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Abstract
Ion transporters are the molecular basis for ion homeostasis of the cell and the whole organism. 
The anion exchanger pendrin is only one of a number of examples where a complete or 
partial loss of function and/or deregulation of expression of ion transporters may lead or 
contribute to pathological conditions in humans. A complete understanding of the function 
of ion transporters in health and disease may pave the way for the identification of new 
and focused therapeutic approaches. Exchange of knowledge and connectivity between the 
experts in the field of transport physiology is essential in facing these challenging tasks. The 
Lake Cumberland Biological Transport Group and the Pendrin Consortium are examples of 
scientific forums where investigators combine their efforts towards a better understanding 
of molecular pathophysiology of ion transport. This issue discusses the versatility of ion 
transporters involved in the regulation of cellular volume and other functions, such as the 
solute carrier (SLC) 12A gene family members SLC12A4-7, encoding the Na+-independent 
cation-chloride cotransporters commonly known as the K+‐Cl- cotransporters KCC1-4, and 
the betaine/γ-aminobutyric acid transport system (BGT1, SLC6A12), just to name a few. The 
issue further addresses the pathophysiology of intestinal and respiratory epithelia and related 
therapeutic tools and techniques to investigate interactions between proteins and proteins 
and small compounds. Finally, the current knowledge and new findings on the expression, 
regulation and function of pendrin (SLC26A4) in the inner ear, kidney, airways and blood 
platelets are presented.
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Introduction

The Lake Cumberland Biological Transport Group (http://www.cumberlandbio.org/) 
was founded in 1966 and includes scientists interested in tissue and cellular ion transport. 
The Meeting of the Lake Cumberland Biological Transport Group has been held annually 
since then at the Lake Cumberland State Resort Park in Jamestown, Kentucky, USA. The 
group is affiliated with the American Physiological Society. 

The 48th Annual Meeting of the Lake Cumberland Biological Transport Group was held 
from June 16th through June 18th, 2013, and was convened by Silvia Dossena (Chair), Norma 
Adragna (Vice-Chair) and Eleanor Lederer (Chair Emeritus).

The Pendrin Consortium was founded two years ago as a spin-off from an exploratory 
workshop funded by the European Science Foundation (ESF) in Leogang, Austria [1]. The 
members planned to meet biannually since then, alternating the location of the meeting 
between Europe and the USA. The Pendrin Consortium is an international group of 
scientists that joined their efforts on the common theme of the “Proteomics, Epigenetics, 
and Pharmacogenetics of Pendrin” (PEPP). Pendrin (SLC26A4, PDS) is a transport protein 
whose malfunction or up regulation may be associated with the onset or exacerbation of a 
broad spectrum of diseases, including syndromic or non-syndromic deafness, hypertension, 
asthma and chronic obstructive pulmonary disease (COPD). “Proteomics” within this 
collaboration refers to how the pendrin protein alone or in conjunction with other proteins 
impacts the observed function; “epigenetics” refers to how inherited genetic information 
and genetic information not encoded in the DNA sequence translates to variations in the 
overall function of pendrin; and finally, “pharmacogenetics” explores how genetic differences 
in the pendrin gene could be translated into differences in the way that possible drugs affect 
pendrin function [1].

The Second Biannual Meeting of the Pendrin Consortium was held from June 19th 
through June 21st, 2013, at the Lake Cumberland State Park, in Jamestown, Kentucky USA, 
and was convened by Silvia Dossena (Chair), Charity Nofziger (Vice-Chair) and Markus 
Paulmichl (Chair Emeritus).

The organizers of the Second Biannual Meeting of the Pendrin Consortium are also 
members of the Lake Cumberland Biological Transport Group. Holding the two meetings 
in the same location and in close temporal succession allowed the organizers to extend the 
invitation to the Second Biannual Meeting of the Pendrin Consortium also to the members of 
the Lake Cumberland Biological Transport Group. This allowed scientific exchange between 
the two groups in terms of critical discussion and opportunity for collaboration.

Aims of the meetings 

The Lake Cumberland Biological Transport Group Meeting is an excellent opportunity 
for principal investigators, post-doctoral fellows and graduate students to present either 
published data or work in progress with the aims of receiving feedback and encouraging 
open discussion. Cell biology, physiology, molecular biology and biochemistry centered on 
the theme of biological transport are the main topics of the meeting. This forum also provides 
trainees with future job opportunities and principal investigators with opportunities to find 
qualified trainees. Likewise, the broad diversity of themes facilitates collaborations within 
and between institutions, thus increasing the chances for scientific discovery, funding 
opportunities and publications, all taking place in a collegial atmosphere.

The aims of the Meetings of the Pendrin Consortium are to extend, fortify and intensify 
the scientific exchange and connectivity between the members, in the common effort of 
a complete understanding of the role of pendrin in health and disease. Extension of the 
existing collaboration between the Pendrin Consortium members would add significant 
momentum to the knowledge-transfer between the different groups and will aid in the 
successful strengthening, fortification, and sustenance of the research activity. Ultimate 
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goals of the Pendrin Consortium are (i) to identify possible therapeutic approaches for 
diseases linked to pendrin loss or reduction of function and (ii) understanding if reduction 
of pendrin function and/or expression can be regarded as a novel therapeutic strategy for 
the treatment of complex pathologies such as hypertension, asthma and COPD.

Scientific Content of the meetings

The 48th Annual Meeting of the Lake Cumberland Biological Transport Group comprised 
a total of 26 scientific talks distributed in ten sessions which covered a wide range of topics 
including kidney, lung and liver disease, membrane transport proteins trafficking, regulation 
and structure-function relationships, novel drug discovery, signal transduction and protein-
protein interactions.

The Second Biannual Meeting of the Pendrin Consortium included a total of 14 scientific 
talks divided in five sessions, focusing on pendrin and ranging from the functional and 
molecular characterization of this protein to its transcriptional regulation and trafficking, 
and including studies on mouse models for its dysfunction. Communications on preliminary 
clinical investigations paving the way for future genetic and molecular studies were also 
solicited.

The participants at either one or both meetings were invited to contribute original 
papers or reviews focusing on the topics – or closely related topics – presented at the 
conference. These contributions are collected in the current special issue, which is composed 
of 13 original manuscripts and 5 reviews. Owing to their main topics, the papers have been 
divided into the following sections:

a) The 48th Annual Meeting of the Lake Cumberland Biological Transport Group: 
This section includes 7 original papers and 3 reviews, distributed in the following 
subsections:
- Versatility of ion transporters involved in the regulation of cellular volume
- Pathophysiology of intestinal and respiratory epithelia and related therapeutic tools
- Technical approaches of general interest

b) The Second Biannual Meeting of the Pendrin Consortium: This section includes 6 
original papers and 2 reviews, distributed in the following subsections:
- The inner ear
- The kidney
- The airways 
- Non-conventional pendrin expression sites
- Transcriptional regulation of pendrin

a) The 48th Annual Meeting of the Lake Cumberland Biological Transport Group 

This section concerns the physiology of ion transporters involved in functions as diverse 
as the regulation of cellular volume, transepithelial ion fluxes and regulation of neuronal 
excitability, just to name a few. 

Versatility of ion transporters involved in the regulation of cellular volume
Volume regulation is a ubiquitous function essential to cell survival. When exposed to 

an anisosmotic medium, cells swell or shrink in response to an osmotically-driven water 
influx or efflux, respectively. To restore the original volume, swollen cells extrude ions, 
typically K+ and Cl-, therefore inducing an efflux of water. In contrast, after cell shrinkage, cells 
accumulate ions or other osmotically active solutes [2]. It is becoming increasingly evident 
that ion transporters involved in the regulation of cellular volume are functionally versatile 
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molecules and may be involved in various homeostatic mechanisms. Some examples will be 
given in the following.

The solute carrier (SLC) 12A gene family comprises at least seven branches of 
homologous genes, i.e. SLC12A1‐7, encoding Na+‐dependent or Na+-independent cation-
chloride cotransporters (CCC). The SLC12A1-3 genes encode the Na+‐dependent K+-2Cl- 
cotransporters NKCC2 and NKCC1 and the Na+‐Cl- cotransporter NCC, respectively [3]. The 
SLC12A4-7 genes encode the Na+‐independent cation‐chloride cotransporters, commonly 
known as the K+‐Cl- cotransporters KCC1-4, and are the focus of a comprehensive review 
presented by Gagnon and Di Fulvio [4]. KCCs are widely distributed, extrude Cl- ions from 
the cell by exploiting the chemical gradient of K+ and play a major role in the regulatory 
volume decrease after cell swelling or in maintaining a low intracellular concentration of Cl-, 
a major prerequisite in depression of neuronal excitability by inhibitory neurotransmitters. 
Although the genes encoding the NCCs in mammals are only four, the number of transcripts 
due to alternative splicing and translation from alternative initiation sites is stunning, and 
led the authors to formulate the fascinating hypothesis of the existence of several protein 
isoforms with multiple functions – some of which perhaps are still undiscovered [4].

Kempson and colleagues give an overview on the functional roles of another versatile 
transporter, the betaine (trimethylglycine)/γ-aminobutyric acid (GABA) transport system 
(BGT1, SLC6A12) [5]. In the kidney, BGT1 is localized in the basolateral membrane and 
transports betaine with both Na+ and Cl- ions. BGT1 is upregulated by hyperosmolarity and 
induces accumulation of betaine in the intracellular environment, protecting the cell from 
the hyperosmolarity of the inner medulla. In contrast, liver BGT1 is active under iso-osmotic 
conditions, and betaine serves mainly as a methyl donor and prevents homocysteine 
toxicity improving methionine synthesis. Abnormal methionine metabolism in the liver is 
one of the consequences of alcohol abuse and appears to be linked to the pathogenesis of 
alcoholic liver disease. Based on these observations, the authors suggest that dietary betaine 
supplementation may have a number of potential useful applications, including treatment 
of nonalcoholic fatty liver, alcohol-induced liver damage and hyperhomocysteinemia, a risk 
factor for atherosclerotic disease [5].

ICln (nucleotide-sensitive chloride current protein) is an excellent example of a 
multifunctional ion channel. Being initially described as critically involved in the activation 
of the swelling-induced Cl- current IClswell [6], ICln was later discovered to interact with a 
number of different proteins  and be involved in multiple functions, including regulation of 
cellular morphology, platelet activation, angiogenesis, cell migration and RNA processing 
[7]. In this issue, Dossena et al. illustrate a strategy – the Operon-Based Partner Protein 
Quest, OBPQ – that was used to identify some of the ICln partner proteins [8], and can be 
applied to other membrane transporters [9]. This strategy is based on the evidence that, in 
the nematode C. elegans, genes organized in the same operon are spatially and temporally 
co-expressed and may therefore encode functional or molecular partner proteins. This 
concept can be successfully translated to the human system and lead to the identification of 
protein-protein interactions otherwise difficult to predict.

Regulation of cellular volume can be altered in pathological states. In an elegant series 
of experiments performed by Blanco and colleagues, the biophysical mechanisms and 
kinetics of cell water volume changes elicited by ammonia (NH3) and ammonium (NH4

+) 
in neuronal cell lines derived from mouse [10] are characterized. This research is directly 
relevant to the brain edema associated with hyperammonemic syndromes and acute liver 
failure. The authors provide experimental evidence showing that isosmotic NH4Cl solutions 
result in swelling, and that ionization of NH3 inside the cell, rather than direct transport of 
NH4

+ into the cell, is most responsible for said swelling.
Cell volume regulation is a homeostatic function conserved throughout evolution and 

also occurs in jellyfish [11]. Two original papers from the group of La Spada focus on the 
features of the stinging cells (nematocytes) from Pelagia noctiluca, a Cnidarian Scyphazoan 
jellyfish indigenous to the Straight of Messina, Italy. In the first study, Morabito et al. 
investigate how alterations in seawater pH vary the ability of nematocytes to regulate their 
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volume, as well as to discharge their toxin-containing venom [12]. These authors propose 
the nematocyte and its homeostatic functions as novel bioindicators for the quality of the 
marine environment. 

In a second series of experiments, Morabito and colleagues begin to unravel the 
mechanisms by which P. noctiluca crude venom modulates ion transport in human 
erythrocytes [13]. In particular, the authors provide evidences implicating modulation of 
the Band 3 anion exchanger and the potassium chloride cotransporter, KCC, possibly via 
induction of oxidative stress. These experiments underscore that transporters typically 
involved in the regulation of cellular volume in mammalian cells can be molecular targets of 
toxins from marine animals.

Pathophysiology of intestinal and respiratory epithelia and related therapeutic tools
Substances present in the environment, such as nutrients and pollutants, may positively 

or negatively affect the biology and function of tissues in contact with the external milieu, 
such as the intestinal and respiratory epithelia. 

The gut microbiota or flora, is the collection of all the microorganisms that naturally 
inhabit the intestine, and its composition can be altered by diet or pathological state [14]. 
In fact, the anti-diarrheal effect of carrot soup was documented over 100 years ago by an 
Austrian pediatrician, Ernst Moro [15]. With the continuously rising need for alternative 
approaches against gastrointestinal bacteria infections, Engevik and colleagues initiated 
studies regarding an oligosaccharide derivative from carrots, galursan HF 7K (GHF7K) and 
its potential as such an alternative. They show that the composition of the gut microbiota in 
mice was favorably altered by dietary supplementation with GHF7K. Accompanying changes 
in the ion composition of the intestinal fluid were also documented [16]. In a separate study, 
the same group showed that loss of Na+/H+ exchanger (NHE) 2 activity, which resulted in an 
acidic intestinal lumen pH, ultimately culminated in changes in gut microbiota composition 
[17]. These investigations strengthen a cause-effect relationship between ion transport and 
microbiota in the gut.

Bazzini et al. determined the consequences of cigarette smoke extract (CSE) exposure in 
human bronchial epithelial cells (16-HBE), a model for studying the effects of tobacco smoke 
in vivo and in vitro. CSE increased cell mortality and induced oxidative stress, as evidenced 
by a decrease in reduced glutathione and increase in reactive oxygen species intracellular 
concentrations. These effects could be reversed by the mucolitic drug S-carboximethilcysteine 
lysine salt (S-CMC-Lys), that was proposed as an efficient therapeutic tool to counteract CSE-
induced oxidative cellular injuries [18].

Technical approaches of general interest
Tools for predicting or detecting interactions between proteins and proteins and small 

compounds may help elucidate the structure-function relation of membrane transporters 
and, besides solving a specific research issue, can be of general interest. The OBPQ described 
earlier is one of such approaches [9].

In addition, Dorney et al. [19] presented the optimization of a powerful yet underserved 
technique, the Surface-Enhanced Raman Spectroscopy (SERS). By SERS, the authors 
determined the concentration (in the sub-picomolar range) of the quaternary benzo-
phenanthridine alkaloid chelerytrine (CET) within different subcellular compartments in 
human lens epithelial cells. Due to its ability to trigger apoptosis and circumvent multi-drug 
resistance mechanisms, CET is acknowledged as a potential anti-cancer effector. Moreover, 
CET is a known inhibitor of the Na+/K+ pump. Accordingly, CET was found to be recruited 
at the plasma membrane level, possibly via binding to the Na+/K+ pump. Interestingly, 
the method presented can be adapted for efficient and sensitive detection of other small 
compounds with visible absorption resonances within the complex cellular matrix, without 
the use of fluorescent or radiochemical probes.
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b) The Second Biannual Meeting of the Pendrin Consortium

This section focuses on the functional and molecular characterization of the anion 
exchanger pendrin and its role in physiological and pathological conditions.

Pendrin was firstly cloned in 1997 [20] and identified as the molecular entity leading, 
when mutated, to Pendred syndrome, a pathological condition described 100 years earlier 
as an association between deafness and goiter not due to environmental factors [21]. Later, 
functional studies established that pendrin is an electroneutral anion exchanger capable of 
transporting a broad range of monovalent anions, including iodide, chloride, bicarbonate, 
thiocyanate, hydroxide and formate, but with no affinity for divalent ions such as sulfate [22]. 
Pendrin is expressed on the apical aspect of a variety of epithelial cells, being particularly 
abundant in the thyroid. The function of pendrin in the thyroid is controversially discussed 
[23], but it is common opinion that this transporter is responsible for the iodide efflux from 
the thyrocyte to the follicular lumen, and thereby participates in the organification of iodide 
during the process of thyroid hormones synthesis. The expression and function of pendrin 
in other organs such as the inner ear, kidney and airways will be discussed in detail in the 
following.

The inner ear
In the inner ear, pendrin was found in specific subsets of non-sensory cells within the 

cochlea, endolymphatic duct and sac and vestibular labyrinth, where it functions as a Cl-/
HCO3

- exchanger and controls the pH and volume of the endolymph [24]. In the last ten years, 
the work of Wangemann and colleagues illuminated the role of pendrin in the physiology of 
development of the inner ear [24-34]. Mouse models allowed tremendous advances in this 
field [35]. In this issue, Prof. Wangemann provides an overview of the currently existing 
mouse models for pendrin dysfunction and their characteristics [36], with specific regard 
to the inner ear. Pendrin knock-out mice give insights on the pathological consequences of a 
complete lack of pendrin expression [37, 38], while knock-in [39] and N-ethyl-N-nitrosourea 
(ENU) mutagenesis-induced [40] mice represent models for expression of pendrin allelic 
variants with lack or reduction of function. Interestingly, mouse models for lack of pendrin 
expression specifically in the endolymphatic sac [41], or in the cochlea and the vestibular 
labyrinth [42] were recently developed and characterized. These studies showed that pendrin 
expression is only required during a critical time period during embryonic development, 
and that maintenance of hearing without pendrin in a fully developed inner ear is possible. 
These findings suggest that a temporally and spatially limited therapy directed to the 
endolymphatic sac and focused on the prenatal phase of development can restore normal 
hearing in patients with deafness linked to pendrin mutations [36].

Mutations in the pendrin gene may be responsible for sensorineural hearing loss in the 
context of two distinct pathological conditions, i.e. Pendred syndrome and non-syndromic 
enlarged vestibular aqueduct (EVA). Pendred syndrome is an autosomal recessive disease 
where deafness is accompanied by a partial iodide organification defect at the level of the 
thyroid. This disorder is disclosed by a positive perchlorate discharge test, and may lead to 
subclinical or overt hypothyroidism with or without goiter. Pendred syndrome is usually 
associated with homozygous or compound heterozygous biallelic mutations in the pendrin 
gene, while non-syndromic EVA has been found in association with one, two or no pendrin 
mutations [22]. Common radiological findings at the level of the inner ear associated with 
pendrin mutations include EVA and Mondini’s dysplasia.

In this issue, Roesch and collaborators reviewed temporal bone computed tomography 
scans of 75 patients having severe sensorineural hearing loss, with ages ranging from 13 
months to 84 years [43]. All patients received cochlear implantation, either on one side or 
both, at the General Hospital of Salzburg, Austria, between years 2009 and 2011. In those 
patients with inner ear malformations consistent with pendrin malfunction, sequencing of 
the pendrin gene and functional characterization of possible pendrin allelic variants [44] 
will confirm or exclude pendrin mutations as the genetic cause of the observed deafness. 
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Definite diagnosis of Pendred syndrome will require careful assessment of thyroid function. 
The incidence of Pendred syndrome is difficult to assess and has been evaluated 

between 7.5-10 in 100,000 newborns [45], with a broad spectrum of mutations that may 
differ between distinct populations [46]. The incidence and type of pendrin mutations in 
the Austrian deaf population is currently unknown. The approach of Roesch et al. [43] will 
prospectively allow the recruitment of a sufficient number of patients that will represent a 
cohort for studying Pendred syndrome/non syndromic EVA in the region of Salzburg. The 
exact diagnosis and identification of the genetic cause of deafness is essential in order to 
properly assist the patient and is extremely important to infer the progression of the disease, 
or – in case of syndromic deafness – the possible involvement of other organs. Despite the 
lack of specific therapies targeting the mutated pendrin gene or protein, identification of 
pendrin mutations via sequencing of the pendrin gene are of upmost importance to (i) 
exclude other genetic or environmental causes of deafness for which a specific therapy may 
be available, (ii) predict a possible worsening of deafness in case of moderate or fluctuating 
residual hearing, (iii) highlight the importance of monitoring thyroid function after puberty 
and (iv) assist families with genetic counseling by predicting the probability that deafness 
will occur in the next generation.

The kidney
In the kidney, pendrin is expressed on the apical membrane of non-alpha intercalated 

cells of the distal cortical segments of the nephron, where it plays a major role in bicarbonate 
secretion [38, 47] and chloride reabsorption [48], and contributes to mineralocorticoid-
induced hypertension [49]. Despite the absence of any kidney phenotype in Pendred 
syndrome patients and mouse models in basal conditions, pendrin knock-out mice become 
hypotensive under NaCl restriction [48], and show severe salt wasting, increased urine 
output, profound volume depletion, renal failure, and metabolic alkalosis in the setting of 
a concomitant lack of function of other salt-reabsorbing transporters (such as the thiazide-
sensitive Na+-Cl- cotransporter NCC) [50]. These observations led to the hypothesis that NCC 
and pendrin may compensate for the loss of each other, masking their respective roles in salt 
reabsorption [50]. In line with this hypothesis, Xu and collaborators generated NCC/carbonic 
anhydrase II (CAII) double knock-out mice by crossing mice with single deletion of NCC 
and CAII [51]. In NCC and CAII single knock-out mice, pendrin expression was significantly 
upregulated [52] and reduced [53], respectively. The NCC/CAII double knock-out mice 
displayed significant downregulation of pendrin, along with polyuria and salt wasting. 
Interestingly, the inability to concentrate urine was associated with defective trafficking of 
the water channel aquaporin 2 (AQP2). Based on these evidences, the authors suggested 
that targeted inhibition of NCC and pendrin may provide a strong diuretic regimen for the 
treatment of fluid overload in patients with congestive heart failure, nephrotic syndrome, 
diuretic resistance and generalized edema [50, 51]. On the other hand, these studies highlight 
that thiazide therapy in Pendred syndrome patients may lead to severe adverse reactions 
[54].

From these and other studies, it is becoming increasingly evident that, in the kidney, 
salt and water reabsorption requires a tight interplay between pendrin and ion [55] and 
water [50, 51] channels, even if not expressed in the same cell type. Interestingly, pendrin 
was recently found to co-localize with aquaporin 5 (AQP5) [56]. In line with their previous 
findings, Procino et al. elicited a series of experiments concerning a possible regulatory 
relationship between pendrin and AQP5 in type-B intercalated cells within the context 
of chronic potassium depletion, a pathological state that increases renal bicarbonate 
reabsorption and leads to metabolic alkalosis and decreased pendrin expression [57]. The 
authors show for the first time that along with pendrin, AQP5 expression also decreases 
following long-term potassium depletion. While overexpression of AQP5 did not alter 
pendrin function, trafficking of the two proteins to different subcellular locals was identical. 
The authors suggest that Cl- influx and water transport via pendrin and AQP5, respectively, 
may be a mechanism by which type-B intercalated cells detect the external osmolarity. 
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The airways
In the airways, pendrin is believed to function mainly as Cl-/HCO3

- exchanger and play a 
role in controlling the airway surface liquid thickness, mucus production and antimicrobial 
activity [58-60]. While in the inner ear and thyroid it is the loss or reduction of function of 
pendrin that leads to pathological phenotypes, at the level of the respiratory epithelium it is 
an increased expression and/or activity of the transporter that may be noxious. Currently, 
very little is known about signaling events that may control pendrin function in the lung.

In this issue, Tamma et al. show that pendrin abundance in the plasma membrane of a 
continuous epithelial cell line from human lung (NCI H292) increased following short-term 
challenge with the adenylate cyclase activator, forskolin [61]. This is the first evidence that 
pendrin is regulated by the cAMP/protein kinase A (PKA) signal transduction cascade in 
the lung. The authors also demonstrate involvement of the RhoA GTPase, as well as changes 
in the polymerization state of the actin cytoskeleton in regards to forskolin –stimulated 
changes in pendrin trafficking in NCI H292 cells. All of the aforementioned findings were 
analyzed with fluorescence resonance energy transfer (FRET) in fixed and/or living cells, 
thereby underscoring the versatility of this technique. 

Non-conventional pendrin expression sites
While being classically described as expressed in the thyroid [20, 62], inner ear [63, 

64] and kidney [20, 47], pendrin transcript and/or protein were lately found in a variety 
of other tissues and organs, including placenta [65], Sertoli cells [66], endometrium [67], 
mammary gland [68], heart [69, 70], airways [59, 71], liver [72] and developing teeth 
[73]. In this Issue, Pelzl et al. provide the first evidence of pendrin expression in murine 
platelets [74]. Interestingly, pendrin abundance was upregulated by the mineralocorticoid 
deoxycorticosterone (DOCA) in a serum and glucocorticoid inducible kinase (SGK1) 
-dependent manner. It is plausible that pendrin activity may influence platelet functions, 
including volume regulation, intracellular pH, transport of peroxynitrite, and directly or 
indirectly affect platelet aggregation. Elucidating the physiological role of pendrin in platelets 
may help to explain the multiple adverse cardiovascular effects of mineralocorticoid excess, 
including heightened thrombogenicity [75], and deserves further investigation.

Transcriptional regulation of pendrin 
The promoter of the pendrin gene contains pH, hormone and cytokine responsive 

elements. Acidic pH decreases and alkaline pH increases pendrin promoter activity in kidney 
and inner ear epithelial cell lines, but not in thyroid cells. Aldosterone reduces pendrin 
promoter activity in kidney, but has no effect in thyroid and inner ear cells [76]. 

Another hormone effective in controlling pendrin expression at the level of the kidney 
is uroguanylin (UGN), a peptide secreted from the intestines in response to oral salt intake. 
It was recently shown by Rozenfeld et al. that UGN decreases pendrin expression via 
transcriptional repression of the pendrin promoter via heat shock factor 1 [77]. In this issue, 
the same group presents a thorough review of UGN, as well as a related peptide hormone, 
guanylin, with respect to their classical natriuretic effects and non-classical roles in tissues 
ranging from the intestine and kidney to the airways, olfactory organs and reproductive 
system [78].

The pro-inflammatory cytokines interleukin 4 (IL-4) and interleukin-13 (IL-13), crucial 
in the development of bronchial asthma and COPD, have recently been shown to increase 
pendrin promoter activity and mRNA expression by a signal transducer and activator 
of transcription (STAT) 6-dependent mechanism [79]. In a follow-up from their previous 
findings, Vanoni and colleagues describe the differential contribution of two STAT6 DNA 
consensus motifs with respect to IL-4 stimulated increases in pendrin promoter activity 
[80]. A detailed knowledge of the mechanisms regulating pendrin expression may lead 
to the development of new therapeutic approaches for the control of blood pressure and 
respiratory distresses, and is therefore of upmost importance.
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Conclusion

The multiple functions of ion transporters are essential in the homeostasis of the cell 
and the whole organism. Impairment or disregulation of ion transport is seen in several 
diseases, for which a detailed understanding of the molecular biology and physiology of the 
ion transporters involved may lead to development of focused and individualized therapeutic 
approaches. Exchange of knowledge and connectivity between the experts in this field is 
essential for facing these challenging tasks.
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