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Abstract

In this article, we introduce iterative methods (implicit and explicit) for finding a
common fixed point set of a countable family of strict pseudo-contractions, which is
a unique solution of some variational inequality. Furthermore, we prove the strong
convergence theorems of such iterative scheme in a g-uniformly smooth Banach
space which admits a weakly sequentially continuous generalized duality mapping.
The results presented in this article extend and generalize the corresponding results
announced by Yamada and Ceng et al. from Hilbert spaces to Banach spaces.
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1 Introduction
Let X be a real Banach space, and X* be its dual space. Let U = {x € X: |x|| = 1}. A

Banach space X is said to be strictly convex if ”x;y” < 1 forallx, ye X with |lx]| = [ly|| =

1 and x # y. A Banach space X is called uniformly convex if for each € > 0 thereisa d > 0
such that for x, y € X with |x|, |[yll <1 and ||x - y|| = &, [lx + y|| < 2(1 - 6) holds. The mod-
ulus of convexity of X defined by

1
5x() = inf(1 — H L@+ H llxl,

vl =1 |x—y| = el

for all € € [0,2]. X is uniformly convex if d,(0) = 0 and J,(¢) > 0 for all 0 < & < 2. It is
know that every uniformly convex Banach space is strictly convex and reflexive (see
[1]). The norm of X is said to be Gdteaux differentiable if the limit

lim [+ ty| — llxl
t—0 t

exists for each x, y € U. In this case X is smooth. Let px : [0, ©) — [0, o) be the
modulus of smoothness of X defined by
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/| gf}.

1
ox(t) = sup{2 (||x+y|| + ||x—y||) —1:xeU,

A Banach space X is said to be uniformly smooth if "Xt(t) — 0 as t = 0. Suppose that

q > 1, then X is said to be g-uniformly smooth if there exists ¢ > 0 such that px(z) <
ct?. 1t is easy to see that if X is g-uniformly smooth, then ¢ < 2 and X is uniformly

smooth. For g > 1, the generalized duality mapping J, : X — 2X" is defined by

Jo(x) = {f € X*: (. f) = Il [f] = =171},

where (.,-) denotes the duality pairing between X and X*. In particular, J, = /5 is
called the normalized duality mapping and ] (x) = lxll9? Jo(x) for x = 0. If X := H is a
real Hilbert space, then J = I where [ is the identity mapping. Further, we have the fol-
lowing properties of the generalized duality mapping /;:

(1) J,(x) = 1" Jo(x) for all x € X with x = 0.
(2) J(tx) = t7"],(x) for all x € X and t € [0, o).
(3) J(x) = J,(x) for all x € X.

It is well known that if X is smooth, then J, is single-valued, which is denoted by j, (see
[1]). The duality mapping J, from a smooth Banach space X into X* is said to be weakly
sequentially continuous generalized duality mapping if for all {x,} € X with x,, = x
implies J,(x,,) =* J,(x).

Let C be a nonempty, closed and convex subset of X and T be a self-mapping of C.
We denote the fixed points set of the mapping 7T by Fix(7) = {x € C: Tx = x} and
denote — and — by strong and weak convergence, respectively.

Definition 1.1. A mapping T: C — C is said to be:

(i) A-strictly pseudocontractive [2], if for all x, y € C there exists A > 0 and j (x - y)
€ J,(x - y) such that

(Tx = Ty jg(x = y)) < Jx =y = 2] (1 = T)x = (1 = T)y|",

or equivalently

(1= T)x = (I =Ty jglx =) = A (1 = T)x = (1 = T)y| "

(ii) L-Lipschitzian if for all x, y € C, there exists a constant L > 0 such that
[T =Ty < L]x—v].

If 0 <L < 1, then T is a contraction and if L = 1, then 7 is a nonexpansive mapping.
By the definition, we know that every A-strictly pseudocontractive mapping is

(1;)‘) -Lipschitzian (see [3]).
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Remark 1.2. Let C be a nonempty subset of a real Hilbert space H and T: C — C be
a mapping. Then T is said to be k-strictly pseudocontractive [2], if for all x, y € C,
there exists k € [0,1) such that

|Tx = 1| < |x = y||* + K| (1 = T)x — (1 = T)y|. (1.1)

It is well known that (1.1) is equivalent to the following:
1-k
(re—px—y) = Pyl = S F 0T -y

Let C be a nonempty, closed and convex subset of X and ¥: C — X be a nonlinear
mapping. The variational inequality problem is to find u € C such that

(Wu,js(v—u)) >0, YveC, (12)

where j (v - u) € J,(v - u). The set of solution of variational inequality problem is
denoted by VI(C, V). If X := H is a real Hilbert space, the variational inequality pro-
blem reduces to find u € C such that

(Yu,v—u) >0, VveC. (1.3)

Applications of variational inequalities span as diverse disciplines as differential equa-
tions, time-optimal control, optimization, mathematical programming, mechanics,
finance and so on (see, e.g., [4,5] for more details). Note that most of the variational
problems, including minimization or maximization of functions, variational inequality
problems, quasivariational inequality problems, decision and management sciences, and
engineering sciences problems can be unified into form (1.2) and (1.3). For more
details, we recommend the reader [6-11]. On the author hand, we note that iterative
approximation of fixed points of nonexpansive mappings (and of common fixed points
of nonexpansive semigroups) have recently been applied to image recovery and signal
processing (see, e.g., [12-17]).

A mapping F: C — X is said to be accretive if for all x, y € C there exists j (x - y) €
J4(x - y) such that

{Fx = Fy,js(x —y)) = 0.

For some 11 > 0, F: C — X is said to be strongly accretive if for all x, y € C there
exists j,(x -y) € J,(x - y) such that

(Fx — Fy, jg(x — ) = nfx —y|".

Remark 1.3. If X := H is a real Hilbert space, accretive and strongly accretive map-
pings coincide with monotone and strongly monotone mappings, respectively.
Let A be a strongly positive bounded linear operator on H, that is, there exists a con-

stant ¥ > 0 such that
(Ax,x) > 7|lx||?>, forallx € H. (1.4)

Remark 1.4. From the definition of operator A, we note that a strongly positive
bounded linear operator A is a ||A[-Lipschitzian and 7)-strongly monotone operator.
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A typical problem is to minimize a quadratic function over the set of the fixed points

of a nonexpansive mapping on a real Hilbert space H:

mingec  (Ax, x) — (x, u), (1.5)

1
2
where C is the fixed point set of a nonexpansive mapping 7 on H and « is a given
point in H.
In 2006, Marino and Xu [18] introduced and considered the following general itera-

tive method:
Xne1 = oY f(xn) + (I — 0nA)Txn, Vn >0, (1.6)

where A is a strongly positive bounded linear operator on a real Hilbert space H.
They, proved that, if the sequence {c,} of parameters satisfies appropriate conditions,
then the sequence {x,} generated by (1.6) converges strongly to the unique solution of

the variational inequality
((yf —A)*,x—x*) <0, VxeFix(T), (1.7)

which is the optimality condition for the minimization problem
. 1
mlnxecz (Ax, x) — h(x), (1.8)

where C is the fixed point set of a nonexpansive mapping 7" and % is a potential
function for ¥f (i.e., h'(x) = Yfix) for all x € H).

On the other hand, Yamada [19] introduced a hybrid steepest descent method for a
non-expansive mapping 7 as follows:

Xne1 = Txy — proF(Tx,), VYn >0, (1.9)

where F is a k-Lipschitzian and n-strongly monotone operator with constants «, n >
Oand 0 < u < i’} He proved that if {A,} satisfying appropriate conditions, then the

sequence {x,; generated by (1.9) converges strongly to the unique solution of varia-
tional inequality

(Fx*,x —x*) >0, Vx € Fix(T). (1.10)

In 2010, Tian [20] combined the iterative method (1.6) with the Yamada’s method
(1.9) and considered a general iterative method for a nonexpansive mapping 7T as fol-

lows:
Xne1 = oy f(xn) + (I — ayuF)Tx,, Vn>0. (1.11)

Then he proved that the sequence {x,} generated by (1.11) converges strongly to the
unique solution of variational inequality

((yf — uF)x*,x —x*) <0, Vx e Fix(T). (1.12)
Very recently, Ceng et al. [21] introduced implicit and explicit iterative schemes for

finding the fixed points of a nonexpansive mapping 7" on a nonempty, closed and con-
vex subset C in a real Hilbert space H as follows:
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xe = Pe[ty Ve + (I — tiF)Txe ] (1.13)
and
Xne1 = Pelany Vi, + (I — 0qpuF)Tx,], Vn >0, (1.14)

where V is an L-Lipschitzian mapping with a constant L > 0 and F is a x-Lipschit-
zian and 1)-strongly monotone operator with constants x, 7 > 0 and 0 < u < i'} Then

they proved that the sequences generated by (1.13) and (1.14) converge strongly to the
unique solution of variational inequality

((uF —yV)x*, x* —x) > 0, Vx € Fix(T). (1.15)

The following questions naturally arise in connection with above results:

Question 1.5. Can Theorem of Ceng et al. [21]be extend from a real Hilbert space to
a general Banach space? such as q-uniformly smooth Banach space.

Question 1.6. Can we extend the iterative method of scheme (1.14) to a general itera-
tive scheme define over the set of fixed points of a countable family of strict pseudo-
contractions.

The purpose of this article is to give the affirmative answers to these questions men-
tioned above, motivated by Yamada [19], Tian [20] and Ceng et al. [21], we introduce
a general iterative method for finding a common fixed point set of a countable family
of strict pseudo-contractions, which is a unique solution of some variational inequality.
Furthermore, we prove the strong convergence theorems of such iterative scheme in a
g-uniformly smooth Banach space which admits a weakly sequentially continuous gen-
eralized duality mapping. The results presented in this article extend and generalize
the corresponding results announced by Yamada [19] and Ceng et al. [21] and many
others to Banach spaces.

2 Preliminaries
Let D be a nonempty subset of C. A mapping Q: C — D is said to be sunny if

Q(Qx +t(x — Qx)) = Qx,

whenever Qx + t(x - Qx) € C for x € C and ¢ > 0. A mapping Q: C — D is said to
be retraction if Qx = x for all x € D. Furthermore, Q is a sunny nonexpansive retrac-
tion from C onto D if Q is a retraction from C onto D which is also sunny and nonex-
pansive. A retraction Q is said to be orthogonal if for each x, x - Qx is normal to D in
the sense of James (see [22]). A subset D of C is called a sunny nonexpansive retrac-
tion of C if there exists a sunny nonexpansive retraction from C onto D. It is well
known that if X := H is a real Hilbert space, then a sunny nonexpansive retraction Q.
is coincident with the metric projection from X onto C.

The following lemma concerns the sunny nonexpansive retraction.

Lemma 2.1. [23]Let C be a closed and convex subset of a real q-uniformly smooth
Banach space X. Let Q: X — C be a retraction. Then, Q is an orthogonal retraction if
and only if

(X—Qx,jq(y—Qx)) <0, VxeXandyeC.
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Lemma 2.2. [24]Let X be a real q-uniformly smooth Banach space. Then the follow-
ing inequality holds:

q
’

Jor all x, y € X and for some C, > 0.
Lemma 2.3. [25]Suppose that q > 1. Then the following inequality holds:

q
ab < 1a"+(q_1>bq—1
q q

for arbitrary positive real numbers a, b.

Lemma 2.4. [26]Let {s,} be a sequence of nonnegative real numbers, {a,} be a
sequence of [0,1] with Y 2, an = 00, {c,,} be a sequence of nonnegative real number

with Y ooy ¢n < coand {b,} be a sequence of real numbers with lim sup,,_,..b, < 0. Sup-

pose that
Sne1 = (1 — an)sn + anbp + cp,

for all n € N. Then, lim,,_,.. s, = 0.

Definition 2.5. Let {7} be a family of mappings from a subset C of a Banach space
X into itself with (72, F(T,) # 0. We say that {7} satisfies the AKTT-condition (see
[26]) if for each bounded subset B of C,

o0
Zsup IThw — Thol < co. (2.1)

n=1 weB

Lemma 2.6. [26]Suppose that {T,} satisfy the AKTT-condition such that

(i) For each x € C, {T,} is converge strongly to some point in C.
(ii) Let the mapping T: C — C defined by Tx = lim,, .., T,x for all x € C.

Then lim,, .. supyep |To - T,0| = 0 for each bounded subset B of C.
Lemma 2.7. [27,28]Let C be a closed and convex subset of a smooth Banach space X.

Suppose that {Tp}ney : C— Xis a family of A-strictly pseudocontractive mappings with
{um}p2 and {m)i2,is a real sequence in (0,1) such that > poi jin = 1. Then the follow-

ing conclusions hold:

(i) A mapping G: C — X defined by G =Y 2| unTnis a A-strictly pseudocontractive
mapping.
(ii) Fix(G) = Moy Fix(Ty).

Lemma 2.8. [28]Let C be a closed and convex subset of a smooth Banach space X.

Suppose that {Sk}p2, : C — Cis a countable family of A-strictly pseudocontractive map-
pings with (Npoy Fix(Sk) #9. For all n e N, define T, : C — C by
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{ul)for all x € C, where {uk}is a family of nonnegative numbers satisfying the follow-

ing conditions:

(i) Sh puk=1forallne N;
(ii) p* :=lim,—couk > Ofor all ke N;

(i) 3321 Yoeen |mips — mi| < 00
Then the following hold:

(1) Each T, is a A-strictly pseudocontractive mapping.
(2) {T,} satisfies the AKTT-condition.

(3) If T: C — C is defined by Tx = ZO: ukSkxfor all x € C, then Tx = lim,,_,., T,x

k
and Fix(T) = 2, Fix(T,) = (N, Fix(Se).

3 Main results
In order to prove our main result, the following lemmas are needed.
Lemma 3.1. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X. Let F: C — X be a k-Lipschitzian and n-strongly accretive
1

operator with constants x, 1n > 0. Let 0 <M<( qn )q— land
CqKq

Cyu k1 1
T=M('7— q“q « >.Thenforte(O,min{l,r}),the mapping S: C — X define

by S := (I - tuF) is a contraction with constant 1-tz.
1

1
Proof. Since 0 dm \g—1 with ¢ > 1 and t€ (0, min{1, . This
== e 4

q

implies that 1 - £z € (0,1). From Lemma 2.2, for all x, y € C, we have
||Sx — Sy||q = || (I—tpuF)x—(I- t/LF)qu
= (=) — tu(Fx = Fy) |’
< [ = y|* = guee (Fx = Fy,jy(x = y)) + ot | Fx — Fy|?
< [ =yl" = qunfx =y + Cot i =y
< [1 - ta(an — "] [

C,ud 1,4
(o= ) e

Cop 1R\ 77
(o )

(1- tr)””x — y||q.

IA

It follows that
6= sy] = (1 = r) [x—y].

Hence, we have S := (I - tuF) is a contraction with a constant 1 - fz.
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Lemma 3.2. Let C be a nonempty, closed and convex subset of a real q-uniformly
smooth Banach space X which admits weakly sequentially continuous generalized dua-
lity mapping j, from X into X*. Let T: C — C be a nonexpansive mapping. Then, for all
{x. € C, if x, ~ x and x, — Tx, — 0, then x = Tx.

Proof. From Lemma 2.2, for all x € C, we have

x = Tx — (xn — Txn)”q = | (tw —x) + (Tx — Tx,,)”q
< 1% = 217+ g (Tx = Txu, jg (%n — x)) + Cyll Tx — Txn|
< (0 = x,jq(tn — x)) + {Tx — T, jg(xn — %)) + Cy {x = x0, g (x — %)) .

Taking the limit as # — oo in both sides and noting that j, is weakly sequentially
continuous generalized duality mapping. Then, |x - Tx||? < 0, this implies that x = Tx.

3.1 Implicit iteration scheme

Let C be a nonempty, closed and convex subset of a real g-uniformly smooth Banach

space X. Let Q¢ be a sunny nonexpansive retraction from X onto C. Let F: C — X be

a r-Lipschitzian and n-strongly accretive operator with constants x, 7 > 0, V: C > X

be an L-Lipschitzian mapping with a constant L > 0 and T: C — C be a nonexpansive
1

mapping such that Fix(7) = <. Let 0<p< ( an )q— 1 and 0 < yL <7, where
Cyxc1

=144 1
T=p (U _ Cqu ke ) For each t € (0, min {1, - }), we define the mapping S; : C

— C by

Six = QcltyVx+ (I — tuF)Tx], Vxe C.

It is easy to see that S, is a contraction. Indeed, from Lemma 3.1, for all x, y € C, we
have

|Six = Sy = [ Qeley Vi + (I = teF) Te] — Qelty Vi + (1 — tuF) Ty ]
< | [ty Vx + (I — tuF)Tx] — [ty Vy + (I — tuF) 7] |
<ty |V — W| + ||(I — twF)(Tx — )|
<tyLlx—y] + (1 - 1) e~y
=(1—(r—yL)) |x—y.

Hence, S; has a unique fixed point, denoted by x, which uniquely solve the fixed
point equation

x = Qclty Vay + (I — tuF)Tx] (3.1)

The following proposition summarizes the properties of the net {x}.

Proposition 3.3. Let C be a nonempty, closed and convex subset of a real q-uniformly
smooth Banach space X. Let Q. be a sunny nonexpansive retraction from X onto C. Let
F: C - X be a k-Lipschitzian and n-strongly accretive operator with constants k, 1 >
0, V: C — X be an L-Lipschitzian mapping with a constant L 2 0 and T: C — C be a

1

nonexpansive mapping such that Fix(T) = &. Let 0<p< ( qan )q —land 0 < yL
Cyxc1
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C,,/ﬂ‘”{”)

<1, where © = 1 (n
q

then

1

(i) {x} is bounded for each t € (0, min {1, })
T

(ii) limy_, ¢ |lx; — Tx¢|| = 0.

1
(iii) {x,} defines a continuous curve from (O, min {1, }) into C.
T

Proof.

(i) Taking x € Fix(T). Then, we have

llxe — %Il = [ Qclty Va + (I — tuF)Tx.] — QcX||
< | [ty Ve + (I — tuF)Tx,] — X|
[t(y Ve, — wFx) + (I — tuF)(Tx, — X) |
tlly Vay — pFx[| + (1 — 1) | Tx, — X||
ty IVx, — Vx|l + tlly V& — uFxl|l + (1 — t7) llx, — X|
<= (r —yL))llx. — x|l + tlly VX — pFx|l.

=
=

It follows that

Vx — uFx
l, — 7| < lyVx—u xll_
T —yL

Hence, {x;} is bounded, so are {Vx,} and {FTx,].

(ii) By definition of {x;}, we have

% — Txell = | Qclty Ve + (I — tuF)Tx,] — QcTx, |
ey Ve + (I = twF)Tx, — T ||

tllyVx, — uFTx)| - 0 as t— 0.

IA

(iii) Take ¢, to € (0, min [1, i]) From Lemma 3.1, we have

| = x4 | = | Qclty Vi, + (I — twF)Tx,] — Qcltoy Vixy, + (I — ttF) Ty, ] |
< | [ty Vxe + (I = tuF)Tx] — [toy Vg, + (I — tiuF) Ty ]|
= ||(t — t0)y Ve + toy (Vi — Vi) — (t — to)uFTx, + (I — topF) (T, — Tixy,) |
< (¥ V&l + p IFTx ) |t — tol + (1 = (z = ¥L)to) ||xc — x| -

It follows that

(7 IVl + w IFTx|l)

||.X't — Xty ” = (‘L’ - )/L)t()

[t — o] .
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Since {Vx,} and {FTx,} is bounded. Hence, {x,} defines a continuous curve from

1
(O, min { 1, }) into C.
T

Theorem 3.4. Let C be a nonempty, closed and convex subset of a real q-uniformly
smooth Banach space X which admits a weakly sequentially continuous generalized
duality mapping j, from X into X*. Let Q. be a sunny nonexpansive retraction such
that Q. is an orthogonal from X onto C. Let F: C — X be a k-Lipschitzian and n-
strongly accretive operator with constants k, N1 > 0, V: C — X be an L-Lipschitzian
mapping with constant L > 0 and T: C — C be a nonexpansive mapping such that Fix

1
=104
(T)¢@.Let0<u<(q7l )q—landOsyL«,wherer=u<n—CqM K)

Cyxc1

. For

1
each t € (O, min { 1, }), let {x,} defined by (3.1), then {x,} converges strongly to x* €
T
Fix(7T) as t > 0, which x* is the unique solution of the variational inequality
((uF —yV)x*,jy(x* —2)) <0, Vz e Fix(T). (3.2)

Proof. We observe that

Cyp k4 (3.3)
S uln— q < un

It follows that
0<yL<rt<un (3.4)

First, we show the uniqueness of solution of the variational inequality (3.3). Suppose
that x, x* € Fix(T) are solutions of (3.3), then

((WF =y V)" jg(x" = %)) < 0 (3.5)
and

{(uF =y V)%, jg(X —x*)) < 0. (3.6)
Adding up (3.5) and (3.6), we have

0> ((WF — yV)x* — (uF — y V)&, jo(x* — %))
= 1 (Fx* — FX, jg(x* — X)) — y (Va* — V&, j(x* — X))
>l =&~y [Var — Va] [« ~ 7"
= (un —yL)|x* = %[
Note that (3.4) implies that x* = ¥ and the uniqueness is proves. Below, we use x* to

denote the unique solution of the variational inequality (3.3).

Next, we show that x, - x* as t — 0. Setting y; =ty Vx, + (I — tuF) Tx;, where

1
t e (O, min {1, }) Then, we can rewrite (3.1) as x; = QCyt. Assume that {¢,} €
T
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(0,1) is a sequence such that ¢, — 0 as n —> oo. Putting Xn := X1, and ¥n ! ¥,. For z €
Fix(7T), we note that

Xn—2=QcYn —Yn+Vn—2%2 (3.7)
= QcYn — Yn + ta(y Vxy — uFz) + (I — tauF)(Txy, — z). '

By Lemma 2.1, we have
(Qcyn = ynijg(Qcyn —2)) < 0. (3.8)
It follows from (3.7) and (3.8) that

llcn — z”q = (QCYn - anjq(QC)/n - Z)) + <(I - tn/fLF)(Txn - Z)rjq(xn - Z))
+tn (y Vay — uFz, jg(xn — 2))
<(1 = taT) %0 — 2l17 + tu (¥ Vw — Fz,jg(xn — 2)).

Thus, we have

ln — 211 < 1 {y Vatw — 11Fz, jg (xn — 2))
=y (Van = Vz,jg (0 — 2)) + (¥ Vz — uFz,jq (tn — 2))}
< MyLllxn — 2117 + (y Vz — uFz,jg (%0 — 2))}

which implies that
b —2lf < (yVe— ulejy(o —2).
“t—yL

In particular, we have

||xni - z||q < v Vz — uFz, jo(xn, — z)) (3.9)

T—yL (
By reflexivity of a Banach space X and boundedness of {x,}, there exists a subse-
quence {xni} of {x,} such that x,, — X as i — eo. Since Banach space X has a weakly
sequentially continuous generalized duality mapping and by (3.9), we obtain x,, — X.
By Proposition 3.3 (ii), we have x, — Tx, — 0 as n — . Hence, it follows from
Lemma 3.2 that X € Fix(T).
Next, we show that x solves the variational inequality (3.3). We note that

%= Qcyr = Qcyr — Vi + ty Vay + (I — tuF)Txy,

we derive that
1 1

Since I - T is accretive (i.e., (I - T)x - (I - T)y, j,(x - y)) 20, forx, ye C). Forall ze
Fix(7), it follows from (3.10) and Lemma 2.1 that
1 1
((LE =y V)x jg(xe — 2)) = ; (Qcye = yujg(Qeye — 2)) — ; (1= T — (I = T)z,jg (% — 2))
+ u (Fx, — FTxy, jg (% — z))
<pu (Fxt — FTx¢, jg(x: — z)) (3'11)
< wllFx; — FTx;| [l — 2|97
< llxe = Tx I M,
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1
where M > 0 is a constant such that M = sup{ur||x; - 2|7}, where t € (0, min {1, })
T

Now, replacing ¢ in (3.11) with ¢, and taking the limit as n — o, we noticing that
x,, — Tx,, = X — Tx = 0 for X € Fix(T), we obtain ((uF — yV)X,j, (X —z)) < 0. That is
x € Fix(T) is the solution of variational inequality (3.3). Consequently, x = x* by unique-

ness. Therefore x, — x* as t — 0. This completes the proof.

3.2 Explicit iteration scheme

Theorem 3.5. Let C be a nonempty, closed and convex subset of a real q-uniformly
smooth Banach space X which admits a weakly sequentially continuous generalized dua-
lity mapping j, from X into X*. Let Q. be a sunny nonexpansive retraction such that Q. is
an orthogonal from X onto C. Let F: C — X be a k-Lipschitzian and n-strongly accretive
operator with constants r, 1 > 0, V: C — X be an L-Lipschitzian mapping with constant

1
C,ud x4
L=>0. Let <<qu )q—landOsyL<r,wherer=u(n— akt K)

. Let
0

{Tu)p21 : C — C be a family of A-strict pseudo-contractions with 0 <A < 1. Define a map-

ping S,x = (1 - y)x + v,T,x for all x € C and n = 1. Assume that

Q = (2 FiX(Ty) # 0. Let {x,} be a sequence defined by x, € C and
Xne1 = Qclany Vxy + (I — aquF)Spxn], VYn>1, (3.12)

where {0} and {y,} are sequences in (0,1) which satisfy the following conditions:

(C1) lim,, .. 0, = 0 and Y 2 o = 00;
Qnil

(C2) either Y ;21 lans — ol < coor limpyoo o= 1;
n

1
(C3) 0 <y, <6, 8= min{ll(qc:)q_l }and 2221 [Vne1 — ¥l < 00.

Suppose in addition that {Tn}32, satisfies the AKTT-condition. Let T: C — C be the
mapping defined by Tx = lim, ,. T,x for all x € C and suppose that
Fix(T) = oy FIX(Ty). Then the sequence {x,} defined by (3.12) converges strongly to x*

€ Fix(T) as n — oo, which x* is the unique solution of the variational inequality
((WF — yV)x*, jg(x* — 2)) <0, Vz e Fix(T). (3.13)

Proof. From the condition (C1), we may assume, without loss of generality, that
oy < min{l, i} for all » € N. First, we show that {x,} is bounded. From Lemma 2.2

and the condition (C3), for all x, y € C, we have

ISnx = Sy = [ (1 = y)x + v — [(1 = v}y + vuTur] |
= Jx—y=yalx—y— (Tux = T0)1|*
< e =" = avate =y = (Tax = Tup) jg(x = ) + Coil | x — y = (Tox — Tup) |’
= e =y|" = awalx — ¥ " + qva(Tox = Tay,jg(x = ¥)) + gl |x =y = (Tux = Tup) |
< x ="+ ava(Jx =y " = 2x =y = (Twx = Tap) |*) — qwu | — ¥|*
+ C,,y,‘i”x —y— (Tox — T,,y)”q
= |x=y|"+ (Covd = avar) |x =y = (Tux — Tp) |

< Jx =l
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It follows that ||S,x - S,y|l < |l - y|l, which implies that S,, is nonexpansive and Fix
(T,) = Fix(S,). Taking x € Q. Then we have

| Qclany Van + (I — ctn it F)Snxnxa] — QcX|
||annyn + (I — anpuF)Spxnx, — J_c”

letn(y Vaty — wFx) + (I — atnpuF)(Suxn — X) |
an ly Van — wFx[l + (1 — an7) [1Snxn — XI|

1 — %Il

IAN 1A

IA

any Vxy — Vx| + an |y Vi — uFx| + (1 - anf) llocy, — x|

IA

(1 = (v — yL)an) llxy — XIl + an ly VX — uFx||
ly Vx — uFx||

(1= (v —yL)an) lIxn — x| + (tr — yL)an L

ly Vi — uFxl|

By induction, we have|lx, — ¥|| < max { llxr —xIl, L
g

}, Vn > 1.

Hence, {x,} is bounded, so are {Vx,} and {FS,x,}.
Next, we show that ||x,,,1 - x,]| = 0 as n — . Since

1Sns1%ns1 — Sudnll < (Sne1%ne1 — SnaXull + 1Snc1%n — Snxnll

< %1 — xnll + H(l - Vn+1)xn + Vel Tpi1Xn — [(1 - Vn)xn + VnTnxn]” (3 14)
= X1 — Xl + H(7/n+1 - )’n)(Tmlxn - xn) + Vn(TrH-lxn - Tnxn) ” ’
< e — Xall + [Vne1r — Val 1 Te1 %0 — Xall + Yo | Tose12n — Tyl
On the other hand, we have
lxps2 — Xpr ll = ”QC[aml Y VXpa + (I - an+l//LF)Sn+lxn+1] - Qc[an)’vxn + (I - an,UvF)snxn] H
< H [Ofn+1)/Vxn+1 + (I - an+1HF)Sn+1xn+1] - [OanVxn + (I - anlLF)Snxn] ”
= ||an+ly(vxn+l = Vxn) + (@ne1 — o)y Van + (I — o1 WF)(Spe1Xns1 — Spxn) (3 15)

+(an - an+1)ﬂFSnxn ”
< an+l)/L Hxn+1 - xn” + |Ctn+1 - anl ()/ ”Vxn” + U ”FSnan)

+ (1 - an+lf) ”Sn+1xn+l - Snxn” .

Substituting (3.14) into (3.15), we obtain

xni2 = Xne1 ll < a1 YL I%ne1 — Znll + lotner — ol (v 1Vl + 2 IFSna )
+ (1 = t) [ — Xnll + Vo1 = Yul 1 Twerxn — xnll + v 1Tsrxn — Tuxall]
< (1= (r = yL)an.1) %1 — Xall + lotner — anl M1 + Vo1 — val M2
+ T xn — Tuxnll,

where M = sup,-1{M|Vx,l, ul|FSx.|l} and My = sup,o1{l 7,1 %, - x,]}. 1t follows
from the conditions (C2), (C3) and Lemma 2.4 that

limy s o0 1%pe1 — %l = 0. (3.16)

Next, we show that ||x, - Sx,|| & 0 as n — <. For any bounded subset B of C, we
observe that

SUp, B 1Sni10 — Spool| = SUPyep “ (1 — Yn+1 )(0 + V1 Tne10 — ((1 - Vn)fl) + )’nTnO))”
< Vuse1 — Vulsup,ep ol + Yur18Up e 1 Thi10 — Thool|
+ [Vns1 — VulsSup,ep I Tholl

< |Vn+1 - Vn|M3 + SUPeB ||Tn+1w - Tna)” ’

where M3 = sup,-1{|o|, |T,.o|}. From the condition (C3) and {7} satisfies the
AKTT-condition, then we have
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o0
Zn:l SUPyeB ||Sn+1(0 — Tna)ll < 00,

that is {S,;} satisfies the AKTT-condition, we can define nonexpansive mapping S: C —
C by Sx = lim,,_,., S,x for all x € C. Since {y,} is bounded, there exits a subsequence

{y,,l.} of {y,} such that ¥, = V as i — . It follows that

Sx = limj 008y = limi oo [(1 — ¥, )x + ¥, Tyx] = (1 —v)x+vTx, VxeC.

. 0 . o] .
That is, Fix(S) = Fix(T). Hence, Fix(S) = ﬂn_l Fix(T,) = ﬂn_l Fix(S,) = Q. We

observe that

A

”xn - Snxn” ”xn — Xn+l ” + ”xn+1 - Snxn”
%0 — Xnea | + ||Qc[06n)/Vxn + (I = anptF)Snxn] — QcSnxn ”

l%n — Xnea |l + ”an)’vxn + (I — antF)Snxn — Spxn ”

A

= llxn = Xnsa | + otn [y Van — nFSpxnll -
From the condition (C1) and (3.16), we have
lim,,— o || — Spxs|l = 0. (3.17)
On the other hand, we observe that

”xn - an” = ”xn - Snxn” + ”Snxn - an”

< ”-x‘ﬂ - Snxn” + Sllpwe{xn} ”S-ﬂa) — SCL)” ,

which implies by Lemma 2.6 and (3.17) that
lim,,_, o ||, — Sxy,|| = 0. (3.18)

Next, we show that
limsup,_, . {((yV — uF)x*, jq(x, — x*)) <0,

where x* is the same as in Theorem 3.4. To show this, we take a subsequence {xy,}

of {x,} such that
limsup, oo ((V — 1EX o —x°)) = T (V= R,y (o, — 7))

By reflexivity of a Banach space X and boundedness of {x,}, there exists a subse-
quence {xni} of {x,} such that X»; = 2 as i — . It follows from (3.18) and Lemma

3.2 that z € Q. Since Banach space X has a weakly sequentially continuous generalized
duality mapping, we obtain that

limsup,,_, oo (¥ V — uF)x", jg(xn — x*)) = limi oo (¥ V — uF)x", jg (xn, — x*))

3.19
(V- B e — ) <0, O

Finally, we show that x,, — x* as n — . Setting y,, = o, yVx,+([-a,uF)S,x,, Yn = 1.
Then, we can rewrite (3.12) as x,,,; = Qcy,,. It follows from Lemmas 2.1 and 2.3 that

Page 14 of 17
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[t = 2" = (= 2% g (tner — x%)) + (Qcyn — ¥nr jg(Qcyn — x¥))
<y — X" jg(xner — 7))
= an(y Vatn — WFX", jg(%ne1 — x%)) + (I — ot F)(Snxn — X*), jg(%ne1 — X))
= oy Vatn — V", jg(Xne1 — x*)) + o {y Vo™ — wFx™, jg (xn1 — %))
+ (I — anptF)(Spxn — %), jg(xns1 — 7))
<ayyL ||x,, —x* || ||xn+1 —x* ||qf1 + o (Y Vot — uFx*, jg(Xne — x*))
+ (1 —ayt) ||xn —x* H mel — x*Hq_l

= (1= (v — yL)an) |xn — *| 1 — x* ||q_l + ot (Y Lx* — uFx*, jg(Xne1 — X*))
—1
<= (e =yt [ =1 (1) v 1]
+ 0 (Y Vo™ — puFx®, jg (X1 — x*)),
which implies that
L= (r—yL)ay HXn _ *”q . qon

1+(q—1)(r —yL)ay,
< (1= (v — yL)aw) |xa —x*| "+

e YV — WFx*, g (1 — 2°)

(
1+(q—1)(r —yL)a,
u (3.20)

14 (g 1)(r — yL)on (yVx* — pFx", jg(xna — x¥)).

Put a, = (z - YL)cx, and
q .
b, = Va* — wFx*, g —x%). '
"1 (- 1) = L) —yry 7V T Al =) Then - (3.20)
reduces to formula

Hxn+1 —x*”q <(1- a,,)”x,, —x* ||q + apb,.

It follows from the condition (C1) and (3.19) that > 12, a, = oo and lim sup,,_,.. b, <
0. From Lemma 2.4, we obtain that x,, - x* as n — co. This completes the proof.

Remark 3.6. Note that Lemma 3.1 is quite similar to the result of Yamada [19] which
is obtained in a real Hilbert space but we extended that result to a real g-uniformly
smooth Banach space.

Remark 3.7. Theorems 3.4 and 3.8 extend and generalize the main result of Ceng et
al. [21] in the following ways:

(i) From a real Hilbert space to a real g-uniformly smooth Banach space which
admits a weakly sequentially continuous generalized duality mapping.

(ii) From a nonexpansive mapping to a countable family of a strict pseudo-contrac-
tions mapping.

From Lemmas 2.7, 2.8 and Theorem 3.8, we obtain the following result.

Theorem 3.8. Let C be a nonempty, closed and convex subset of a real q-uniformly
smooth Banach space X which admits a weakly sequentially continuous generalized
duality mapping j, from X into X*. Let Q, be a sunny nonexpansive retraction such
that Q. is an orthogonal from X onto C. Let F: C — X be a k-Lipschitzian and n-
strongly accretive operator with constants k, 1 > 0, V: C — X be an L-Lipschitzian

1

mapping with a constant L > 0. Let 0<p< < qn )q— land 0 < YL <z, where
Cyrc1

Sux = (1 — yu)x + Vu Yoy iSkx. Let {Sk}pS, : C— Cbe a sequence of Ai-strict
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pseudo-contractions such that (o Fix(S¢) # @and A := inf{d; : k e N} > 0. Define a
mapping Spx := (1 — yn)X + ¥Yn Y poy 1kSpxfor all x € C and n > 1. Let {x,} be a
sequence defined by x, € C and

Xne1 = Qclony Vn + (I — antF)Spxn], Vn>1, (3.21)

where {a,} and {y,} are sequences in (0,1) which satisfy the conditions (C1)-(C3) of

Theorem 3.8 and {uk}is a sequence which satisfies the conditions (i)-(iii) of Lemma 2.8.
Let T: C — C be the mapping defined by Tx = Z:: ukSixfor all x € C. Then the

sequence {x,;} defined by (3.21) converges strongly to x* € (o Fix(Sk)as n — oo, which

x* is the unique solution of the variational inequality

(WF =y V)X jo(x" = 2)) <0, Vze () Fix(Sy). (3.22)
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