pixel size 213×206 in 
the 0th frame as shown in Figure 11 and the average 
tracking time corresponding to the first reference image is 
1099.5ms. The detecting algorithm finds the second 
reference image with pixel size 217×213 in the fifth frame 
as shown in Figure 11 and the average tracking time 
corresponding to the second reference image is 1163.3ms. 
The detecting algorithm finds the third reference image 
with pixel size 246×254 in the 40th frame as shown in 
Figure 11 and the average tracking time corresponding to 
the second reference image is 1555.4ms. The speed 
indicators in our method are better than the method of 
Carol Martinez et al. as shown in Table 1. The percentage 
of correct location in the method of Carol Martinez et al. is 
less than 30%; in our method it is 100% when the location 
error threshold is five pixels, as shown in Figure 18. 
 
6.2 At Air Scene 2 
 
One hundred and ninety frames of images with pixel size 
1440×900 were used in the experiment at air scene 2. The 
experimental data were obtained from the website 
http://www.youtube.com/watch?v=cG6rMZF6mIw. The 
appearance of the drogue at air scene 2 was different 
from the appearance of the drogue at air scene 1, but both 
had the two important features. Eleven edge templates 
were used to find the drogue as shown in Figure 12 and 
the threshold used to segment the image was 40 in Carol 
Martinez’s method. The parameters in our method are the 
same as the parameters in Section 6.1. Nine result frames 
are shown in Figure 13 and the processing time of each 
frame is shown in Figure 14 in our method. The 
processing time of each frame in our method is clearly 
less than the processing time in the method of Carol 
Martinez et al. as shown in Figure 14. 
 

 
Figure 12. Edge templates at air scene 2 in the method of Carol 
Martinez et al 
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Figure 13. Nine result frames at air scene 2 in our method 
 
In Figure 14, the seven cyan triangles are the detection 
time in ROI and the 11 magenta pentagrams stand for the 
detection time in the whole frames in our method. The 
detection time represented as the black pentagrams in 
Figure 14 in Carol Martinez’s method is obviously greater 
than the detection time in our method. The green squares 
are the time in which no data is output in Carol 
Martinez’s method. As shown in Figure 14, no data is 
output from the 121th frame to the 129th frame and a 
wrong target is detected and tracked from the 130th 
frame to the 136th frame. This is probably because the 
drogue is partially occluded. In our method, only in the 
138th frame is no data output. The speed indicators in our 
method are better than the method of Carol Martinez et 
al., as shown in Table 1. The percentage of correct  
 
 

location in the method of Carol Martinez et al. is less than 
20%, while in our method it is near 80% when the location 
error threshold is five pixels, as shown in Figure 18. 
 
6.3 At Air Scene 3 
 
123 frames of images with 1440×900 pixel size were 
used in the experiment at air scene 3. The experimental 
data were obtained from the website 
http://www.jokeroo.com/videos/cool/aerial-refueling.html. 
The appearance of the drogue at air scene 3 was different 
from the appearance of the drogues at air scene 1 and air 
scene 2, but all of them had two important features. 
Eleven edge templates were used to find the drogue as 
shown in Figure 15 and the threshold used to segment the 
image was 50 in Carol Martinez’s method. The 
parameters in our method are same to the parameters in 
Section 6.1. Nine result frames are shown in Figure 16 
and the processing time of each frame in our method is 
shown in Figure 17. The processing time of each frame in 
our method is clearly less than the processing time in the 
method of Carol Martinez et al. as shown in Figure 17 
since the HMPMR-ICIA [21] algorithm adopted by Carol 
Martinez is a time-consuming iterative optimization 
method during tracking. The speed indicators in our 
method are better than the method of Carol Martinez et al., 
as shown in Table 1. The percentage of correct location in 
the method of Carol Martinez et al. is less than 70%, while 
in our method it is more than 80% when location error 
threshold is five pixels, as shown in Figure 18. 

 
Figure 14. The processing time at air scene 2 
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Figure 15. Edge templates at air scene 3 in the method of Carol 
Martinez et al 
 

 
 

Figure 16. Nine result frames at air scene 3 in our method 
 

 
Figure 17. The processing time of each frame at air scene 3 
 

Scene and Method tfave(ms) tmax(ms) tmin(ms) tave(ms)
Scene 

1 
Our method 45.3 172 16 45.3 

Carol Martinez 1346.2 9346 297 1362.1 
Scene 

2 
Our method 42.9 282 ≤1 43.1 

Carol Martinez 588.5 18828 78 631.7 
Scene 

3 
Our method 38.1 141 ≤1 38.1 

Carol Martinez 288.4 1513 234 288.4 

Table 1. Comparison of processing time 
 

 

Figure 18. Percentages of correct location at different location 
error thresholds 
 
7. Conclusions 
 
Detecting and tracking strategies for aerial refuelling 
tasks based on monocular vision were proposed. 
According to the drogue’s prior knowledge, multi-
threshold segmentation and shape-distinguishing 
arithmetic were used to detect the drogue. Multi-
threshold segmentation decreased the rate of missed 
detection and the figure-distinguishing arithmetic 
pinpointed the drogue’s position precisely. A new 
particle filter algorithm based on the drogue’s shape was 
proposed to track the drogue. In the new particle 
algorithm, unique principles of state transition are 
defined to ensure tracking robustness even when the 
drogue’s position or size change significantly in two 
adjacent frames. A strategy of switching between 
detection and tracking was proposed and the switching 
strategy enhanced robustness of our method. In the 
method, the inner dark part of the drogue was segmented 
precisely in the detecting and tracking process and the 
segmented circular part can be used to measure the 
spatial position of the drogue. The speed of the proposed 
method is fast, is less affected by the size of the drogue in 
the image and it is highly accurate. In the future, we will 
try to use the segmented circular part to measure the 
position of the drogue in Cartesian space based on 
monocular vision by the method of combing the 3D 
model of the drogue and the imaging principle. 
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