Advances in Electrical and Computer Engineering

Volume 17, Number 1, 2017

Efficient FPGA Implementation of High-
Throughput Mixed Radix Multipath Delay
Commutator FFT Processor for MIMO-OFDM

Mohammed DALI**, Abderezak GUESSOUM?, Ryan M. GIBSON?,
Abbes AMIRA™*®, Naeem RAMZAN*
'Research Laboratory in Electrical Engineering and Automatic, University of Medea,26000, Algeria
Department of Electronics Engineering, University of Blida, 09000, Algeria
3School of Engineering and Built Environment, Glasgow Caledonian University, G4 0BA, UK
*School of Engineering and Computing, University of the West of Scotland, Paisley, PA1 2EB, UK
*Department of Computer Science and Engineering, Qatar University, Doha, 2713, Qatar
*dali. mohamed @univ-medea.dz

Abstract—This article presents and evaluates pipelined
architecture designs for an improved high-frequency Fast
Fourier Transform (FFT) processor implemented on Field
Programmable Gate Arrays (FPGA) for Multiple Input
Multiple Output Orthogonal Frequency Division Multiplexing
(MIMO-OFDM). The architecture presented is a Mixed-Radix
Multipath Delay Commutator. The presented parallel
architecture utilizes fewer hardware resources compared to
Radix-2 architecture, while maintaining simple control and
butterfly structures inherent to Radix-2 implementations. The
high-frequency design presented allows enhancing system
throughput without requiring additional parallel data paths
common in other current approaches, the presented design can
process two and four independent data streams in parallel and
is suitable for scaling to any power of two FFT size N. FPGA
implementation of the architecture demonstrated significant
resource efficiency and high-throughput in comparison to
relevant current approaches within literature. The proposed
architecture designs were realized with Xilinx System
Generator (XSG) and evaluated on both Virtex-5 and Virtex-7
FPGA devices. Post place and route results demonstrated
maximum frequency values over 400 MHz and 470 MHz for
Virtex-5 and Virtex-7 FPGA devices respectively.

Index Terms—Fast Fourier Transform (FFT), Field
Programmable Gate Arrays (FPGA), MIMO, OFDM, parallel
architecture.

I. INTRODUCTION

Multiple Input Multiple Output-Orthogonal Frequency
Division Multiplexing (MIMO-OFDM) is considered as one
of the most promising solution to achieve high-throughput
in today’s wireless communication systems. It is based on
combining Multiple Input Multiple Output (MIMO) signal
processing techniques [1] with Orthogonal Frequency
Division Multiplexing (OFDM) modulation [2]. MIMO-
OFDM significantly improves the reliability and throughput
in wireless communication. Hence the technique is adopted
with a wide range of current high-throughput
communication standards, such as IEEE802.11,
IEEE802.16, WiFi, WiMax, 3GPP and LTE [3-6]. The Fast
Fourier Transform (FFT) and the Inverse Fast Fourier
Transform (IFFT) processors are among the highest
computationally complex and most critical modules within
MIMO-OFDM based systems. They are required to process
several independent high-throughput streams in parallel,

Digital Object Identifier 10.4316/AECE.2017.01005

while achieving real time requirements.

Literature indicates hardware design has migrated
towards efficient and high performance FFT/IFFT
architectures for MIMO-OFDM [7-14], and other

applications, including signal and image processing [15-24].
Most of the existing architectures can be categorized into
memory based designs, where only one butterfly is used,
and pipeline designs, which uses a pipeline of butterfly
stages. Pipeline architectures are suitable for MIMO-OFDM
systems as they can achieve high-throughput and low-
latency characteristics, which are required for continuous
flow and real time applications [7], [11]. Pipeline
architectures consist of two principal classes; Delay
Feedback (DF) [15-18] and Delay Commutator [19-22]. The
DF class includes Single-path Delay Feedback (SDF) and
Multi-path Delay Feedback (MDF), where the DC class
contains Single-path Delay Commutator (SDC) and Multi-
path Delay Commutator (MDC).

MIMO-OFDM based systems require FFT/IFFT of
parallel independent data sequences to be calculated
simultaneously. The traditional approach is to use several
FFT/IFFT processors, where each processor deals with one
sequence. However, as the number of independent data
sequences increase, the hardware complexity of the system
becomes very high. Hence, proposing efficient FFT/IFFT
architectures using a single processor to process several
streams is crucial for MIMO-OFDM designs. In this
context, Lin and Lee [7], Fu and Ampadu [8] presented a
64/128 point FFT/IFFT processor based on mixed radix
decomposition for up to four independent data sequences.
Yang, Tsai and Chuang [9] proposed a MDC based
architecture and a memory scheduling method to obtain a
variable length FFT/IFFT processor. The circuit was
fabricated using UMC 90 nm CMOS technology and can
process up to four independent sequences. Tang, Liao and
Chang [10] developed a Flexible-Radix-Configuration
Multipath-Delay-Feedback (FRCMDF) architecture for
variable length and multiple stream-based FFT processor.
The architecture was fabricated using a TSMC 18 pm
CMOS process. Tang, Tsai and Chang [11] introduced a
mixed radix MDF based architecture for 2048 points FFT
with up to eight parallel data streams. The processor was

27

1582-7445 © 2017 AECE

Advances in Electrical and Computer Engineering

fabricated on 90 nm 1P9M CMOS and can obtain up to 2.4
GS/s throughput. Another mixed radix MDF based design
for eight parallel data sequences was presented by Wang,
Yan and Fu [12]. The design realizes a high-throughput and
low-complexity 512-points FFT/IFFT processor.
Additionally, Yan and Fu [12] proposed a single-Random
Access Memory based group reorder that converts outputs
into normal order. Tsai, Chen and Huang [13] proposed a
systematic approach to automatically generate a variable
size FFT/IFFT algorithm. Lin, Liu and Lee [14] proposed a
Mixed Radix MDF architecture to implement a 128-point
FFT/IFFT algorithm for Ultra Wide Band (UWB)
communication systems.

FPGA FFT/IFFT algorithm implementations have been
considered as a suitable solution to fulfil cost-efficient and
high-performance implementations. Boopal, Garrido and
Gustafsson [18] presented multi-streaming and variable-
length Single-path Delay Feedback (SDF) based FFT
architecture on Virtex-6 technology, which could process
one stream of 2048-point, two streams of 1024-point or four
streams of 512-point FFT operations. Ayinala, Brown and
Parhi [20] proposed parallel MDC architectures using
Radix-2, Radix-2% and Radix-2* independently to determine
the FFT response of one real or complex sequence, which
were synthesized on a Virtex-5 device. Garrido, Grajal,
Sanchez and Gustafsson [21] presented a similar technique,
which extended to include Radix-2* and any number of
parallel paths which is a power of two, with implementation
on Virtex-5. Further work from Garrido, Acevedo, Ehliar
and Gustafsson [22] investigated FFT performance
limitations carried out on Virtex-6. Wang, Liu, He, and Yu
[23] proposed a Single-path Delay Commutator-Feedback
(SDC-SDF) combination technique based on Radix-2 and
synthesized on Virtex-5 devices. Uzun, Amira and
Bouridane [24] presented a common framework for a
memory-based FFT algorithm implemented on FPGA. This
method is suitable for extension to include image processing
applications.

Radix-2“ MDC architecture has been more recently
presented as an efficient solution for implementing
FFT/IFFT algorithms [20-22]. Radix-2* MDC architecture
can deal with any number of parallel data samples which are
a power of two and can achieve high-throughput
performance. In addition, the architecture requires fewer
hardware operators compared to parallel feedback
architecture MDF [21]. However, existing Radix-2 MDC
designs are limited to processing single data streams in
parallel and cannot process multiple independent data
streams as required in MIMO-OFDM systems. Additionally,
architectures based on single Radix-2* limits the design to
processing sequences of data in correspondence with power
of 2 sizes only.

This paper presents a high-frequency Mixed Radix-22
Radix-2° Multipath Delay Commutator (MR2%-2°> MDC)
FFT processor for MIMO-OFDM systems, with two and
four data streams. The proposed design is suitable for
implementing any power of two FFT size, where the design
offers significant FPGA resource-space savings and
significant utilization efficiency of embedded multipliers.
Furthermore, the mixed radix approach allows FFT
processor of size N to be constructed with various Radix-2

28

Volume 17, Number 1, 2017

and Radix-2® module combinations. The remaining sections
of this paper are organized as follows: Section Il explains
the Radix-2* and Radix-2° FFT algorithms. Section Il
introduces the proposed high-frequency MR2%-2° MDC.
Section IV explains the design flow and implementation of
the proposed architecture on FPGA, while Section V
presents the experimental results of the implemented
architecture on FPGA. Conclusions are provided in Section
VL.

Il. ALGORITHMIC REVIEW

A. Radix 2’ Algorithm

The N-point Discrete Fourier Transform (DFT) is defined
as:

N-1
X (k)= 3 x(n) Wy)

n=0
where x(n) and X(k) are complex samples in time and
frequency domains, while the twiddle factor is defined as

nk —]27Z7’lk
Wiy =exp(———)

Consider the following three-dimensional mapping of »
and & [17]:

k=<ky +2ky +4ky >y (3)
where the notation < > represents the modulo-N operator.
Substituting equations (2) and (3) into equation (1)
obtains:

X(ky +2ky +4k3) =

N

411 Qg tng) g2k +aks) (4)
> 2 Y Sy ng)y 2T
n3=0my=0m=0

Summing among »; and considering:
Bg(%@ +13,0) =& my +1) +() x(G m+m+5) (5)

Equation (4) can be re-formulated as follows:
X(kl +2k2 +4k3) =
N
4 - 1 N N
> Z{BN <%n2+n3.@Wff”2”3)“}%4"2*"3"2"2*‘“3) ©
n3=0mpy=0 2

The critical concept of Radix-22 is to cascade the twiddle

(B np+nz)ky

factor W into the next step decomposition instead

of multiplying with By (%n2 +ng,k) :
2

N, i (Y -+
W}N 272V78) 1W}N 47278 Chorih) (_j)nz(k1+2k2) %g(klﬂkz) WS 0
Substituting (7) into (6) and summing among n,

determine:
Ny

M+ 2+4) = | H b5 s 9
m=0L 4 4
where H (m3,k1,k2) can be expressed as follows:

H%/(”a!/ﬁ’kz)ZB%/(nsJﬁ)H—j)(kﬁZkZ)B%(ns+%Jﬁ) ©)

Equation (5) represents the first butterfly structure
containing only addition and subtraction operations.
Equation (9) demonstrates the second butterfly structure
containing addition, subtraction and multiplication with —;.

Advances in Electrical and Computer Engineering

The Radix-2? algorithm requires full multiplication every
two stages as demonstrated in equation (8), opposed to
multiplication occurring during every stage within Radix-2.
Hence, Radix-2° demonstrates a 50% reduction of
multiplication operations required in comparison to Radix-2.
The complete Radix-2* algorithm can be obtained through

decomposing equation (8) recursively to the remaining]_Z
points DFTs.

The fundamental structure to obtain two consecutive
stages in the Signal Flow Graph (SFG) for Radix-22
Decimation In Frequency (DIF) algorithm is illustrated in
Fig. 1, where x;() denotes the inputs of stage i and X;.,(.)
denotes the outputs of stage i+7. When # is varied from 0 to
Ni/4-1 in the basic structure of Fig. 1 a group of N; inputs is
formed , where &V, is given by:

ng—i+1
]vi (l -1) =20

The group is repeated N/N; times to obtain two

consecutive stages in the complete SFG.
4——Stage i———p»4—Stage i+1—»

(10)

xi(n) o—»0—>» O—0O Xiwq(dk)

2nr

x(n+Ny4) O PO 3 O—OXis1(4k+2)

n

ey

x(n+Ni/2) O O > Ny oo Xir1(4k+1)
A\ W\

x(n+3N.f4}0—yo—b O—0OX;.1(4k+3)
Figure 1. SFG of the basic butterfly structure of Radix-2? DIF algorithm

B. Radix 2’ Algorithm

Applying four dimensional linear index mapping to » and
k can be expressed as follows:

N N N
n:<5n1+zn2 +§n3 +ny >y (11)
k=<ky+2ky +8k5+8k, >y (12)

The DFT function in equation (1) can be expressed in
terms of four-dimensional linear index mapping, as follows:
X(k¢+2k2 +4k3 +8ky) =
Z Z Z ZX(Z m+7 ”2+ ”3+”4)Wnk
ny=0ng=0ny=0m=0

Additionally, the twiddle factor Wi
decomposition can be expressed as:
ik = ngleN%nz(kﬁZkz)Wjilgvns(k1+2kz+4ks) a2l 8l

(13)

with cascade

(14)

=(-1) mky ()™ (y+2kp) WN%@(/‘1+2/‘2+4/‘3) W]nv4 (Fy-+2key+4k3) VVI\"JAkA)
0]
Substitution of equation (14) into equation (13) and
expending summation among »,, n, and n; determine:
X(kl + 2ky + 4k5 +8k,) =
N1
) [T%(’Mnklvkzvks)W§4(k1+2k2+4k3)}WNn4k4

8

(15)

714=0
. . N .
Eight DFT functions of length g were expressed in

equation (15), where a third butterfly
Ty (ng,ky, ko, ks) is expressed as follows:
8

structure

Volume 17, Number 1, 2017

Tﬂ (ng, ky beg heg) =

N (g + 2y +4k3)
HN(n4k1k2)+WN e 3HN(+2 Jy k) = (16)

Hv<n4.kl,kz)+<f @)= /)("2*2‘31{ 3+ o)

The th|rd butterfly structure mvoIves the twiddle factor
(@(1— Nfa(=j)*2+2ks) - which can be realized with
constant scalar operations. The initial radix-2° SFG stage
contains only trivial multiplication with —j, the second stage
multiplies with —j and constants #; and W, , while the third
stage contains multiplications with the general term.
wualhi2ket8ks) 0 comparison, Radix-2 required
multiplication during every stage, while Radix-22 only uses
multiplication operations every second stage.

The fundamental structure to obtain three consecutive
stages in the SFG of Radix-2* DIF algorithm is presented in
Fig. 2. A group of N; inputs is obtained when n varies from

0 to N,/8-1. Three consecutive stages in the complete SFG
are formed by N/N groups.

- Stage i+1——»<+—5Stage i+2—»

x{n) \

x(n+N/B) Q\ ;, \\Q o

x(n+Nj4) C\><></v ﬂ/\n ><:0—-0—0

x_(n+3N,ra]>O<><>< - O—»0—0 X,

x(n+Ny2) \1 /" ><:0—*0—0 Xez(8k+1)

x{n+5NJ’3}§ \ N><><L Y00 Kpa(BK+5)

x(n+3NJ4) 3 . H oo Xuaf8K+3)
N s >

%(n+TNJB) O 0—0 K,.2(8k+T)

Figure 2. SFG of the basic butterfly structure of Radix-2° DIF algorithm

Xisa(BK)
J—-o—o Kooz(BK+4)

a(Bk+2)

il

w-2(Bk+8)

1. PROPOSED HIGH-FREQUENCY MR2%-2° MDC
ARCHITECTURE

To the best of the authors’ knowledge, current literature
has not investigated improved high-frequency MDC
architecture implementations on FPGA through added delay
elements. Current architectures within literature have
significantly limited maximum clock frequency responses
when synthesized on FPGA without utilizing pipeline
registers at element outputs. This poor maximum frequency
performance occurs frequently when FFT size increases [19-
22]. Using an appropriate number of pipeline registers at the
output element within the FFT architecture allows the length
of critical paths within the processor circuit to be
significantly reduced and achieve high-frequency response.
The latency introduced with pipeline registers at each
element output can be defined as the number of clock
sample periods used for the block output delay. Simulation-
based investigations indicate the appropriate number of
pipeline registers to achieve maximum frequency is: four for
complex multipliers, one for addition, subtraction and
multiplexer and two for Block Random Access Memory
(BRAM) operations. Pipeline register associated latencies
cause synchronization issues within the architecture,
affecting the FFT function response. Hence, it is critical to
compensate the effect of pipeline register latency through
inserting additional delay elements at specific points in the
architecture design.

The general structure for the proposed MR-2%-2° MDC
architecture is demonstrated in Fig. 3. The architecture is

29

Advances in Electrical and Computer Engineering

Volume 17, Number 1, 2017

Parallel Outputs

Parallel Inputs
—]

> » — . .
0] «es xHN- 0. N/@- X2 (0..N/g-1
x(0) -+) sebute. Module 1 Module 2 Module m |-V oMoy
Huim :o“.:l 1) Unit 9 R2 or R2’ R2'or R2? R2'or R2® : . . .
e XN X -1)/ N-1) oo X7 (-1 e N-
> » N (p-1)/ip .N-1) X {p-1)/9 .N-1)
Fy t T -~
Control unit

": Outputs are in bit-reversed order
@=2: two parallel data streams
@=4: four parallel data streams

Figure 3. General structure of the proposed MR2%-R2® MDC architecture

composed of an input memory-scheduling unit, m modules,
where each module consists of either a Radix-2> or Radix-2*
butterfly structures with a control unit. Let m, denote the
number of Radix-22 modules, m; the number of Radix-2°
modules and »n, the number of stages in the Signal Flow
Graph (SFG), (n, =log,(N)), then n;, m,, and m; are
related as follows:

ng = 2my + 3my 17)

Equation (17) demonstrates that utilizing MR-2%-2°
allows scaling FFT size to any power of two, which is not
possible to achieve with single Radix-2 or Radix-2°.

The Radix-22 function performs operations in two stages
within the SFG as detailed in Fig. 1. In contrast, the Radix-
23 function performs operations in three stages within the
SFG as detailed in Fig. 2. For example, a FFT size N=32
demonstrates a SFG with five stages, which can be realized
within architecture requiring one Radix-2* operation
pipelined with one other Radix-2° operation.

A. Proposed Architecture for Two Data Streams

The proposed FFT system determines the DFT responses
for two parallel data streams; 4 and B. The input memory
scheduling system arranges the input sequences of data
streams 4 and B as shown in Fig. 4. Data stream
A4=x%0.N-1) IS separated into two sub-streams,

obtaining upper and lower sub-streams Alle(o..%—l)
and 4, = x'(4..~ -1), where sub-stream length is N/2.

Similarly, data stream B is separated into upper sub-stream
B, and lower sub-stream B,. The input data stream
sequences are reshuffled to allow sub-streams 4; and 4, to
be processed during the initial time index with Module 1
through m as shown in Fig. 3, followed by processing sub-
steams B; and B,. Modules 1 through m can consist of
Radix-2? or Radix-2* structures as shown in Fig. 5 and Fig.
6. Pipeline register latencies associated for operation
functions have been presented within block diagrams. Delay
elements are operated to maintain data synchronization with
upper and lower sub-streams. Operations are applied to the
upper U;, and lower L;, input data sub-streams to achieve
the upper U,,, and lower L,,, output data sub-streams.

steemA [0 [1] [et T w2 [onear T 0 T w4
steamB | 0 | 1 | | w2 [Nz | Near [] N
Initial input order
[o [1] | w2t T 0o] 1] [N1
[N2 Nz [N N2 | et] | N1
b Stream A o Stream B

Input order after scheduling

Time index
Figure 4. Input reordering with Input Scheduling Unit for two parallel
streams.

30

The Radix-2> MDC module includes two
addition/substruction functions, one trivial multiplier, two
standard multipliers, two Read Only Memories (ROM), two
shuffling units, two multiplexers and three delay elements.
The trivial multiplier performs real-imaginary swap with
sign inversion operations.

Shuffling units are inserted between each consecutive
stages, i.e. a shuffling unit is inserted between stage i and
stage i+1, as shown in Fig. 5. They are built using 2D delay
elements, where D:%M) and requires two multiplexers.

The delay elements are used for synchronizing the previous
stage data outputs, i.e. stage i, where multiplexers allow
routing data to the corresponding input of the Add/Sub unit
of the stage /+/. The multiplexer control signal C, is

—i—1
directly obtained from a binary counter. It takes the value

zero for D clock cycles followed by the value one for D
D D
others clock cycles, ie. ¢, , ,=00..011..1. For D clock

cycles, the upper data outputs of stage i U, to U}, are routed
to the upper input of stage i+, while simultaneously data
outputs Up.; to U,p are routed to the lower input of stage
i+1. The process is similarly repeated with the lower data
outputs of stage i during the next D clock cycles, i.e. lower
data L, to L, are routed to the next stage upper input, while
data Lp.; to L,p are routed to the next stage lower input.
Twiddle factors ij with n=0..N,/4-1 are stored in the

upper path’s ROM (ROM U) of size 1‘% while twiddle
factors v and Wﬁ” are stored in the lower path’s ROM
(ROM L) of size Mizj . ROM U is addressed using bits C; to
G, of a binary counter while ROM L is addressed using
bits Cy to G,

< Stage >

_, of the same counter.

—i

Stage i+1
Delay 2 Mux 2

Y

Shuffling 2

AddiSub 1 Delay 1
i 2 Output U

Input U,

Output Lo,

/ \ l S~
/ \ ! =
/ asse / Shuffling unit S~
BN . S| Usp...UpsUp...U Lo L3 Up...Us
20---Up+1Up..-Uy (%)) 0---L1Up-.. Uy
—| Z
v UL i‘z H]

Lzp---LlossUzpe..Upey
i

- Lag...Lperboe..by o
etk]

Figure 5. Architecture of the proposed high-frequency two parallel 2
module.

Advances in Electrical and Computer Engineering

The Radix-2° module utilizes three addition/substraction
functions, one trivial multiplier, two standard multipliers,
one Constant Complex Multiplication Unit (CCMUL), two
ROMs, three shuffling units, one multiplexer and two delay
elements. The CCMUL operation applies rotation with —j,
Wy and W, where the associated structure is presented in

Fig. 6. The CCMUL1 contains one complex scaling operator,
two trivial multipliers, three multiplexers in addition to
delay elements. The same complex scaling operator used to

rotate with Wy, is cascaded with a trivial multiplier -J to
accomplish rotation with . Twiddle factors stl_ :
win w2 and w" with n=0..N,/8-1 are stored in ROM U,

while twiddle factors wy , wg", w3 and w" are stored in

ROM L. Both ROM U and ROM L are of size "/, and are
addressed using bits C, to ¢, ,, of a binary counter. It is

important to note that all operations after the last addition
unit are removed in both Radix-2* and Radix-2* functions,
when they are implemented within the architecture end stage
of module m.

B. Proposed Architecture for Four Data Streams

Input scheduling of four independent data streams 4, B, C
and D can be obtained using the input memory scheduling
technique proposed by Yang, Tsai and Chuang [9], which
rearranges the input data as shown in Fig. 7. Each of the
parallel data streams 4, B, C and D are separated into four
equal length sub-streams adhering to the following format:

Volume 17, Number 1, 2017

4y =x*(3. N -1), where sub-stream lengths are defined as

N/A. Streams B, C and D are split into four equal length sub-
streams in a similar manner.

Once the input data streams have been rescheduled with
the memory scheduling unit, then Modules 1 through m
determine the DFT response of streams A, B, C and D
consecutively.

The four parallel Radix-2? and Radix-2> MDC module
process four samples in a continuous flow. Architecture of
an initial stage four parallel Radix-2? module is shown in
Fig. 8, while the architecture for intermediate and last
modules are presented in Fig. 9.

Shuffling units keep the same structure shown in Fig. 5,
with D delays element for each unit instead of 2D delays
used within the two parallel data stream architecture.

Twiddle factors ", Wy, and Wy" with n=0..N./4-1 are
stored in ROM L1, ROM U2 and ROM L2 respectively. The

. . N .
three memories each of size /4 are addressed by bits C,
to C, ;, of abinary counter.

Architecture design for the initial four-parallel Radix-2°
module is illustrated in Fig. 10, where the structure for
intermediate and last modules are shown in Fig. 11. Twiddle

factors (wy Wy), (w3 wy"), (W, wy') and
(W, W) with n=0..N;/8-1 are stored in memories ROM
Ul, ROM L1, ROM U2 and ROM L2 respectively. The four

. . N .
memories, each of size /4 are addressed by bits C, to

Data stream 4=x}(0.N-1 is separated into i
() p G, +» of a binary counter.
_ 1 N _ 1N N _ AN 3N
A4 =x"0.4-1), 4,=x'(}.5-1), 4=x'(§.2-1 and
+ Stage i >4 Stage i+1 >4 Stage i+2——p»
Input Ui, Add/Sub 1 Dela.‘y 1 Shuffling 1 AddiSub 2 Shuffing 2 Delay2 AddiSub 3 MU,IBEH\E' 1 Shuffling 30 outU
e B N B 118
ROM U
z' z! z' z*
o o (=]
1] Multiplier 2 Output L,
Input Li, 1 - Put Lout
p ALk W SN JR CC:
Trivial multiplier 1 P =~ - ROM L
- ~~.
= Mux 2 b
Delay 3
>
Trivial multiplie
—»
Mux 3
Complex Scaling
Trivial multiplier 3
Figure 6. Architecture of the proposed high-frequency two parallel 2° module
Stream A [0 1 Nia-1 | N4 | Nia+1 N/2-1 [N[N+ N1 3N [3NM+1 N-1
StreamB| 0 1 N1 | N4 | Nid+1 N2-1 | N [Nt aN/a-1] 3N4 [aNia+1 N-1
Stream C| 0 1 N1 | N4 | Nid+1 Ni2-1 | N[N+ 3N/a-1] 3N4 [3Nsa+1 N-1
StreamD| 0 1 Nia-1 | N4 | N+ Ni2-1 | N2 N+t 3N/4-1] 3N/4 [3N4+1 N-1
Initial input order
0 1 N1 | 0 1 N4-1] 0 1 Na-1] 0 1 N/4-1
N4 | N+ N/2-1 | N4 [Nt N2t | Nd [Nt N/2-1 | N4 | Nrded Ni2-1
N2 | N2+ aNia-1] N2 [N+t aNa-1] Nz [N+ aNa-1] N2 [N+t 3N4-1
3N/ [3N/d+1 N-1 | 3N/4 3N+ N-1 | 3N [3nia+ N1 | 2Ni4 [3nia+t N-1
) Stream A " Stream B " Stream C Stream D

Input order after scheduling

Time index

Figure 7. Input reordering by Scheduling Unit for four parallel data streams

31

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:10:10 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 1, 2017
<«—Stagei >« Stage i+1 » LTS e Staee >
Add/Sub 1 Delay 1 Add/Sub3 Delay 4 Shuffing 1 : AddiSub 1 Shuffing 1 Delay1 AddiSub3 | Delayd Shuffling 3
Input LJ1.T - , 7 1 . - _"_'? N Oulpgt Ut l:npul Ui — bl | EI ”. : i ——— Qutpst Uleus
) , ROM L1 : z :
z' z 2 : :
-Z Delay 2 :
Input L1, _ : Output L1os
Delay 2 . - i - .
Input L1, a z . 6 Output L1ay — : i : e
. AddiSub 2 Shuffing2 Delay3 AddiSubd . 4
-] Input U2, — . Output UZ,,,
AddiSub 2 Deiay3 Ada/Subg 'Multipliers 182 shufing 2 e @ . e —
Input U2,, - Qutput U2, :
B - otz] T
ROM U2 : Trivial multipbier :
tnput L2, : Output L2,
z 2|] res L o~ O s

Trivial multiplier

Input L2, Qutput L2,
—_— >

Figure 9. Architecture of the proposed high-frequency four parallel Radix-
22 module as intermediate module (whole diagram) or as last module (only
components within dotted section)

Figure 8. Architecture of the proposed high-frequency four parallel Radix-
22 module as first processing module (i=1)
«—Stagei——p4———Stage +1———————p4———Stage it2————»

ROM U1

1 Delay 1 j Shuffing 1 Delay4 AddiSub 5 Shuffling 3
Input U1, ‘red/sue AddISub 3 g n Output U
2z 7
CCMU 2
Delay 2
Input L1, - A Output L1ow
AddISub 2 Delay 3 Add/Sub 4 Shuffing 2 Delay 5 huffling 4
nput U2, - 7 " Outpyt Uzq,
z 7
Trivial multiplier 1 CCMU3
Input L2;y | i \z‘/ | . , Output L2,
cocmMmuz CCMU 3
Trivial
Delay 6 multiplier 2 Delay 7

Trivial ~ Complex

Complex Scaling 1 multiplier 3 ,_Scallng 2

Figure 10. Architecture of the proposed high-frequency four parallel Radix-2° module as first module (i=1)

«+ Stage i Stage i+1 > o Stage i+2 »
ROM U1
|
: Add/Sub 1 Shuffing 1 Delay 1 Add/Sub 3 Shuffing 3 Delay 4 agqisub 5! Shuffling 5
“Input U1y, : S : Output Uy
| q— T e =
:) S) EMuIllpIner 1 ROM D1
. re ’ z :
: Delay 2 cemu 2 :
Input |._1.:I . ~ ~ Q Qutput L1,
Add/Sub 2 Shuffing 2 Delay3 Add/Sub 4 Shuffing4 Delay5 Addisub g Multipliers 283 Shuffling &
Input U2, " - : Output U2,
: + + B 9 —
Z 1 Z.l 2.1 .
Trivial multiplier CCMU 3
- Input L2, | N < > Outgut L2

Figure 11. Architecture of the proposed high-frequency four parallel Radix-2° module as intermediate module (whole diagram) or as last module (only

diagram within dotted rectangle).

It is important to note that both Radix-2? and Radix-2®> work in Table I, where ¢ represents the number of
initial and last modules (Module 1 and Module m) independent data streams and p represents the number of
implement slightly modified architecture as presented in parallel paths. The number of complex addition operators is
Fig. 8 to Fig. 11. Module 1 removes the shuffling operation dependent on the number of parallel data streams and FFT
at the output of the modules initial addition function, while size N for any combination of Radix-2° and Radix-2
Module m removes all operations after the last addition = modules, where four data streams require double the amount
units. of complex addition operators than a two data streams
system. The memory architecture requirements presented in

]) Table | are obtained with input scheduling unit, in addition
The hardware architecture requirements for the proposed {4 shuffling units inserted in Module 1 through m.

systems are presented and compared with other relevant

C. Hardware Architecture Resource Requirements

32

Advances in Electrical and Computer Engineering

Volume 17, Number 1, 2017

TABLE |. THE HARDWARE COMPLEXITY OF THE PROPOSED HIGH-FREQUENCY MR22-2° MDC ARCHITECTURE IN COMPARISON WITH OTHER
ARCHITECTURES

Complex Complex Rotation by
Designs Type Radix N 0] P Adders Memory size Multipliers W;
_92_93 n 2 2 4|094N 2N+2+(11m3+6m2-5k1)* 2(m-1) m3
Proposed MDC | MR-2"-2 2 4 | 4 | 8logiN |4N+2+(21m,+7m,-4K,) | 3m,+4ms+ki4 2m,
Lin et al [7] SDF R-2 /R-8 64, 128 4 4 48 508 2+(4x0.62) 0
Fuetal. [8] | SDF/MDC | R2/R4 64,128 4 4 32 508 4 5
Llog, NJ-1
Yangeral [9] | MDC | Ra/rg |128:51210240 4) 4l gogN | ave 3 3(log4N-1) 0
2048 o
s=
R o 1 2 4logsN N 2(log4N-1) 0
Garrido et al. MDC 4 8logsN N 3(logsN-1) 0
[21], [22] R g" 1 2 4log4N N 3(loggN-1) loggN
4 8logsN N 4(loggN-1) 2logsN

()* presents additional delay elements for high throughput design

For the proposed architectures, the additional delay
elements used for high-frequency design are also considered

In two data streams architecture, the input scheduling unit
uses two memory operators each of size N/2, with four
additional delays to maintain data synchronization, where
the shuffling units contain delay elements of total size N-2.
Radix-2° requires 11 additional delays regardless of module
position within the architecture. Radix-2* implements six
additional delays for module rank positions 1 through m-1
and one delay for module position rank m. Hence, the total
memory size in the two parallel architecture is
2N+2+6m,+11m;-5k;, where k;=1 if module m is a Radix-
22 else k;=0.

Systems with four parallel processing architectures
involve an input scheduling unit with 12 memory banks,
each of size N/4 in addition to six further delay elements for
data synchronization, producing a total memory size of
3N+6. The shuffling units utilize delay elements of total size
N-4. Each Radix-2° module obtains 21 additional delays
independently of rank position. Additionally, Radix-2
requires seven additional delays for module rank position 1
through m-1, where module in rank position m uses three
delays. Thus, the total memory size in the four parallel
architecture is 4N+2+21msz+7m,-4k;.

Each module from rank position 1 through m-1
implemented within the two parallel data stream architecture
systems contain two complex multipliers, determining the
total multipliers used as 2(m-1). Furthermore, each Radix-2*
module contains a single rotation by Wy, carried out using
the CCMUL unit as shown in fig. 6. As a result, the total
number of rotations by W within the two parallel
architecture is equal to m;.

For systems with four parallel data stream architecture,
Radix-2? modules located in rank position 1 through m-1,
contain three complex multipliers, while Radix-2° modules
in comparison require four multipliers at the same rank
position. Hence, the total number of complex multipliers
required in the four parallel architecture is 3(m,-
k,)+4(m;+k,;-1). Moreover, each Radix-2° module within
the four parallel architecture contains two rotations by Wy
realized with CCMU2 and CCMUS3 as illustrated in Fig. 10
and Fig. 11. Hence the total number of rotators by W within
the four parallel architecture is 2m;.

The proposed hardware architecture requirements are
presented and compared with other relevant work in Table I.
The proposed architecture is suitable for parallel data stream

processing with FFT size N~ =2", where other

architectures evaluated have not taken these characteristics
into design consideration.

Pipelined Radix-2* architectures presented in [21] and
[22] are capable of processing one data stream with parallel
data paths, requiring additional input modules to process
parallel data streams. Table | illustrates that the proposed
architecture involves the same number of required complex
addition operators as architecture systems in [9, 21, 22] and
fewer than [7, 8]. Furthermore, some Radix-2°-2* proposed
combinations utilize fewer complex multipliers than
equivalent architectures in [9, 21, 22]. For example, a FFT
size N=256 would require 6 and 9 multipliers for two and
four parallel data streams in [9, 21, 22], while the proposed
23-22-2% combination uses 4 and 7 multipliers for two and
four parallel data stream architecture. The proposed
architecture combination obtains 33.3% and 22.2%
reduction in required complex multipliers than architectures
[9, 21, 22]. The FFT processor presented by Lin and Lee [7]
requires two complex multipliers in addition to four
modified complex multipliers which realize 0.62% of the
standard multiplier area; this structure uses an equivalent of
4.48 multipliers in comparison to 6 multipliers used in this
article presented method for the combination 2%-22-2°,
However, work presented in [7] is limited to FFT size N=64
and N=128, while the presented architecture is scalable to
any power of two FFT size. Furthermore, architecture
presented by Fu and Ampadu [8] requires fewer multipliers
than the proposed system, however the architecture is also
limited to FFT size N=64 and N=128. The additional
memory usage is limited within the proposed architecture to
achieve high-frequency in the implementation.

IV. DESIGN FLOW AND IMPLEMENTATION

The proposed MR2%-2°® MDC architectures for various
FFT size N are designed using Xilinx System Generator
(XSG). The design is based on fixed-point number
representation, where scaling operations are introduced to
avoid numerical saturation. Scaling is performed with bit
shifting to the right of processed data within early stages of
the FFT process. XSG integration with the Matlab-Simulink
environment allowed FFT input generation, in addition to
evaluating the obtained FFT output. For verification, the
output from the proposed fixed-point FFT design is
compared to the output from Matlab’s floating-point FFT
function. Designs from XSG are utilized for generating
Register Transfer Level (RTL) files for migration to Xilinx
ISE design suite environment for FPGA implementation.

33

Advances in Electrical and Computer Engineering

The architecture designs were synthesized and evaluated on
a Virtex-5 FPGA XC5VSX240T-2FF1738 and Virtex-7
FPGA XC7VS485T-2FFG1661.

V. EXPERIMENTAL RESULTS

The proposed architecture was analyzed and evaluated
with place and route synthesis. Mixed Radix-based methods
allow FFT processors to be realized with various
combinations of Radix-2? and Radix-2%. For example an
FFT size N=256 can be built with four consecutive Radix-2
modules (22-2%-22-22) or with a consecutive sequence of one
Radix-2°, one Radix-2* and one Radix-2°® modules (23-2*
2%), as it can be carried out with the sequence 2°-23-2°,

The proposed architecture implements the FFT algorithm,

for sizes in correspondence with N = 2" ranging from 16
through 1024 with various combinations. The designs were
evaluated in FPGA resource usage, performance and
dynamic power consumption. FPGA Block Random Access
Memory (BRAM) hardware was used in the scheduling unit
and ROM operations. The Element delays implemented in
shuffling and data synchronization operations were
implemented with Shift Register Look-up tables (SRL).
Mathematical DSP48E structures were used for standard
multiplication, while all other design elements were
synthesized with FPGA logic resources. Data Word Length
(DWL) and Twiddle Factor Word Length (TFWL) were
configured for 16 and 12 bits.

The FPGA utilized resources for the proposed high-
frequency architecture are presented in Tables Il and Il in
comparison with equivalent low-frequency architectures.
Note low-frequency architectures refer to architectures
without any pipeline registers or additional delay elements.
A Resource Utilization Ratio (RUR) is utilized to provide a
fair comparison, where the RUR compares the number of
FPGA slices utilized in the proposed architecture R, against
the number of slices involved in an equivalent low-

frequency design R.; RUR = fe—p .

Both high-frequency and low-frequency architecture
designs obtained the same number of BRAM and DSP48E
structures. Additionally, the RUR produced values did not
exceed 1.74 with significantly high-level of throughput.
Furthermore, building a FFT process with various Radix-2
and Radix-2® combinations offers significant advantages,
including the reduction of FPGA resources and flexibility to
FPGA platform resources. For example, a FFT size N=256
denoted with the architecture structure 22-2%-22-2% requires
42 BRAM and 36 DSP48E structures, while in comparison a
23-22.2° structure requires 38 BRAM and 28 DSP48E
structures, while the 23-2%-2% combination requires 40
BRAM and 32 DSP48E structures.

It is important to note the FPGA’s occupied area average,
which is calculated with averaging the percentage of used
BRAMSs, Slices and DSP48E blocks on the architecture
implementation. The obtained FPGA occupied area average
metrics range from 0.82% through 2.88 % within two
parallel designs and from 1.89% through 4.96% within four
parallel circuits. This demonstrates the proposed FFT
process occupies a very small portion of the total area on a
FPGA device, where the remaining area could be used to
perform other MIMO-OFDM related functions.

34

Volume 17, Number 1, 2017

TABLE Il. VIRTEX-5 FPGA XC5VSX240T-2FF1738 RESOURCE USAGE OF
THE PROPOSED MR22-R2° MDC FOR TWO PARALLEL DATA STREAMS

Occupied Slices
N Structure Low- High- BRAM| DSP48E
Frequency | Frequency RUR

16 22-2? 279 347 1.24 8 8
3 23.22 400 501 1.25 8 8
22.28 391 535 1.37 8 8

6 22.22.22 413 534 129 | 12 16
2328 553 674 1.22 8 8

22.22.2° 537 684 1.27 12 16

128 23.22.22 557 679 1.22 12 16
22.22.2%.92 685 760 1.11 16 24

256 232228 709 906 1.28 12 16
23.28.22 703 851 1.21 12 16

23.28.28 1012 1280 1.26 12 16

512 | 2%-2%.22.2? 937 1141 122 | 16 24
22.22.02.2° 781 1102 1.41 16 24
22.22.22.92.22 1089 1372 126 | 20 32

1024 | 23-23-2%.22 1171 1386 1.18 16 24
23.22.22.93 1247 1655 1.33 16 24

TABLE I11. VIRTEX-5 FPGA XC5VSX240T-2FF1738 RESOURCES USAGE
OF THE PROPOSED MR2%-2° MDC FOR FOUR PARALLEL DATA STREAMS

Occupied Slices
N Structure Low- High- BRAM | DSP48E
Frequency | Frequency RUR

16 2222 508 619 122 | 30 12
2 2322 693 991 143 | 32 16
2223 751 931 124 | 30 12

6 222222 633 895 141 | 36 24
2328 924 1284 139 | 32 16

128 220223 992 1123 113 | 36 24
23.22.22 935 1262 135 | 38 28
22.22.02.92 629 1095 174 | 42 36

256 23.22.28 1256 1744 139 | 38 28
23.2%.22 1222 1518 124 | 40 32
232323 1656 2067 125 | 40 32

512 | 23-22.22.22 1378 1596 1.16 | 44 40
22.22.02.2° 1607 1554 097 | 42 36
22.22.22.22.22| 1850 1659 090 | 48 48
1024 | 23-23.22.22 2063 2342 114 | 46 44
2%-22-22.9° 1897 2433 128 | 44 40

The performances of the proposed high-frequency designs
are compared with equivalent low-frequency designs in
Table 1V and Table V, demonstrating the system throughput
in Mega-symbols per Second (Ms/S) and latency values.
The proposed system comparison utilizes an Area to
Throughput Ratio (ATR), calculated by dividing the number
of occupied slices with the achieved throughput. The
proposed architecture demonstrates significant throughput
metric values ranging from 858 Ms/S to 916 Ms/S in two
stream systems and from 1600 Ms/S to 1756 Ms/S in four
stream systems. In comparison, the equivalent low-
frequency architecture performance metrics range from 41.4
Ms/S to 125.6 Ms/S for two stream and from 86 Ms/S to
250.4 Ms/S in four stream designs.

The significant throughput improvement is not penalized
with excessive resource usage and is efficient with device
resource usage and achievable throughput as demonstrated
with ATR values. Furthermore, the high-frequency
architecture demonstrated significantly lower latency time
than equivalent low-frequency architectures.

Advances in Electrical and Computer Engineering

TABLE IV. VIRTEX-5 FPGA XC5VSX240T-2FF1738 PERFORMANCES OF
THE PROPOSED MR22-2° FOR TWO PARALLEL DATA STREAMS

Low-Frequency High-Frequency

Volume 17, Number 1, 2017

TABLE VI. DYNAMIC POWER CONSUMPTION (W) OF THE PROPOSED TWO
PARALLEL MR-2%-2% MDC ARCHITECTURE IMPLEMENTED ON VIRTEX-5
FPGA XC5VSX240T-2FF1738

N | Structure Tliltz;/l[l;g/g; ATR Lz;:lesn)cy T,:Itr(;/l[l;g/lé; ATR L&;;esn)cy

16 22.22 125.6 |2.22| 127 916 [0.38| 48

- 2322 91.0 |4.40| 352 910 |055| 81
22.28 1252 [3.12| 256 894 |0.60| 85

6 22.22.92 834 |4.95| 767 888 |0.60| 126

23.28 870 |6.36| 736 878 |0.77| 139

128 22.22.28 80.0 |6.71| 1600 884 |0.77| 217

23.22.2? 60.6 |9.19| 2112 878 |0.77| 216

22.22.22.92 60.6 [11.30| 4224 884 |0.86| 367
256 23.22.28 60.6 [11.70| 4224 872 |1.04| 383
23.28.22 50.0 [14.06| 5120 880 |0.97| 377
23.28.28 50.0 [20.24| 10240 890 |[1.44| 679

512 | 23-22.22.22 48.8 |19.20| 10492 880 |[1.30| 675

22.22.22.2° | 588 |[13.28| 8707 880 |1.25| 677
22.02.22.22.2?| 476 [22.88| 21513 | 858 |1.60| 1296
1024 | 2%-23-2%.22 414 [28.29| 24734 862 |1.61| 1299
23.22.02.2% 478 [26.09| 21423 866 [1.91| 1293

TABLE V. VIRTEX-5 FPGA XC5VSX240T-2FF1738 PERFORMANCES OF
THE PROPOSED MR22-2° FOR FOUR PARALLEL DATA STREAMS

Low Frequency High-Frequency

- Latenc - Latenc
N Structure pTliltl;R}[l;g/l;) ATR) y:ll:tl;g/l[lf/g) ATR S) y
16 2222 2504 |2.03| 64 1756 [0.35| 36
2 2822 186.4 [3.72| 172 1696 [058| 64
2223 2256 |3.33| 142 1688 |0.55| 64

6 222222 2228 [2.84| 287 1684 |053| 88
2823 174.4 |530| 367 1668 | 0.77 | 101

128 2°-2.2° 200.4 |4.95| 639 1668 | 0.67 | 144
28222 133.6 |7.00| 958 1644 |0.77| 146
22222222 | 1956 [3.22| 1309 | 1616 |0.68| 233

256 | 232223 133.6 |940| 1916 | 1652 |1.06| 240
2%.28.22 105.2 [11.62) 2433 | 1668 |0.91| 237
23.2%.2° 100.0 |16.56| 5120 1636 |126| 416

512 | 2%-22-22.22 | 117.6 |11.72| 4354 | 1648 |0.97| 400
22-22.22.2° | 190.8 |842| 2683 | 1668 [093| 396
22-22-2%-2-2?| 1704 |10.86| 6009 | 1600 |104| 738
1024 | 23-23-22.22 86.0 (2399 11907 | 1644 |142| 730
2%-22.22.2° | 1180 |16.08| 8678 | 1620 |[1.50| 741

The dynamic power performance of the proposed high-
frequency MR-22-2° MDC architecture is compared with
low-frequency equivalent architecture results and presented
in Table VI and Table VII. High-frequency architecture
demonstrates a significant increase of dynamic power
consumption compared to low-frequency architecture.
However, the Dynamic Power to Throughput Ratio (DPTR)
for the proposed architecture is lower than their equivalent
low-frequency architecture for FFT size above 64. This
demonstrates there is no additional power consumption
when using one high-frequency circuit opposed to several
low-frequency circuits to achieve the same throughput.
Additionally the four data stream high-frequency
architecture obtained an average power increase of
approximately 100% in comparison to the equivalent two
data stream architectures. The dynamic power consumption

Low-Frequency High-Frequency

YL everun| PPTR |povesgay| PPTR
16 2222 0.128 1.02 1.079 1.18
- 2322 0.110 1.21 1.095 1.20
2223 0.147 1.17 1.145 1.28

o 220292 0.107 1.28 1.162 1.31
2323 0.111 1.28 1.176 1.34

220293 0.106 1.33 1.180 1.33

128 23.22.22 0.087 1.44 1.186 1.35
22.22.02.92 0.091 1.50 1.101 1.25

256 23.22.2° 0.092 1.52 1.044 1.20
23.2%.22 0.077 1.54 0.968 1.10

23.2%.2° 0.089 1.78 1.120 1.26

512 23.22.02.92 0.087 1.78 1.190 1.35
22.22.92.9% 0.095 1.62 1.227 1.39
22.22.92.92.2? 0.092 1.93 1.345 1.57

1024 23.2%.02.22 0.084 2.03 1.291 1.50
23.02.92.2° 0.088 1.84 1.364 1.58

TABLE VII. DYNAMIC POWER CONSUMPTION (W) OF THE PROPOSED FOUR
PARALLEL MR-2%-2° MDC ARCHITECTURE IMPLEMENTED ON VIRTEX-5
FPGA XC5VSX240T-2FF1738

Low Frequency High-Frequency

16 22.2? 0.295 1.18 2.16 1.23
- 23.2? 0.236 1.27 2.251 1.33
2228 0.253 1.12 2.225 1.32

6 22.22.22 0.278 1.25 2.239 1.33
2328 0.225 1.29 2.346 1.41

128 22.22.93 0.264 1.32 2.033 1.22
230222 0.183 1.37 1.817 1.11
22029222 0.261 1.33 1.897 1.17

256 23.22.93 0.195 1.46 2.069 1.25
23.28.22 0.159 1.51 1.811 1.09

232823 0.165 1.65 2.107 1.29

512 23.22.02.22 0.182 1.55 2.071 1.26
22.22.22.9% 0.284 1.49 2191 1.31
22.22.02.92.2? 0.270 1.58 2132 1.33

1024 23.28.22.22 0.160 1.86 1.708 1.04
23.22.22.93 0.201 1.70 2113 1.30

demonstrates relatively little difference for large FFT size N
with different Radix-22 and Radix-2* module combinations.

The proposed high-frequency architecture was carried out
on a Virtex-7 XC7VS485T-2FFG1661 FPGA device to
produce more recent device results obtained for FPGA area
resources, maximum frequency and dynamic power
consumption. The proposed designs FPGA area resource
utilization is presented in Table VIII. The Virtex-7
implementation demonstrated significant savings in FPGA
occupied slices, producing up to 28% and 23% slice
reduction in comparison to Virtex-5 for two and four data
stream implementations, which are presented in Tables Il
and Table Ill. Note the Virtex-7 FPGA’s average occupied
area is not exceeding 1.17% and 2.11% within two-parallel
and four-parallel designs.

35

Advances in Electrical and Computer Engineering

TABLE VIII. VIRTEX-7 FPGA XC7VS485T-2FFG1661 RESOURCES USAGE
OF THE PROPOSED MR2%-23

Occupied Slices

N Structure Two parallelp Four parallel
s 2.2 278 606
“ 2392 391 850
2253 413 882
220292 388 814
64 233 539 1141
128 22.92 93 556 1059
239292 529 1054
2292 97 92 587 1033
256 239298 722 1352
2303 92 706 1367
239393 958 1694
512 239292 2 828 1404
YRR 858 1405
2292 02 52 o2 1052 1569
1024 239202 1182 1920
2302923 1187 1872

The maximum frequency for the proposed architectures
synthesized on Virtex-7 and Virtex-5 platforms over
increasing FFT size are presented in Fig. 12. Virtex-7
implemented architectures achieved higher frequency values
in comparison to Virtex-5. Virtex-7 implementations
initially achieved 477 MHz followed with very low-levels of
decreasing frequency as FFT size increases. Virtex-5
implementations achieved lower frequency with 458 MHz
and 439 MHz for two and four data stream architecture with
relatively large frequency decrease as FFT size increases.

As shown in Fig. 13 the dynamic power consumption of
the proposed architecture designs implemented on Virtex-7
demonstrated significant power savings in comparison to
Virtex-5 implementations. For FFT size N=16 architecture
at 400 MHz maximum frequency, two data stream
demonstrated initial dynamic power consumption of 0.9 W
and 0.4 W for Virtex-5 and Virtex-7 implementations, while
four data streams obtained 2 W and 0.9 W for Virtex-5 and
Virtex-7 implementations. It is important to note all designs
demonstrated very low-levels of dynamic power
consumption increase as FFT size increases.

The dynamic power consumption of high-frequency

architecture for FFT size N=16 and 1024 with increasing
480

480

s
e}
o

——2 parallel architecture. Virtex 5.
—{— 4 parallel architecture. Virtex 5.
—O—2 parallel architecture. Virtex 7.
—O— 4 parallel architecture. Virtex 7.

s
2]
(=]

'S
o
o

'
Ly
(=]

Maximum Frequency (MHz)
B
oy

'S
[N
o

IS
=
o

'S
(=]
o

390

i i i i i i i i i i
100 200 300 400 500 600 700 8O0 900 1000
FFT size N
Figure 12. Maximum frequency versus FFT size N comparison between
Virtex-7 and Virtex-5 implementation of proposed architectures

36

Volume 17, Number 1, 2017

frequency, synthesized for Virtex-5 and Virtex-7 platforms
are presented in Fig. 14a and Fig. 14b. Virtex-7
implementations demonstrate significant dynamic power
reductions in comparison to Virtex-5, where the dynamic

power reduction magnitude increases as frequency
increases.
24
22 --------- B} (ORI SRR SRR .
I o
af o Po— T
—0—2 parallel architecture. Virtex 5.
18 ——4 Parallel architecture. Virtex 5. ...
% —0—2 parallel architecture. Virtex 7.
T O S —S—4 parallel architecture. Virtex 7. _._|
:
S 1a--
2
E 12
>
a

08

06

700 200 300 400 500 600 700 800 900 1000
FFT size N

Figure 13. Dynamic power versus FFT size N comparison between Virtex-7

and Virtex-5 implementation of proposed architectures (with F=400 MHz)

04

16 T ! T ! !
‘ | —O—N=16, Virtex-5

—O0—N=1024, Virtex5

—0— N=16, Virtex-7

—7—N=1024, Virtex-7
-— 1
E
z
£
o
o
2
£
[
5, : : i
& 05 ; e £ S R e

i i i i i i i
% 100 150 200 250 300 350 400 450
Frequency (MHz)
(@)

25 T T T T T T T

| —0—N=16, Virtax5
: ! —O—N=1024, Virtex-5
2l i —0—N=16, Virtex-7

| i —U—N=1024, Virtex-7

15 f o

Dynamic Power (Watt)

05F-

i i i i i i i
%0 100 150 200 250 300 350 400 450
Frequency (Mhz)
(b)

Figure 14. Dynamic power versus frequency comparison between Virtex-7
and Virtex-5 implementation of proposed architectures. (a) Two parallel
architecture. (b) Four parallel architecture

Advances in Electrical and Computer Engineering

The proposed high-frequency architecture is compared
with recent and comparable techniques within literature as
presented in Table IX. It is important to note Ayinala,
Brown and Parhi [20] introduced a two-parallel architectures
for one data stream without an input scheduling unit, while
Wang, Liu, He and Yu [23] presented a single path FFT
architecture to obtain a DFT response for a single stream. In
order to provide a valid comparison the compared resources

Volume 17, Number 1, 2017

have been scaled to reflect the articles presented number of
parallel paths. The proposed high-frequency design
demonstrated the highest achieved frequency amongst the
implementation techniques compared, where the proposed
method obtains a significant advantage. The proposed
architectures frequency improvement when compared
against equivalent techniques increases as FFT size N
increases.

TABLE IX. COMPARISON OF THE PROPOSED ARCHITECTURES FPGA IMPLEMENTATION WITH PREVIOUS WORKS

N Method Device Slice LUTs Slices DSPs F(r;,;ll';z')"y
XC5VSX240T-2FF1738 1355 619 12 439
XC7VS485T-2FFG1661 1575 606 12 477
Proposed
XC6CSX475T-1 FF1156 1307 506 12 400
15 XC5VLX20T 1136 534 12 384
Garrido et al. [21] XC5VSX240T-2FF1738 - 386 12 458
Garrido et al. [22] XC6CSX475T-1 FF1156 - 567 12 335
Ayinala et al. [20] XC5VLX20T 2348 1046 - 370
Wang et al. [23] XC5VSX240T-2FF1738 2688 16 322
XC5VSX240T-2FF1738 2301 - 2327 931 - 991 12-16 422 - 424
- Proposed XC7VS485T-2FFG1661 2527 - 2534 850 - 882 12-16 471 - 477
XC5VLX20T 2109 - 2135 829 - 835 12-16 382 - 385
Avyinala et al. [20] XC5VLX20T 3088 1290 R 370
XC5VSX240T-2FF1738 2059 - 3294 895 - 1284 16 - 24 417 - 421
Proposed XC7VS485T-2FFG1661 2258 - 3466 814 - 1141 16 - 24 475 - 477
XC6CSX475T-1 FF1156 2831 - 4028 699 - 1006 16 - 24 394 - 400
o XC5VLX20T 2007 - 3026 811 - 1151 16 - 24 375 - 394
Garrido et al. [21] XC5VSX240T-2FF1738 - 695 24 384
Garrido et al. [22] XC6CSX475T-1 FF1156 - 782 24 335
Ayinala ez al. [20] XC5VLX20T 3832 1560 - 370
Wang e al. [23] XC5VSX240T-2FF1738 4440 - 32 303
XC5VSX240T-2FF1738 2914 - 4152 1095 - 1744 28 - 36 404 - 417
Proposed XC7VS485T-2FFG1661 3117 - 4334 1033 - 1367 28 - 36 472 - 477
o5t XC6CSX475T-1 FF1156 2837-4046 928 - 1305 28 - 36 400
Garrido et al. [21] XC5VSX240T-2FF1738 - 1024 36 389
Garrido et al. [22] XC6CSX475T-1 FF1156 - 924 36 240
Wang et al. [23] XC5VSX240T-2FF1738 6932 - 48 297
XC5VSX240T-2FF1738 4932 - 5483 1659 - 2433 40 - 48 400 - 411
Proposed XC7VS485T-2FFG1661 5063 - 6307 1569 - 1920 40 - 48 472 - 474
1004 XC6CSX475T-1 FF1156 4828-6011 1434 - 1824 400
Garrido et al. [21] XC5VSX240T-2FF1738 - 1425 48 270
Garrido et al. [22] XC6CSX475T-1 FF1156 - 1351 48 227
Wang ez al. [23] XC5VSX240T-2FF1738 11216 - 64 208
The proposed realization involves fewer DSP with efficient utilization of FPGA resources and
mathematical hardware operators than techniques demonstrates a significant high-throughput performance in

demonstrated in [23] and fewer or the same number of DSP
operators than references [21, 22] for all FFT sizes
investigated. Additionally, the presented architecture
required fewer slices Look-Up Tables (LUT) than references
[20] and [23] and fewer occupied slices than [20]. It is
challenging to provide a valid occupied slice resource
comparison with [21] and [22] as the compared techniques
do not include an input shuffling unit function, which is
necessary to process multiple streams in parallel.

VI. CONCLUSION

This article presents an efficient FPGA implementation of
high-frequency FFT architecture based on mixed Radix-2?
Radix-2° MDC structures. The presented architecture design
can process two or four independent data streams in parallel

comparison to other equivalent techniques. The designs
were intended for MIMO-OFDM communication systems,
where parallel data processing is a critical process, requiring
efficient resource usage and high-throughput. The system is
very simple to control with binary counter signals. The
presented architecture is based on mixed Radix structures to

realize scalable architectures to any FFT size N =2".
Additionally, the mixed Radix approach offers advantages
in the implementation flexibility, where a FFT processor for
each size can be realized with several differing Radix-2° and
Radix-2® module combinations. The designs were carried
out and evaluated on Virtex-5 and Virtex-7 FPGA devices.
Experimental results demonstrate the presented high-
frequency architectures obtained throughput ratio
improvements of 20.82 within two-parallel and 19.12 within

37

Advances in Electrical and Computer Engineering

four-parallel architectures in comparison to equivalent low-
frequency designs. The proposed architecture obtained
maximum frequency values of 458 MHz and 477 MHz for
Virtex-5 and Virtex-7 devices, in addition to obtaining very
low-levels of performance decrease as FFT size N increases.
Additionally, Virtex-7 device implementations demonstrated

significant dynamic power

reduction while obtaining

significantly higher throughput than Virtex-5.

(1]

[2]

(3]

(4]

[5]

(6]

(71

(8]

[°]

[10]

[11]

38

REFERENCES

D. Gesbert, M. Shafi, D. Shiu, P.J. Smith, and A. Naguib, “From
theory to practice: an overview of MIMO space-time coded wireless
systems,” IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 281-
302, Apr 2003. doi: 10.1109/JSAC.2003.809458.

J. A. C. Bingham, “Multicarrier modulation for data transmission: an
idea whose time has come,” IEEE Communications Magazine, vol.
28, pp. 5-14, May 1990. doi: 10.1109/35.54342.

H. Sampath, S. Talwar, J. Tellado, V. Erceg, A. Paulraj, “A fourth
generation MIMO-OFDM: broadband wireless system: Design,
performance, and field trial results,” Communications Magazine,
IEEE, wvol. 40, no. 9, pp. 143-149, Sep. 2002. doi:
10.1109/MCOM.2002.1031841.

Y. G. Li, J. H. Winters, N. R. Sollenberger, “MIMO-OFDM for
wireless communications: Signal detection with enhanced channel
estimation,” IEEE Trans. Communications, vol. 50, no. 9, pp. 1471-
1477, Sep. 2002. doi: 10.1109/TCOMM.2002.802566.

H. Y. Chen, J. N. Lin, H. S. Hu, S. J. Jou, “STBC-OFDM downlink
baseband receiver for mobile WMAN,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 21,no. 1, pp. 43-54, Jan 2013.
doi: 10.1109/TVLSI.2011.2181965.

IEEE 802.16 Working Group, “IEEE standard for local and
metropolitan area networks. Part 16: Air interface for fixed broadband
wireless access systems,” IEEE Standard 802.16e-2005, 2006. doi:
10.1109/IEEESTD.2006.99107.

Y. W. Lin, C. Y. Lee, “Design of an FFT/IFFT processor for MIMO
OFDM systems,” IEEE Trans. on Circuits and Systems 1, vol. 54, no.
4, pp. 807-815, Apr. 2007. doi: 10.1109/TCS1.2006.888664.

B. Fu, P. Ampadu, “An area efficient FFT/IFFT processor for MIMO
OFDM WLAN 802.11n,” Journal of Signal Processing Systems,
Springer, vol. 56, no. 1, pp. 59-68, Jul. 2009. doi:10.1007/s11265-
008-0264-9.

K.J. Yang, S. H. Tsai, , G. C. H. Chuang, “MDC FFT/IFFT Processor
With Variable Length for MIMO-OFDM Systems,” IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 720-
731, Apr. 2013. doi: 10.1109/TVLSI.2012.2194315.

S. N. Tang, C. H., Liao, T. Y. Chang, “An area- and energy-efficient
multimedia FFT processor for WPAN/WLAN/WMAN systems,”
IEEE J. of Solid-State Circuits, vol. 47, no. 6, pp. 1419-1435, Jun.
2012. doi: 10.1109/JSSC.2012.2187406.

S. N. Tang, J. W. Tsai, T. Y. Chang, “A 2.4 GS/s FFT processor for
OFDM based WPAN applications,” IEEE Trans. on Circuits and
Systems I1: Express Briefs, vol. 57, no. 6, pp. 451-455, Jun. 2010. doi:

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Volume 17, Number 1, 2017

10.1109/TCSI1.2010.2048373.

C. Wang, Y. Yan, X. Fu, “A High-Throughput Low-Complexity
Radix-24-22-22 FFT/IFFT Processor With Parallel and Normal
Input/Output Order for IEEE 802.11ad Systems,” IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp.
2728-2732, Nov. 2015. doi: 10.1109/TVLSI.2014.2365586.

P. Y. Tsai, C. W. Chen, M. Y. Huang, “Automatic IP generation of
FFT/IFFT processors with word-length optimization for MIMO-
OFDM systems,” EURASIP J. of Advances in Signal Processing, vol.
2011, no. 1, pp. 1-15, Jan. 2011. doi: 10.1155/2011/136319.

Y. W. Lin, H. Y. Liu, C. Y. Lee, “A 1-GS/s FFT/IFFT processor for
UWSB applications,” IEEE J. of Solid-State Circuits, 2005, vol. 40, no.
8, pp. 1726-1735, Aug. 2005. doi: 10.1109/JSSC.2005.852007.

Y. T. Lin, P. Y. Tsai, T. D. Chiueh, “Low-power variable-length fast
Fourier transform processor,” in IEE Proc. Computers and Digital
Techniques, vol. 152, no. 4, pp. 499-506, Jul. 2005. doi: 10.1049/ip-
cdt:20041224.

S. He, M. Torkelson, “A new approach to pipeline FFT processor,” in
Proc. International Parallel Processing Symposium (IPPS '96),
Washington, DC, Apr. 1996, pp. 766-770. doi:
10.1109/1PPS.1996.508145.

S. He, M. Torkelson, “Designing pipeline FFT processor for OFDM
(de)modulation,” in Proc. International Signals, Systems, and
Electronics Symposium (ISSSE 98), Pisa, Sep. 1998, pp. 257- 262.
doi: 10.1109/ISSSE.1998.738077.

P. P. Boopal, M. Garrido, O. Gustafsson, “A reconfigurable FFT
architecture for variable-length and multi-streaming OFDM
standards,” in Proc. IEEE International Symposium on Circuits and
Systems (ISCAS 2013), Beijing, May 2013, pp. 2066-2070. doi:
10.1109/ISCAS.2013.6572279.

E. E. Swartzlander, W. K. W. Young, S. J. Joseph, “A radix-4 delay
commutator for fast Fourier transform processor implementation,”
IEEE J. of Solid-State Circuits, vol. 19, no. 5, pp. 702-709, Oct. 1984.
doi: 10.1109/JSSC.1984.1052211.

M. Ayinala, M. Brown, K. K. Parhi, “Pipelined parallel FFT
architectures via folding transformation,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1068-1081, Jun.
2012. doi: 10.1109/TVLSI.2011.2147338.

M. Garrido, J. G. Rajal, M. A.. Sanchez, O. Gustafsson, “Pipelined
Radix-2k Feedforward FFT Architectures,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23-
32, Jan. 2013. doi: 10.1109/TVLSI.2011.2178275.

M. Garrido, M. Acevedo, A.. Ehliar, O. Gustafsson, “Challenging the
limits of FFT performance on FPGAS,” in Proc. IEEE International
Symposium on Integrated Circuits (ISIC), Singapore, Dec. 2014, pp.
172-175. doi: 10.1109/ISICIR.2014.7029571.

Z. Wang, X. Liu, B. He, F. Yu, “A Combined SDC-SDF Architecture
for Normal 1/O Pipelined Radix-2 FFT,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 793-977, May
2015. doi: 10.1109/TVLSI.2014.2319335.

S. Uzun, A. Amira, A. Bouridane, “FPGA implementations of fast
Fourier transforms for real-time signal and image processing,” in IET
Proc. in Vision, Image and Signal Processing, vol. 152, no. 3, pp. 283-
296, Jun. 2005. doi: 10.1049/ip-vis:20041114

