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Abstract

Robotic sensor deployment is fundamental for the effec‐
tiveness of wireless robot sensor networks-a good deploy‐
ment algorithm leads to good coverage and connectivity
with low energy consumption for the whole network.
Virtual force-based algorithms (VFAs) is one of the most
popular approaches to this problem. In VFA, sensors are
treated as points subject to repulsive and attractive forces
exerted among them-sensors can move according to
imaginary force generated in algorithms. In this paper, a
virtual spring force-based algorithm with proper damping
is proposed for the deployment of sensor nodes in a
wireless sensor network (WSN). A new metric called Pair
Correlation Diversion (PCD) is introduced to evaluate the
uniformity of the sensor distribution. Numerical simula‐
tions showed that damping can affect the network cover‐
age, energy consumption, convergence time and general
topology in the deployment. Moreover, it was found that
damping effect (imaginary friction force) has significant
influence on algortithm outcomes. In addition, when
working under approximate critical-damping condition,
the proposed approach has the advantage of a higher
coverage rate, better configurational uniformity and less
energy consumption.

Keywords Robot Sensors, Wireless Sensor Networks,
Sensor Deployment, Virtual Force, Spring Force

1. Introduction

Due to its low power consumption, low cost, and distrib‐
uted and self-organizational properties, WSNs have
became a technology with a wide range of potential
applications in both civilian and military areas. WSNs
typically consist of a large number of low-cost, low-power
sensors with the ability to sense and communicate, and can
be used for target tracking, environment monitoring,
national defence and underwater detecting, etc. As such, it
has been an active research area of interest recently [1,2].
Since robot sensors have the advantage of mobility,
intelligence and flexibility, some researchers have consid‐
ered the use of mobile robots as sensors, especially for
hazardous and unmanned environments.

Sensors could be mounted on mobile robots which will then
deploy themselves using specific algorithms. Sensor
deployment is a key issue for WSNs. The goals of an
intelligent sensor deployment algorithm can be summar‐
ized according to the following aspects. The first and most
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important aspect is the conservation of the energy of the
sensors. The reduction of energy consumption indicates the
extension of the lifetime of network systems. The energy
stored in mobile sensors will be utilized for both movement
and communication, such that the applied algorithm
should be simple to implement and the distance travelled
by the sensors should be restricted. The second goal is a
uniform network topology, which could help in enlarging
the coverage area as well as in reducing the difference in
the energy consumption rate for sensing and communica‐
tion, thus prolonging the lifetime of the whole network. A
region with a larger-than-average node intensity will lead
to the inefficient use of sensors and impair the detection of
other regions. The last goal is shortening the duration of
deployment process. Some time-critical applications of
WSN detection, such as disaster detection and military
usage, require the network to respond quickly to emergen‐
cy events. Because of all the requirements listed above, the
design of a sensor deployment algorithm becomes a
challenging task.

With the motility of robot sensors, movement-assisted
sensor deployment algorithms can be applied. In this kind
of deployment algorithm, each sensor knows its position;
the mobile sensors can communicate with each other and
can move to other positions according to the information
collected in order to improve the coverage ratio. Many
approaches have been proposed for movement-assisted
sensor deployment [3,4], such as virtual force-based [5-13],
swarm intelligence [14-18], and computational geometry
[19], or else some combination of the above approaches
[20,21]. Among these, virtual force-based strategies have
emerged as one of the most effective solutions. In this
paper, a VFA-based sensor deployment algorithm using
spring-like force is proposed and a shielding rule for
choosing neighboring sensors is adapted. Mutual force will
be generated between each pair of neighboring sensors and
will push them to move. Virtual friction force (damping)
plays a crucial role in the process of sensor deployment.
Through theoretical analysis and computer simulation, we
found that with a damping value around critical damping,
the proposed algorithm has the best performance. A new
metric called ‘pair correlation diversion’ is introduced to
evaluate the uniformity of the node distribution. Simula‐
tion results showed that the proposed approach exhibited
good performance in terms of coverage rate, convergence
time and uniformity of configuration.

The rest of this paper is organized as follows: Section 2
introduces the basic concept of the virtual-force algorithm;
Section 3 discusses the evaluation metric for the deploy‐
ment algorithm; the proposed spring force-based algo‐
rithm is introduced in Section 4. A few simulation results
are given in Section 5 to verify the effectiveness of the
proposed algorithm. Finally, we discuss our future work
and conclude the paper in Section 6.

2. VFAs

One of the most popular methodologies for sensor deploy‐
ment is the VFA. With this kind of approach, the sensor
nodes, obstacles and preferential areas are modelled as
points subject to attractive or repulsive forces among
themselves. Different force models can be applied to the
deployment of sensor nodes, and their performances
inherently vary.

Certain assumptions are made in VFAs [5]. First, each
sensor node has a sensing range Rs and a communication
range Rc. Within the sensing range, the sensor can detect
the local environments’ condition. Moreover, a node can
communicate with other nodes falling within its commu‐
nication range. Second, the position of all the nodes and the
relative positions of every sensor node to every other node
can be acquired. Third, all the nodes can move according
to the calculation results of the algorithm. Fourth, all the
nodes are homogeneous with omnidirectional sensors,
which mean that the Rs is identical for all the nodes and
that the area sensed is a circle with the node at its centre, as
is the communication range. Fifth, all of the sensors have
the ability to communicate with the other sensors.

2.1 Review of VFAs

The virtual force-based deployment approach is inspired
by the artificial potential field-based techniques in the field
of robotic obstacle-avoidance [22,23], in which, nodes are
treated as virtual particles and the virtual forces due to
potential fields repel the nodes and the obstacles-vicious
force is considered to counteract the potential energy in
order to achieve a static equilibrium. Based on disc packing
and virtual potential theory, Zou et al. designed a VFA
algorithm [5] in which each node si is subjected to three
kinds of forces: (1) a repulsive force exerted by obstacles;
(2) an attractive force exerted by areas of preferential
coverage (sensitive areas where a high degree of coverage
is required); and (3) an attractive or repulsive force by
another node sj depending on its distance and orientation
from si. A threshold distance is defined between two nodes
to control how close they can get to each other. The net force
on a sensor si is the vector sum of all the above three forces.
Heo et al. add some restrictions to the function of force [6].
Kribi et al. improved the original VFA and proposed
Serialized VFA, Lmax_Serialized_VFA and Dth_Lmax_Se‐
rialized_VFA [7]. Garetto et al. proposed a distributed
sensor relocation scheme based on virtual force, adding the
restriction that there are at most only six nodes that can
exert force on the current node, and simulation outcomes
indicate a good coverage rate and quick response to
regional events perceivable to sensors[8]. Yu et al. intro‐
duced the idea of Delaunay triangulation to define the
adjacent relation to propose a virtual force approach and a
better convergence time and coverage rate [9], and intro‐
duced van der Waals force to this problem [10]. An
expression of an exponential function for the relationship
of virtual force is proposed to converge rapidly in [11]. Li
et al. proposed a sensor deployment optimization strategy
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based on a target involved VFA (TIVFA) [12]. Wang et al.
proposed a virtual force-directed particle swarm optimi‐
zation algorithm, combining a particle swarm optimization
algorithm with virtual force to arrive at a better coverage
rate [14].

2.2 Sensor Movement of the VFA

The virtual force between two nodes is mutual and
conforms to Newton’s law of motion. Each node is only
capable of exerting force upon those nodes within its
communication range. Starting from any initial deploy‐
ment of the nodes, the network achieves a target structure
at the equilibrium.

In VFA, time is divided into slot sequences, and in each time
slot dt a sensor node is affected by a virtual force, which
depends on the relative position of the other nodes and the
damping resistance. Next, it moves at a velocity v and
changes its position. The trajectory of node i at time slot t
is driven by the following equation:

m
d 2xi(t)

dt 2 = F i(t)= Fi
e(t) + F i

f (t) + F i
ev(t) (1)

where m is the imagined mass of a sensor node and Fi(t) is
the virtual force acting on i at time t. Fi(t) can be defined as
the sum of three components: F i

e(t) denotes the exchange
forces generated among the sensor nodes, F i

f (t) is the
friction force and F i

ev(t) denotes the force caused by events
taking place in the region of interest. Friction (or viscous
force) is considered as counteracting the motion in order to
achieve static equilibrium. In the absence of events of
interest, only F i

e(t) and F i
f (t) are exerted on the sensor

nodes, leading them to the desired network configuration.
The most important parameter of F i

f (t) is the coefficient of
the friction. The determination of F i

e(t) and F i
f (t) is funda‐

mental for the general network deployment (distinct from
other studies where the friction force is determined
through repeated simulation-in this paper we propose a
method to analytically figure out the optimal friction
coefficient value). A desirable friction coefficient is crucial
for energy conservation, a uniform network topology and
decreasing the length of time for deployment.

3. Evaluation of the VFA’s performance

To objectively evaluate the performance of different VFAs,
it is essential to have some measurements of their perform‐
ance from various perspectives. The chosen measurements
should be related with the three goals mentioned in the
introduction. Several metrics are listed below.

3.1 Convergence Time

The convergence time for deployment is important,
especially in many time-critical applications [6]. Moreover,

in sensor networks, the sensors communicate with each
other once at each step. So, a lower convergence time
indicates lower energy consumption in communication.

3.2 Moving Distance

The distance moved by each node is related to the energy
consumption for mobility. Therefore, the total distance
moved indicates the total energy consumption in moving,
and the variance of the travelled distance determines the
fairness of the system’s energy utilization. If the variance
of the distance travelled is large, some nodes may exhaust
their energy before the algorithm can implement itself
completely.

3.3 Coverage

Good coverage is indispensable for the effectiveness of
WSNs. The coverage ratio of the WSN is calculated by:

CR =
∪ci
A , i∈S (2)

where ci is the coverage of sensor i, S is the set of nodes, and
A is the total size of the area of interest. The aim of the
optimization technique is to maximize the coverage rate of
the network.

However, the coverage rate is only effective for an indoor
area. In open area, a theoretially optimal deployment
should meet the requirement that among different sensing
area by nodes, no overlapping area nor sensing "hole" is
preferred. As such, a new metric must be used in this case.

3.4 Uniformity

A widely-used metric for evaluating the uniformity of a
network is the average local standard deviation U of the
distances between nodes [6]:

{U =
1
N ∑i=1

N
U i

U i =(
1
K i
∑
j=1

Ki

(Di , j −M i)2)
1
2

(3)

where N is the total number of nodes, Ki is the number of
neighbours of the ith node, Di,j is the distance between the
ith and jth nodes, and Mi is the mean of intermodal distance
between the ith node and its neighbours.

Based on the research findings of crystallization in dusty
plasma [24,25], here we use a novel performance metric
called ‘pair correlation diversion’ (PCD) [26] to evaluate the
uniformity of the network configuration, which quantita‐
tively analyses the proximity from a network topology to a
perfect hexagonal configuration.

Firstly, we introduce the radial distribution function [24],
denoted by g(r), to represents the probability of finding two
adjacent nodes separated by a distance r. g(r) is commonly
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used to measure the translational order of a condensed
system, and we adapt it here to the evaluation of the
performance of the VFA. In two-dimensional space, it has
the form:

g(r)=
S
N

N (r , Δ)
2πrΔ (4)

where S is the area covered by sensor nodes, N is the
number of the sensor nodes, and N(r, Δ) denotes the
number of nodes locating between r-Δ/2 and r+Δ/2.

Based on the definition of g(r), we further define a radial
distance measurement between a network topology and a
perfect hexagonal configuration as:

δpc(Ω, ΩH )=
∫0

rB
gΩ(r)− gΩH

(r)
2
dr

∫0
rB

gΩH
(r) 2dr

(5)

where Ω denotes the resultant network topology, ΩH

denotes the topology of a perfect hexagonal configuration,
and rB is the bound of the radial distance. This distance
measurement is called PCD. For a network the topology of
which is approximate to a perfect hexagonal configuration,
its PCD value should be small. A perfect configuration of a
network has a PCD value of zero.

Moreover, the PCD can be applied for characterizing the
convergence rate of a VFA. Starting from an initial node
distribution, the pair-correlation diversion decreases as
deployment progresses over time. When the network
converges on a stable structure, the PCD value stabilizes.

4. Spring force algorithm

Inspired by elastic springs with damping in daily life, we
introduce a novel VFA called ‘Spring Force Algorithm’
(SFA). F i

e(t) and F i
f (t) are specified in the SFA. It is a

distributed algorithm in which the force exerted on a node
is determined merely by the relative position of its neigh‐
bouring nodes. Imagine that a node is connected to its
neighbouring nodes by imaginary springs. When the
distance between two neighbourhoods is smaller than the
original length of the spring – namely, the equilibrium’s
distance-the spring repels them; when the distance be‐
tween two neighbourhoods is larger than the equilibrium’s
distance and within the communication range, the spring
draws them closer. The frictional force in the spring system
is also called ‘damping‘.

4.1 Sensor Movement and Potential Field

Distinct from other algorithms where the formulae of F i
e(t)

and F i
f (t) are given directly and separately, we analyse the

movement of sensors in terms of a differential equation, in
which F i

e(t) and F i
f (t) are jointly considered. In physics, the

differential equation of a sensor node under SFA can be
specified as follows:

m
d 2xi(t)

dt 2 = −γ
d xi(t)

dt −k (xij(t)−Dm) (6)

where k is the elastic coefficient constant of the virtual
spring, Dm is a vector with a length of the equilibrium
distance and which has the same direction as xij(t). The first
term on the right side is the viscous frictional force F i

f (t)
and γ is the coefficient of the friction. In the SFA, we can
determine the theoretically-optimal friction coefficient and
apply it to a network deployment. One of the advantages
of SFA is that, instead of using computer simulation or
experiment, the theoretically-optimal value of γ can be
determined by applying knowledge of vibration in physics.

In a VFA, each node has both potential and kinetic energy:
the former arises from the node’s interaction with a
potential field, the latter from the node’s motion [22].
Friction has the effect of removing mechanical energy from
the system. The total energy will decreases monotonically
over time and the total kinetic energy will asymptote to
zero. Therefore, the entire system will converge on a static
equilibrium.

4.2 Damping Effect

Let k / m =ω0
2 and γ / m =2β. ω0

2 be related to the elasticity of
the virtual spring. β is relevant to the damping effect and a
larger β corresponds to the damping force with greater
intensity. When β=0, the virtual spring works in a simple
harmonic vibrational state and ω0 is the vibrational fre‐
quency.

We define a new quantity ζ as:

ζ =
γ

2 km
(7)

Different examples of the damping of spring vibration are
depicted in Figure 1 according to Eq. (6). By applying the
theory of damped vibration, we know that:

1. When β<ω0 and ζ<1, the spring system operates in
under-damping condition. The term "under-damping"
derives from underdamping vibration of spring in
physcis. The damping friction is not sufficient to offset
the exchange force in short time and the entire system
will experience oscillation for a period of time. The
oscillation will cause longer travel distances for the
nodes and greater energy consumption, which are
undesirable. Moreover, the convergence time is
prolonged, which means that more energy is con‐
sumed in sensor communication. The smaller that β is,
the longer the duration of oscillation will be.

2. When β>ω0 and ζ>1, the network system operates in
over-damping condition. The frictional force is set so
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high that the entire system slowly transforms to a
condition of equilibrium. As a result, more energy will
be wasted on sensor communication. Moreover, the
entire system responds slowly to unexpected events
and cannot be used for time-critical applications.

3. When β=ω0 and ζ=1, the network operates in critical
damping condition. The motion is offset by the
frictional force and the system will quickly transform
to a state of equilibrium without unnecessary vibration
or excessive energy usage. Under these circumstances,
the value of the parameter γ is theoretically optimal.
The relation between k and γ in critical damping
condition is:

γcritical =2 k ⋅m (8)

Based on the analysis above, we set β=ω0 and will apply it
to the algorithm’s simulation.
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Figure 1. Solution of Eq. (7) under different damping conditions

We restrict the exchange force to only those neighbouring
nodes according the rule in [8]. For node i, we denote the
set of its neighbouring nodes which could exert force on it
as Si(t). A node k belongs to Si(t) if it locates within the
communication range of node i and there are no other
nodes k’ shielding the mutual influence between node i and
k. Node k’ shields k if k’ is closer to i and the angle formed
by rik and rik’ is smaller than 60°. Shielding plays a crucial
role in constructing the regular hexagonal configuration of
the network.

A second-order leap-frog scheme was utilized for the
numerical solution of the differential equation. Mathemat‐
ically, it is given by the following formula:

xi(t + 1)= xi(t) + vi(t)dt +
ai(t)

2 (d
t
)

vi(t + 1)=vi(t) +
(ai(t) + ai(t + 1))

2 dt
(9)

where vi(t) and ai(t) are the velocity and acceleration of node
i at time slot t, respectively. The virtual force results in

acceleration on the sensor nodes. Afterwards, acceleration

accumulates to velocity and makes the nodes move.

5. Desirable damping

Frictional force is indispensable for a VFA. In a spring

oscillator system, the frictional force is also called the

‘damping force’. Damping has the effect of removing

energy from the system and making it converge in static

equilibrium. In this section, we will analyse the effect of

different damping intensities more specifically. Next, we

will discover the optimal damping value or else a desirable

damping combination.

5.1 The Fixed Damping Case

Firstly, we assume that the damping value is fixed in the

process of sensor deployment. It has been proven that in

order to achieve complete coverage while maximizing the

network area covered by the given nodes, the distance

between two sensor nodes should at least be 3r , i.e.,

| rij | ≥ 3Rs [8]. We set the total number of sensor nodes as

200. The equilibrium distance Dm is 1.732. Next, the sensing

range of the sensor node is Dm / 3=1 and the communica‐

tion range is 3. The elastic coefficient k is set as 20.

Through Eq. (8), we get the result that, under critical

damping condition, γcritical≈8.944. We apply those parame‐

ters in the simulation and obtain the PCD, convergence

time and travel distance of the deployment process. For

comparison, we set γ1=0.8γcritical, γ2=1.5γcritical and γ3=2γcritical,

respectively, while the values of the other parameters

remain unchanged. Simulation results and performance

evaluation are also obtained.

Figures 2(a) and (b) give the initial and final distributions

of the SFA in the case of critical damping. The circles

around the nodes represent the sensing range Rs of the

sensors. The deployment results of uncritical damping are

similar to Figure 2(b), so for convenience we do not show

them here.
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γ Value Average Travel Distance

γ critical (critical damping) 11.55

γ 1 =0.8γ critical 20.55

γ 2 =1.5γ critical 7.16

γ 3 =2.0γ critical 5.81

Table 1 Average movement distance of the sensors under different damping
conditions

2. When γ=1.5γcritical or 2.0γcritical, the algorithm works in
over-damping conditions. The curves decrease slowly
and the final PCD values are higher, which indicates a
slower deployment process. However, the average
distance travelled by the nodes is shorter and less
mobile energy is consumed.

3. For critical damping, the network topology converges
in around 230 steps, which is faster than any other
damping case, and the final PCD in this case is 0.4. In
this case, the network responds quickly to emergency
events. Energy consumption is moderate and the final
topology is desirable.

If we take all the performance indicators into consideration-
including the convergence time, travel distance and
uniformity-critical damping is desirable for the SFA.

5.2 The Dynamic Damping Case

In Section 5.1, the damping value remains constant during
sensor deployments. In this subsection, we assume that the
damping coefficient is dynamic and that it varies in
different stages of deployment process. Each damping
condition, with its unique characteristic, should play to its
strengths in different deployment stages.

From Figure 3, we know that significant damping has the
advantage of a faster convergence speed during the early
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stages and less vibration (lower energy consumption for
moving sensors), while it has the disadvantage of a longer
total convergence time (higher energy consumption for
sensor communication) and worse topological uniformity.
In contrast, a low level of damping has the advantage of
better resultant topological uniformity, but has the disad‐
vantage of serious early-stage chaos and more vibration.

Based  on  the  analysis  above,  we  design  a  damping-
switch  scheme.  During  the  early  stages  (0~250steps)  of
deployment,  γ=1.1γcritical>γcritical,  the  network  quickly
converges on a desirable configuration; during the middle
stages  (251~700steps),  γ=0.82γcritical<γcritical,  the  virtual
energy slowly dissipates and deployment proceeds with
minute  adjustments;  during  the  final  stages
(701~1500steps), γ=γcritical, the entire system converges on
a static equilibrium.
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Figure 4. PCD of dynamic damping compared with that of fixed damping

6. Comparison of simulation results

In this section, we verify the effectiveness of the proposed
approach through the comparison of the simulation results.
A binary detection model [5] is used here. A second-order
leap-frog scheme was utilized for the computational
solution of the differential equation. Firstly, we show some
results of the deployment of sensor nodes under different
VFAs in indoor examples, and we then use the coverage
promotion over time to analyse the performance of
different algorithms. Secondly, we compare the simulation
results of SFA in outdoor cases with those of other algo‐
rithms, using the PCD for evaluation. In a critical-damping
situation, more energy is saved, the topology converges
quickly and a uniform configuration is achieved. We
assume that the nodes will not run out of power during the
deployment period. Nodes are randomly put into the target
area and are guided by the virtual force.

The simulation of the proposed approach in each case of
the scenario is  compared with that  for [8-10].  Figure 5,
below,  indicates  how  the  potential  energy  varies  with
respect to the mutual distance between two neighbour‐
ing sensors for the four algorithms. The position where
the  potential  energy diminishes  to  zero  is  the  point  of
equilibrium.  The  distance  between  this  point  and  the
origin is Dm.
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Figure 5. Potential energy between two adjacent sensors with respect to
mutual distance

6.1 The Indoor Case

In an indoor area-there are boundaries surrounding the
area-the nodes are initially distributed randomly. The
values of the equilibrium distance, sensing range and
communication range are the same as for those in the
previous section. However, we set an elastic coefficient
value from 20 to 15. By referring to [5], we get:

Dm 2 =
1

ρmsin60
=

S
N sin60 (10)

Because Dm=1.732 and N=200, we get S=520 while the
length of the square side should be 22.8. However, due to
the bound effect, we adjust the side length to 22.0 for
simulation. Since we are not concerned with the effect of
node mass here, we set it to 1 to all nodes for convenience.
For the other algorithms being compared, we determine γ
through repeated computer simulation tests.

Figure 6(a) andFigure 6(b) depict the random initial
distribution and final distribution, respectively. Figure
6(c) plots the coverage variation over time under different
algorithms, which shows that the SFA has a better coverage
rate than the other algorithms.
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final distribution, (c) coverage rate comparison, (d) enlarged version of (c)

6.2 The Outdoor Case

We also performed simulations for open-area cases-the

values of the parameters are the same as those in the indoor

case. Figure 8 gives the initial and final distributions of the

different algorithms. The average standard deviation of the

distance between adjacent nodes for our proposed algo‐

rithm is 0.276 while for [8] it is 0.28, which indicates better

uniformity in the proposed algorithm.
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Figure 9. Comparison of the pair correlation of different deployment
algorithms

Figure 9 depicts the pair correlation [26] of the network
topology under different algorithms. Through the compar‐
ison of the pair correlation, we are informed of the prox‐
imity between deployment result under each algorithm
and the perfect hexagonal network, which indicates that the
deployment under the proposed algorithm has the advant‐
age of closer resemblance to a perfect hexagonal network.

Figure 10 depicts the improvement of the network’s
uniformity through the process of deployment. The curves

of the proposed algorithms reach 0.32 in the end, which is

superior to other approaches. Since the value of elastic

coefficient manually set here is smaller than that in the

previous subsection, the convergence speed of the spring

force in Figure 10 is slower than in Section 5.
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Figure 10. PCD promotion over time under different algorithms
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Figure 11. (a) Initial random distribution, final distribution for (b) final
distribution for the proposed algorithm, (c) final distribution for algorithm
in [8] and (d) PCD promotion over time under different algorithms

Figure 11 simulates the case in which sensors are dropped
by an airplane over an open area. Sensors initially lie almost
in a straight line, and they deploy themselves in a better
topology. The standard deviation of the distance between
adjacent nodes for the proposed approach is 0.301 while for
[8] is 0.317, which also means better uniformity in the
proposed algorithm. The PCD improvement comparison in
Figure 11(d) also illustrates this point. The curves of the
proposed algorithms decline more significantly than for
that of the algorithm in [8], although this distinction is not
visually detectable in Figures 11(b) and 11(c).

7. Conclusions

In this paper, a virtual force-based sensor deployment
algorithm using a spring force model is proposed and a
shielding rule that restricts the number of neighbours
exerting force is adapted. A new metric called ‘pair
correlation’ is introduced to evaluate the uniformity of the
nodes’ distribution. The simulation results indicate how
proper damping conditions promote the algorithm’s
performance in terms of convergence time, coverage rate,
topological uniformity and energy consumption. With the
SFA, the amplitude of exchange force is linearly propor‐
tional to the distance between neighbouring nodes. In other
algorithms, the exchange force may be nonlinear, but a

similar damping selection method can be applied and
further research is required. Irregular terrains and more
complex situations will be considered in our future work.
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