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Abstract

In this article, we introduce iterative methods (implicit and explicit) for finding a
common fixed point set of a countable family of strict pseudo-contractions, which is
a unique solution of some variational inequality. Furthermore, we prove the strong
convergence theorems of such iterative scheme in a q-uniformly smooth Banach
space which admits a weakly sequentially continuous generalized duality mapping.
The results presented in this article extend and generalize the corresponding results
announced by Yamada and Ceng et al. from Hilbert spaces to Banach spaces.
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1 Introduction
Let X be a real Banach space, and X* be its dual space. Let U = {x Î X: ∥x∥ = 1}. A

Banach space X is said to be strictly convex if ‖x+y‖
2 < 1 for all x, y Î X with ∥x∥ = ∥y∥ =

1 and x ≠ y. A Banach space X is called uniformly convex if for each ε > 0 there is a δ > 0

such that for x, y Î X with ∥x∥, ∥y∥ ≤ 1 and ∥x - y∥ ≥ ε, ∥x + y∥ ≤ 2(1 - δ) holds. The mod-

ulus of convexity of X defined by

δX(ε) = inf{1 −
∥∥∥∥12(x + y)

∥∥∥∥ : ‖x‖ , ∥∥y∥∥ ≤ 1,
∥∥x − y

∥∥ ≥ ε},

for all ε Î [0,2]. X is uniformly convex if δx(0) = 0 and δx(ε) > 0 for all 0 < ε ≤ 2. It is

know that every uniformly convex Banach space is strictly convex and reflexive (see

[1]). The norm of X is said to be Gâteaux differentiable if the limit

lim
t→0

∥∥x + ty
∥∥ − ‖x‖
t

exists for each x, y Î U. In this case X is smooth. Let rX : [0, ∞) ® [0, ∞) be the

modulus of smoothness of X defined by
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ρX(τ ) = sup
{
1
2

(∥∥x + y
∥∥ +

∥∥x − y
∥∥) − 1 : x ∈ U,

∥∥y∥∥ ≤ τ

}
.

A Banach space X is said to be uniformly smooth if ρX(t)
t → 0 as t ® 0. Suppose that

q > 1, then X is said to be q-uniformly smooth if there exists c > 0 such that rX(t) ≤
ctq. It is easy to see that if X is q-uniformly smooth, then q ≤ 2 and X is uniformly

smooth. For q > 1, the generalized duality mapping Jq : X → 2X
∗
is defined by

Jq(x) =
{
f ∈ X∗ :

〈
x, f

〉
= ‖x‖q, ∥∥f∥∥ = ‖x‖q−1} ,

where 〈·,·〉 denotes the duality pairing between X and X*. In particular, Jq = J2 is

called the normalized duality mapping and Jq(x) = ∥x∥q-2 J2(x) for x ≠ 0. If X := H is a

real Hilbert space, then J = I where I is the identity mapping. Further, we have the fol-

lowing properties of the generalized duality mapping Jq:

(1) Jq(x) = ∥x∥q-2 J2(x) for all x Î X with x ≠ 0.

(2) J(tx) = tq-1Jq(x) for all x Î X and t Î [0, ∞).

(3) Jq(-x) = -Jq(x) for all x Î X.

It is well known that if X is smooth, then Jq is single-valued, which is denoted by jq (see

[1]). The duality mapping Jq from a smooth Banach space X into X* is said to be weakly

sequentially continuous generalized duality mapping if for all {xn} ⊂ X with xn ⇀ x

implies Jq(xn) ⇀* Jq(x).

Let C be a nonempty, closed and convex subset of X and T be a self-mapping of C.

We denote the fixed points set of the mapping T by Fix(T) = {x Î C: Tx = x} and

denote ® and ⇀ by strong and weak convergence, respectively.

Definition 1.1. A mapping T: C ® C is said to be:

(i) l-strictly pseudocontractive [2], if for all x, y Î C there exists l > 0 and jq(x - y)

Î Jq(x - y) such that

〈
Tx − Ty, jq(x − y)

〉 ≤ ∥∥x − y
∥∥q − λ

∥∥(I − T)x − (I − T)y
∥∥q,

or equivalently

〈
(I − T)x − (I − T)y, jq(x − y)

〉 ≥ λ
∥∥(I − T)x − (I − T)y

∥∥q.

(ii) L-Lipschitzian if for all x, y Î C, there exists a constant L > 0 such that
∥∥Tx − Ty

∥∥ ≤ L
∥∥x − y

∥∥ .
If 0 <L < 1, then T is a contraction and if L = 1, then T is a nonexpansive mapping.

By the definition, we know that every l-strictly pseudocontractive mapping is( 1+λ
λ

)
-Lipschitzian (see [3]).
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Remark 1.2. Let C be a nonempty subset of a real Hilbert space H and T: C ® C be

a mapping. Then T is said to be k-strictly pseudocontractive [2], if for all x, y Î C,

there exists k Î [0,1) such that

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − T)x − (I − T)y

∥∥2. (1:1)

It is well known that (1.1) is equivalent to the following:

〈
Tx − Ty, x − y

〉 ≤ ∥∥x − y
∥∥ − 1 − k

2

∥∥(I − T)x − (I − T)y
∥∥2.

Let C be a nonempty, closed and convex subset of X and Ψ: C ® X be a nonlinear

mapping. The variational inequality problem is to find u Î C such that
〈
�u, jq(v − u)

〉 ≥ 0, ∀v ∈ C, (1:2)

where jq(v - u) Î Jq(v - u). The set of solution of variational inequality problem is

denoted by VI(C, Ψ). If X := H is a real Hilbert space, the variational inequality pro-

blem reduces to find u Î C such that

〈�u, v − u〉 ≥ 0, ∀v ∈ C. (1:3)

Applications of variational inequalities span as diverse disciplines as differential equa-

tions, time-optimal control, optimization, mathematical programming, mechanics,

finance and so on (see, e.g., [4,5] for more details). Note that most of the variational

problems, including minimization or maximization of functions, variational inequality

problems, quasivariational inequality problems, decision and management sciences, and

engineering sciences problems can be unified into form (1.2) and (1.3). For more

details, we recommend the reader [6-11]. On the author hand, we note that iterative

approximation of fixed points of nonexpansive mappings (and of common fixed points

of nonexpansive semigroups) have recently been applied to image recovery and signal

processing (see, e.g., [12-17]).

A mapping F: C ® X is said to be accretive if for all x, y Î C there exists jq(x - y) Î
Jq(x - y) such that

〈
Fx − Fy, jq(x − y)

〉 ≥ 0.

For some h > 0, F: C ® X is said to be strongly accretive if for all x, y Î C there

exists jq(x -y) Î Jq(x - y) such that

〈
Fx − Fy, jq(x − y)

〉 ≥ η
∥∥x − y

∥∥q.

Remark 1.3. If X := H is a real Hilbert space, accretive and strongly accretive map-

pings coincide with monotone and strongly monotone mappings, respectively.

Let A be a strongly positive bounded linear operator on H, that is, there exists a con-

stant γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄ ‖x‖2, for all x ∈ H. (1:4)

Remark 1.4. From the definition of operator A, we note that a strongly positive

bounded linear operator A is a ∥A∥-Lipschitzian and h-strongly monotone operator.
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A typical problem is to minimize a quadratic function over the set of the fixed points

of a nonexpansive mapping on a real Hilbert space H:

minx∈C
1
2

〈Ax, x〉 − 〈x, u〉 , (1:5)

where C is the fixed point set of a nonexpansive mapping T on H and u is a given

point in H.

In 2006, Marino and Xu [18] introduced and considered the following general itera-

tive method:

xn+1 = αnγ f (xn) + (I − αnA)Txn, ∀n ≥ 0, (1:6)

where A is a strongly positive bounded linear operator on a real Hilbert space H.

They, proved that, if the sequence {an} of parameters satisfies appropriate conditions,

then the sequence {xn} generated by (1.6) converges strongly to the unique solution of

the variational inequality
〈
(γ f − A)x∗, x − x∗〉 ≤ 0, ∀x ∈ Fix(T), (1:7)

which is the optimality condition for the minimization problem

minx∈C
1
2

〈Ax, x〉 − h(x), (1:8)

where C is the fixed point set of a nonexpansive mapping T and h is a potential

function for gf (i.e., h’(x) = gf(x) for all x Î H).

On the other hand, Yamada [19] introduced a hybrid steepest descent method for a

non-expansive mapping T as follows:

xn+1 = Txn − μλnF(Txn), ∀n ≥ 0, (1:9)

where F is a �-Lipschitzian and h-strongly monotone operator with constants �, h >

0 and 0 < μ <
2η

κ2 . He proved that if {ln} satisfying appropriate conditions, then the

sequence {xn} generated by (1.9) converges strongly to the unique solution of varia-

tional inequality
〈
Fx∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T). (1:10)

In 2010, Tian [20] combined the iterative method (1.6) with the Yamada’s method

(1.9) and considered a general iterative method for a nonexpansive mapping T as fol-

lows:

xn+1 = αnγ f (xn) + (I − αnμF)Txn, ∀n ≥ 0. (1:11)

Then he proved that the sequence {xn} generated by (1.11) converges strongly to the

unique solution of variational inequality
〈
(γ f − μF)x∗, x − x∗〉 ≤ 0, ∀x ∈ Fix(T). (1:12)

Very recently, Ceng et al. [21] introduced implicit and explicit iterative schemes for

finding the fixed points of a nonexpansive mapping T on a nonempty, closed and con-

vex subset C in a real Hilbert space H as follows:
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xt = PC[tγVxt + (I − tμF)Txt] (1:13)

and

xn+1 = PC[αnγVxn + (I − αnμF)Txn], ∀n ≥ 0, (1:14)

where V is an L-Lipschitzian mapping with a constant L ≥ 0 and F is a �-Lipschit-

zian and h-strongly monotone operator with constants �, h > 0 and 0 < μ <
2η

κ2 . Then

they proved that the sequences generated by (1.13) and (1.14) converge strongly to the

unique solution of variational inequality
〈
(μF − γV)x∗, x∗ − x

〉 ≥ 0, ∀x ∈ Fix(T). (1:15)

The following questions naturally arise in connection with above results:

Question 1.5. Can Theorem of Ceng et al. [21]be extend from a real Hilbert space to

a general Banach space? such as q-uniformly smooth Banach space.

Question 1.6. Can we extend the iterative method of scheme (1.14) to a general itera-

tive scheme define over the set of fixed points of a countable family of strict pseudo-

contractions.

The purpose of this article is to give the affirmative answers to these questions men-

tioned above, motivated by Yamada [19], Tian [20] and Ceng et al. [21], we introduce

a general iterative method for finding a common fixed point set of a countable family

of strict pseudo-contractions, which is a unique solution of some variational inequality.

Furthermore, we prove the strong convergence theorems of such iterative scheme in a

q-uniformly smooth Banach space which admits a weakly sequentially continuous gen-

eralized duality mapping. The results presented in this article extend and generalize

the corresponding results announced by Yamada [19] and Ceng et al. [21] and many

others to Banach spaces.

2 Preliminaries
Let D be a nonempty subset of C. A mapping Q: C ® D is said to be sunny if

Q(Qx + t(x − Qx)) = Qx,

whenever Qx + t(x - Qx) Î C for x Î C and t ≥ 0. A mapping Q: C ® D is said to

be retraction if Qx = x for all x Î D. Furthermore, Q is a sunny nonexpansive retrac-

tion from C onto D if Q is a retraction from C onto D which is also sunny and nonex-

pansive. A retraction Q is said to be orthogonal if for each x, x - Qx is normal to D in

the sense of James (see [22]). A subset D of C is called a sunny nonexpansive retrac-

tion of C if there exists a sunny nonexpansive retraction from C onto D. It is well

known that if X := H is a real Hilbert space, then a sunny nonexpansive retraction Qc

is coincident with the metric projection from X onto C.

The following lemma concerns the sunny nonexpansive retraction.

Lemma 2.1. [23]Let C be a closed and convex subset of a real q-uniformly smooth

Banach space X. Let Q: X ® C be a retraction. Then, Q is an orthogonal retraction if

and only if
〈
x − Qx, jq(y − Qx)

〉 ≤ 0, ∀x ∈ X and y ∈ C.
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Lemma 2.2. [24]Let X be a real q-uniformly smooth Banach space. Then the follow-

ing inequality holds:
∥∥x + y

∥∥q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ Cq

∥∥y∥∥q,
for all x, y Î X and for some Cq > 0.

Lemma 2.3. [25]Suppose that q > 1. Then the following inequality holds:

ab ≤ 1
q
aq +

(
q − 1
q

)
b

q
q − 1

for arbitrary positive real numbers a, b.

Lemma 2.4. [26]Let {sn} be a sequence of nonnegative real numbers, {an} be a

sequence of [0,1] with
∑∞

n=1 an = ∞ , {cn} be a sequence of nonnegative real number

with
∑∞

n=1 cn < ∞and {bn} be a sequence of real numbers with lim supn®∞bn ≤ 0. Sup-

pose that

sn+1 = (1 − an)sn + anbn + cn,

for all n Î N. Then, limn®∞ sn = 0.

Definition 2.5. Let {Tn} be a family of mappings from a subset C of a Banach space

X into itself with
⋂∞

n=1 F(Tn) �= ∅. We say that {Tn} satisfies the AKTT-condition (see

[26]) if for each bounded subset B of C,

∞∑
n=1

sup
ω∈B

‖Tn+1ω − Tnω‖ < ∞. (2:1)

Lemma 2.6. [26]Suppose that {Tn} satisfy the AKTT-condition such that

(i) For each x Î C, {Tn} is converge strongly to some point in C.

(ii) Let the mapping T: C ® C defined by Tx = limn®∞, Tnx for all x Î C.

Then limn®∞ supωÎB ∥Tω - Tnω∥ = 0 for each bounded subset B of C.

Lemma 2.7. [27,28]Let C be a closed and convex subset of a smooth Banach space X.

Suppose that {Tn}∞n=1 : C → X is a family of l-strictly pseudocontractive mappings with

{μm}∞n=1and {μm}∞n=1 is a real sequence in (0,1) such that
∑∞

n=1 μn = 1 . Then the follow-

ing conclusions hold:

(i) A mapping G: C ® X defined by G :=
∑∞

n=1 μnTn is a l-strictly pseudocontractive

mapping.

(ii) Fix(G) =
⋂∞

n=1 Fix(Tn) .

Lemma 2.8. [28]Let C be a closed and convex subset of a smooth Banach space X.

Suppose that {Sk}∞k=1 : C → C is a countable family of l-strictly pseudocontractive map-

pings with
⋂∞

k=1 Fix(Sk) �= ∅ . For all n Î N, define Tn : C ® C by
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{μk
n} for all x Î C, where {μk

n} is a family of nonnegative numbers satisfying the follow-

ing conditions:

(i)
∑n

k=1 μk
n = 1 for all n Î N;

(ii) μk := limn→∞μk
n > 0for all k Î N;

(iii)
∑∞

n=1
∑n

k=1

∣∣μk
n+1 − μk

n

∣∣ < ∞.

Then the following hold:

(1) Each Tn is a l-strictly pseudocontractive mapping.

(2) {Tn} satisfies the AKTT-condition.

(3) If T: C ® C is defined by Tx =
∑∞

k=1
μkSkx for all x Î C, then Tx = limn®∞ Tnx

and Fix(T) =
⋂∞

n=1 Fix(Tn) =
⋂∞

k=1 Fix(Sk) .

3 Main results
In order to prove our main result, the following lemmas are needed.

Lemma 3.1. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X. Let F: C ® X be a �-Lipschitzian and h-strongly accretive

operator with constants �, h > 0. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1and

τ = μ

(
η − Cqμ

q−1κq

q

)
. Then for t ∈

(
0,min

{
1,

1
τ

})
, the mapping S: C ® X define

by S := (I - tμF) is a contraction with constant 1-tτ.

Proof. Since 0 < μ <

(
qη

Cqκq

) 1
q − 1 with q > 1 and t ∈

(
0,min

{
1,

1
τ

})
. This

implies that 1 - tτ Î (0,1). From Lemma 2.2, for all x, y Î C, we have

∥∥Sx − Sy
∥∥q = ∥∥(I − tμF)x − (I − tμF)y

∥∥q
=

∥∥(x − y) − tμ(Fx − Fy)
∥∥q

≤ ∥∥x − y
∥∥q − qtμ

〈
Fx − Fy, jq(x − y)

〉
+ Cqtqμq

∥∥Fx − Fy
∥∥q

≤ ∥∥x − y
∥∥q − qtμη

∥∥x − y
∥∥q + Cqtqμqκq

∥∥x − y
∥∥q

≤ [
1 − tμ(qη − Cqμ

q−1κq)
] ∥∥x − y

∥∥q
=

[
1 − tμq

(
η − Cqμ

q−1κq

q

)] ∥∥x − y
∥∥q

≤
[
1 − tμ

(
η − Cqμ

q−1kq

q

)]q∥∥x − y
∥∥q

= (1 − tτ )q
∥∥x − y

∥∥q.
It follows that

∥∥Sx − Sy
∥∥ ≤ (1 − tτ )

∥∥x − y
∥∥ .

Hence, we have S := (I - tμF) is a contraction with a constant 1 - tτ.
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Lemma 3.2. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X which admits weakly sequentially continuous generalized dua-

lity mapping jq from X into X*. Let T: C ® C be a nonexpansive mapping. Then, for all

{xn} ⊂ C, if xn ⇀ x and xn − Txn → 0 , then x = Tx.

Proof. From Lemma 2.2, for all x Î C, we have

∥∥x − Tx − (xn − Txn)
∥∥q = ∥∥(xn − x) + (Tx − Txn)

∥∥q
≤ ‖xn − x‖q + q

〈
Tx − Txn, jq(xn − x)

〉
+ Cq‖Tx − Txn‖q

≤ 〈
xn − x, jq(xn − x)

〉
+ q

〈
Tx − Txn, jq(xn − x)

〉
+ Cq

〈
x − xn, jq(x − xn)

〉
.

Taking the limit as n ® ∞ in both sides and noting that jq is weakly sequentially

continuous generalized duality mapping. Then, ∥x - Tx∥q ≤ 0, this implies that x = Tx.

3.1 Implicit iteration scheme

Let C be a nonempty, closed and convex subset of a real q-uniformly smooth Banach

space X. Let QC be a sunny nonexpansive retraction from X onto C. Let F: C ® X be

a �-Lipschitzian and h-strongly accretive operator with constants �, h > 0, V: C ® X

be an L-Lipschitzian mapping with a constant L ≥ 0 and T: C ® C be a nonexpansive

mapping such that Fix(T) ≠ ∅. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1 and 0 ≤ gL <τ, where

τ = μ

(
η − Cqμ

q−1κq

q

)
. For each t ∈

(
0,min

{
1,

1
τ

})
, we define the mapping St : C

® C by

Stx := QC[tγVx + (I − tμF)Tx], ∀x ∈ C.

It is easy to see that St is a contraction. Indeed, from Lemma 3.1, for all x, y Î C, we

have
∥∥Stx − Sty

∥∥ =
∥∥QC[tγVx + (I − tμF)Tx] − QC[tγVy + (I − tμF)Ty ]

≤ ∥∥[tγVx + (I − tμF)Tx] − [tγVy + (I − tμF)Ty]
∥∥

≤ tγ
∥∥Vx − Vy

∥∥ +
∥∥(I − tμF)(Tx − Ty)

∥∥
≤ tγ L

∥∥x − y
∥∥ + (1 − tτ )

∥∥x − y
∥∥

= (1 − (τ − γ L)t)
∥∥x − y

∥∥ .
Hence, St has a unique fixed point, denoted by xt, which uniquely solve the fixed

point equation

xt = QC[tγVxt + (I − tμF)Txt] (3:1)

The following proposition summarizes the properties of the net {xt}.

Proposition 3.3. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X. Let Qc be a sunny nonexpansive retraction from X onto C. Let

F: C ® X be a �-Lipschitzian and h-strongly accretive operator with constants �, h >

0, V: C ® X be an L-Lipschitzian mapping with a constant L ≥ 0 and T: C ® C be a

nonexpansive mapping such that Fix(T) ≠ ∅. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1and 0 ≤ gL
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<τ, where τ = μ

(
η − Cqμ

q−1κq

q

)
.

then

(i) {xt} is bounded for each t ∈
(
0,min

{
1,

1
τ

})
.

(ii) limt→0 ‖xt − Txt‖ = 0 .

(iii) {xt} defines a continuous curve from

(
0,min

{
1,

1
τ

})
into C.

Proof.

(i) Taking x̄ ∈ Fix(T) . Then, we have

‖xt − x̄‖ =
∥∥QC[tγVxt + (I − tμF)Txt] − QCx̄

∥∥
≤ ∥∥[tγVxt + (I − tμF)Txt] − x̄

∥∥
=

∥∥t(γVxt − μFx̄) + (I − tμF)(Txt − x̄)
∥∥

≤ t ‖γVxt − μFx̄‖ + (1 − tτ ) ‖Txt − x̄‖
≤ tγ ‖Vxt − Vx̄‖ + t ‖γVx̄ − μFx̄‖ + (1 − tτ ) ‖xt − x̄‖
≤ (1 − (τ − γ L)t) ‖xt − x̄‖ + t ‖γVx̄ − μFx̄‖ .

It follows that

‖xt − x̄‖ ≤ ‖γVx̄ − μFx̄‖
τ − γ L

.

Hence, {xt} is bounded, so are {Vxt} and {FTxt}.

(ii) By definition of {xt}, we have

‖xt − Txt‖ =
∥∥QC[tγVxt + (I − tμF)Txt] − QCTxt

∥∥
≤ ∥∥tγVxt + (I − tμF)Txt − Txt

∥∥
= t ‖γVxt − μFTxt‖ → 0 as t → 0.

(iii) Take t, t0 ∈ (
0,min

[
1, 1

τ

])
. From Lemma 3.1, we have

∥∥xt − xt0
∥∥ =

∥∥QC[tγVxt + (I − tμF)Txt] − QC[t0γVxt0 + (I − tμF)Txt0 ]
∥∥

≤ ∥∥[tγVxt + (I − tμF)Txt] − [t0γVxt0 + (I − tμF)Txt0 ]
∥∥

=
∥∥(t − t0)γVxt + t0γ (Vxt − Vxt0) − (t − t0)μFTxt + (I − t0μF)(Txt − Txt0 )

∥∥
≤ (γ ‖Vxt‖ + μ ‖FTxt‖) |t − t0| + (1 − (τ − γ L)t0)

∥∥xt − xt0
∥∥ .

It follows that

∥∥xt − xt0
∥∥ ≤ (γ ‖Vxt‖ + μ ‖FTxt‖)

(τ − γ L)t0
|t − t0| .
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Since {Vxt} and {FTxt} is bounded. Hence, {xt} defines a continuous curve from(
0,min

{
1,

1
τ

})
into C.

Theorem 3.4. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X which admits a weakly sequentially continuous generalized

duality mapping jq from X into X*. Let Qc be a sunny nonexpansive retraction such

that Qc is an orthogonal from X onto C. Let F: C ® X be a �-Lipschitzian and h-
strongly accretive operator with constants �, h > 0, V: C ® X be an L-Lipschitzian

mapping with constant L ≥ 0 and T: C ® C be a nonexpansive mapping such that Fix

(T) ≠ ∅. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1and 0 ≤ gL <τ, where τ = μ

(
η − Cqμ

q−1κq

q

)
. For

each t ∈
(
0,min

{
1,

1
τ

})
, let {xt} defined by (3.1), then {xt} converges strongly to x* Î

Fix(T) as t ® 0, which x* is the unique solution of the variational inequality
〈
(μF − γV)x∗, jq(x∗ − z)

〉 ≤ 0, ∀z ∈ Fix(T). (3:2)

Proof. We observe that

Cqμ
q−1κq

q
> 0 ⇔ η − Cqμ

q−1κq

q
< η

⇔ μ

(
η − Cqμ

q−1κq

q

)
< μη

⇔ τ < μη.

(3:3)

It follows that

0 ≤ γ L < τ < μη. (3:4)

First, we show the uniqueness of solution of the variational inequality (3.3). Suppose

that x̃, x∗ ∈ Fix(T) are solutions of (3.3), then
〈
(μF − γV)x∗, jq(x∗ − x̃)

〉 ≤ 0 (3:5)

and
〈
(μF − γV)x̃, jq(x̃ − x∗)

〉 ≤ 0. (3:6)

Adding up (3.5) and (3.6), we have

0 ≥ 〈
(μF − γV)x∗ − (μF − γV)x̃, jq(x∗ − x̃)

〉
= μ

〈
Fx∗ − Fx̃, jq(x∗ − x̃)

〉 − γ
〈
Vx∗ − Vx̃, jq(x∗ − x̃)

〉
≥ μη

∥∥x∗ − x̃
∥∥q − γ

∥∥Vx∗ − Vx̃
∥∥∥∥x∗ − x̃

∥∥q−1

≥ (μη − γ L)
∥∥x∗ − x̃

∥∥q.
Note that (3.4) implies that x∗ = x̃ and the uniqueness is proves. Below, we use x* to

denote the unique solution of the variational inequality (3.3).

Next, we show that xt ® x* as t ® 0. Setting yt = tγVxt + (I − tμF) Txt , where

t ∈
(
0,min

{
1,

1
τ

})
. Then, we can rewrite (3.1) as xt = QCyt. Assume that {tn} ⊂
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(0,1) is a sequence such that tn ® 0 as n ® ∞. Putting xn := xtn and yn : ytn . For z Î
Fix(T), we note that

xn − z = QCyn − yn + yn − z

= QCyn − yn + tn(γVxn − μFz) + (I − tnμF)(Txn − z).
(3:7)

By Lemma 2.1, we have
〈
QCyn − yn, jq(QCyn − z)

〉 ≤ 0. (3:8)

It follows from (3.7) and (3.8) that

‖xn − z‖q = 〈
QCyn − yn, jq(QCyn − z)

〉
+

〈
(I − tnμF)(Txn − z), jq(xn − z)

〉
+tn

〈
γVxn − μFz, jq(xn − z)

〉
≤(1 − tnτ )‖xn − z‖q + tn

〈
γVxn − μFz, jq(xn − z)

〉
.

Thus, we have

‖xn − z‖q ≤ 1
τ

〈
γVxn − μFz, jq (xn − z)

〉
= 1

τ

{
γ

〈
Vxn − Vz, jq (xn − z)

〉
+

〈
γVz − μFz, jq (xn − z)

〉}
≤ 1

τ

{
γ L‖xn − z‖q + 〈

γVz − μFz, jq (xn − z)
〉}
,

which implies that

‖xn − z‖q ≤ 1
τ − γ L

〈
γVz − μFz, jq(xn − z)

〉
.

In particular, we have

∥∥xni − z
∥∥q ≤ 1

τ − γ L

〈
γVz − μFz, jq(xni − z)

〉
. (3:9)

By reflexivity of a Banach space X and boundedness of {xn}, there exists a subse-

quence
{
xni

}
of {xn} such that xni ⇀ x̃ as i ® ∞. Since Banach space X has a weakly

sequentially continuous generalized duality mapping and by (3.9), we obtain xni → x̃ .

By Proposition 3.3 (ii), we have xn − Txn → 0 as n ® ∞. Hence, it follows from

Lemma 3.2 that x̃ ∈ Fix(T) .

Next, we show that x̃ solves the variational inequality (3.3). We note that

xt = QCyt = QCyt − yt + tγVxt + (I − tμF)Txt ,

we derive that

(μF − γV)xt =
1
t
(QCyt − yt) − 1

t
(I − T)xt + μ(Fxt − FTxt). (3:10)

Since I - T is accretive (i.e., 〈(I - T)x - (I - T)y, jq(x - y)〉 ≥ 0, for x, y Î C). For all z Î
Fix(T), it follows from (3.10) and Lemma 2.1 that

〈
(μF − γV)xt, jq(xt − z)

〉
=
1
t

〈
QCyt − yt, jq(QCyt − z)

〉 − 1
t

〈
(I − T)xt − (I − T)z, jq(xt − z)

〉
+ μ

〈
Fxt − FTxt, jq(xt − z)

〉
≤ μ

〈
Fxt − FTxt, jq(xt − z)

〉
≤ μ ‖Fxt − FTxt‖ ‖xt − z‖q−1

≤ ‖xt − Txt‖M,

(3:11)
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where M > 0 is a constant such that M = sup{μ�∥xt - z∥q-1}, where t ∈
(
0,min

{
1,

1
τ

})
.

Now, replacing t in (3.11) with tn and taking the limit as n ® ∞, we noticing that

xtn − Txtn → x̃ − Tx̃ = 0 for x̃ ∈ Fix(T) , we obtain
〈
(μF − γV) x̃, jq

(
x̃ − z

)〉 ≤ 0. That is

x̃ ∈ Fix(T) is the solution of variational inequality (3.3). Consequently, x̃ = x∗ by unique-

ness. Therefore xt ® x* as t ® 0. This completes the proof.

3.2 Explicit iteration scheme

Theorem 3.5. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X which admits a weakly sequentially continuous generalized dua-

lity mapping jq from X into X*. Let Qc be a sunny nonexpansive retraction such that Qc is

an orthogonal from X onto C. Let F: C ® X be a �-Lipschitzian and h-strongly accretive
operator with constants �, h > 0, V: C ® X be an L-Lipschitzian mapping with constant

L ≥ 0. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1and 0 ≤ gL <τ, where τ = μ

(
η − Cqμ

q−1κq

q

)
. Let

{Tn}∞n=1 : C → C be a family of l-strict pseudo-contractions with 0 <l < 1. Define a map-

ping Snx := (1 - gn)x + gnTnx for all x Î C and n ≥ 1. Assume that

� :=
⋂∞

n=1 Fix(Tn) �= ∅ . Let {xn} be a sequence defined by x1 Î C and

xn+1 = QC[αnγVxn + (I − αnμF)Snxn], ∀n ≥ 1, (3:12)

where {an} and {gn} are sequences in (0,1) which satisfy the following conditions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞ ;

(C2) either
∑∞

n=1 |αn+1 − αn| < ∞or limn→∞
αn+1

αn
= 1;

(C3) 0 < γn ≤ δ, δ = min
{
1, ( qλCq

)
1

q−1

}
and

∑∞
n=1 |γn+1 − γn| < ∞ .

Suppose in addition that {Tn}∞n=1satisfies the AKTT-condition. Let T: C ® C be the

mapping defined by Tx = limn®∞ Tnx for all x Î C and suppose that

Fix(T) =
⋂∞

n=1 Fix(Tn) . Then the sequence {xn} defined by (3.12) converges strongly to x*

Î Fix(T) as n ® ∞, which x* is the unique solution of the variational inequality

〈(μF − γV)x∗, jq(x∗ − z)〉 ≤ 0, ∀z ∈ Fix(T). (3:13)

Proof. From the condition (C1), we may assume, without loss of generality, that

αn ≤ min{1, 1
τ
} for all n Î N. First, we show that {xn} is bounded. From Lemma 2.2

and the condition (C3), for all x, y Î C, we have

∥∥Snx − Sny
∥∥q =

∥∥(1 − γn)x + γnTnx − [(1 − γn)y + γnTny]
∥∥q

=
∥∥x − y − γn[x − y − (Tnx − Tny)]

∥∥q
≤ ∥∥x − y

∥∥q − qγn〈x − y − (Tnx − Tny), jq(x − y)〉 + Cqγ
q
n
∥∥x − y − (Tnx − Tny)

∥∥q
=

∥∥x − y
∥∥q − qγn

∥∥x − y
∥∥q + qγn〈Tnx − Tny, jq(x − y)〉 + Cqγ

q
n
∥∥x − y − (Tnx − Tny)

∥∥q

≤ ∥∥x − y
∥∥q + qγn(

∥∥x − y
∥∥q − λ

∥∥x − y − (Tnx − Tny)
∥∥q) − qγn

∥∥x − y
∥∥q

+ Cqγ
q
n
∥∥x − y − (Tnx − Tny)

∥∥q
=

∥∥x − y
∥∥q + (Cqγ

q
n − qγnλ)

∥∥x − y − (Tnx − Tny)
∥∥q

≤ ∥∥x − y
∥∥2.
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It follows that ∥Snx - Sny∥ ≤ ∥x - y∥, which implies that Sn is nonexpansive and Fix

(Tn) = Fix(Sn). Taking x̄ ∈ � . Then we have

‖xn+1 − x̄‖ =
∥∥QC[αnγVxn + (I − αnμF)Snxnxn] − QCx̄

∥∥
≤ ∥∥αnγVxn + (I − αnμF)Snxnxn − x̄

∥∥
=

∥∥αn(γVxn − μFx̄) + (I − αnμF)(Snxn − x̄)
∥∥

≤ αn ‖γVxn − μFx̄‖ + (1 − αnτ ) ‖Snxn − x̄‖
≤ αnγ ‖Vxn − Vx̄‖ + αn ‖γVx̄ − μFx̄‖ + (1 − αnτ ) ‖xn − x̄‖
≤ (1 − (τ − γ L)αn) ‖xn − x̄‖ + αn ‖γVx̄ − μFx̄‖
= (1 − (τ − γ L)αn) ‖xn − x̄‖ + (τ − γ L)αn

‖γVx̄ − μFx̄‖
τ − γ L

.

By induction, we have‖xn − x̄‖ ≤ max
{
‖x1 − x̄‖ , ‖γVx̄ − μFx̄‖

τ − γ L

}
, ∀n ≥ 1.

Hence, {xn} is bounded, so are {Vxn} and {FSnxn}.

Next, we show that ∥xn+1 - xn∥ ® 0 as n ® ∞. Since

‖Sn+1xn+1 − Snxn‖ ≤ ‖Sn+1xn+1 − Sn+xn‖ + ‖Sn+1xn − Snxn‖
≤ ‖xn+1 − xn‖ +

∥∥(1 − γn+1)xn + γn+1Tn+1xn − [(1 − γn)xn + γnTnxn]
∥∥

= ‖xn+1 − xn‖ +
∥∥(γn+1 − γn)(Tn+1xn − xn) + γn(Tn+1xn − Tnxn)

∥∥
≤ ‖xn+1 − xn‖ + |γn+1 − γn| ‖Tn+1xn − xn‖ + γn ‖Tn+1xn − Tnxn‖ .

(3:14)

On the other hand, we have

‖xn+2 − xn+1‖ =
∥∥QC[αn+1γVxn+1 + (I − αn+1μF)Sn+1xn+1] − QC[αnγVxn + (I − αnμF)Snxn]

∥∥
≤ ∥∥[αn+1γVxn+1 + (I − αn+1μF)Sn+1xn+1] − [αnγVxn + (I − αnμF)Snxn]

∥∥
=

∥∥αn+1γ (Vxn+1 − Vxn) + (αn+1 − αn)γVxn + (I − αn+1μF)(Sn+1xn+1 − Snxn)

+(αn − αn+1)μFSnxn
∥∥

≤ αn+1γ L ‖xn+1 − xn‖ + |αn+1 − αn| (γ ‖Vxn‖ + μ ‖FSnxn‖)
+ (1 − αn+1τ ) ‖Sn+1xn+1 − Snxn‖ .

(3:15)

Substituting (3.14) into (3.15), we obtain

‖xn+2 − xn+1‖ ≤ αn+1γ L ‖xn+1 − xn‖ + |αn+1 − αn| (γ ‖Vxn‖ + μ ‖FSnxn‖)
+ (1 − αn+1τ )[‖xn+1 − xn‖ + |γn+1 − γn| ‖Tn+1xn − xn‖ + γn ‖Tn+1xn − Tnxn‖]

≤ (1 − (τ − γ L)αn+1) ‖xn+1 − xn‖ + |αn+1 − αn|M1 + |γn+1 − γn|M2

+ ‖Tn+1xn − Tnxn‖ ,

where M1 = supn≥1{g∥Vxn∥, μ∥FSnxn∥} and M2 = supn≥1{∥Tn+1 xn - xn∥}. It follows
from the conditions (C2), (C3) and Lemma 2.4 that

limn→∞ ‖xn+1 − xn‖ = 0. (3:16)

Next, we show that ∥xn - Sxn∥ ® 0 as n ® ∞. For any bounded subset B of C, we

observe that

supω∈B ‖Sn+1ω − Snω‖ = supω∈B
∥∥(1 − γn+1)ω + γn+1Tn+1ω − ((1 − γn)ω + γnTnω)

∥∥
≤ |γn+1 − γn| supω∈B ‖ω‖ + γn+1supω∈B ‖Tn+1ω − Tnω‖
+ |γn+1 − γn| supω∈B ‖Tnω‖

≤ |γn+1 − γn|M3 + supω∈B ‖Tn+1ω − Tnω‖ ,

where M3 = supn≥1{∥ω∥, ∥Tnω∥}. From the condition (C3) and {Tn} satisfies the

AKTT-condition, then we have
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∑∞
n=1

supω∈B ‖Sn+1ω − Tnω‖ < ∞,

that is {Sn} satisfies the AKTT-condition, we can define nonexpansive mapping S: C ®
C by Sx = limn®∞ Snx for all x Î C. Since {gn} is bounded, there exits a subsequence{
γni

}
of {gn} such that γni → ν as i ® ∞. It follows that

Sx = limi→∞Snix = limi→∞[(1 − γni)x + γniTnj x] = (1 − ν)x + νTx, ∀x ∈ C.

That is, Fix(S) = Fix(T). Hence, Fix(S) =
⋂∞

n=1
Fix(Tn) =

⋂∞
n=1

Fix(Sn) = � . We

observe that

‖xn − Snxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Snxn‖
= ‖xn − xn+1‖ +

∥∥QC[αnγVxn + (I − αnμF)Snxn] − QCSnxn
∥∥

≤ ‖xn − xn+1‖ +
∥∥αnγVxn + (I − αnμF)Snxn − Snxn

∥∥
= ‖xn − xn+1‖ + αn ‖γVxn − μFSnxn‖ .

From the condition (C1) and (3.16), we have

limn→∞ ‖xn − Snxn‖ = 0. (3:17)

On the other hand, we observe that

‖xn − Sxn‖ ≤ ‖xn − Snxn‖ + ‖Snxn − Sxn‖
≤ ‖xn − Snxn‖ + supω∈{xn} ‖Snω − Sω‖ ,

which implies by Lemma 2.6 and (3.17) that

limn→∞ ‖xn − Sxn‖ = 0. (3:18)

Next, we show that

lim supn→∞〈(γV − μF)x∗, jq(xn − x∗)〉 ≤ 0,

where x* is the same as in Theorem 3.4. To show this, we take a subsequence
{
xni

}
of {xn} such that

lim supn→∞〈(γV − μF)x∗, jq(xn − x∗)〉 = lim
i→∞

〈(γV − μF)x∗, jq(xni − x∗)〉.

By reflexivity of a Banach space X and boundedness of {xn}, there exists a subse-

quence
{
xni

}
of {xn} such that xni ⇀ z as i ® ∞. It follows from (3.18) and Lemma

3.2 that z Î Ω. Since Banach space X has a weakly sequentially continuous generalized

duality mapping, we obtain that

lim supn→∞〈(γV − μF)x∗, jq(xn − x∗)〉 = limi→∞〈(γV − μF)x∗, jq(xni − x∗)〉
= 〈(γV − μF)x∗, jq(z − x∗)〉 ≤ 0.

(3:19)

Finally, we show that xn ® x* as n ® ∞. Setting yn = angVxn+(I-anμF)Snxn, ∀n ≥ 1.

Then, we can rewrite (3.12) as xn+1 = Qcyn. It follows from Lemmas 2.1 and 2.3 that
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∥∥xn+1 − x∗∥∥q = 〈yn − x∗, jq(xn+1 − x∗)〉 + 〈QCyn − yn, jq(QCyn − x∗)〉
≤ 〈yn − x∗, jq(xn+1 − x∗)〉
= αn〈γVxn − μFx∗, jq(xn+1 − x∗)〉 + 〈(I − αnμF)(Snxn − x∗), jq(xn+1 − x∗)〉
= αn〈γVxn − Vx∗, jq(xn+1 − x∗)〉 + αn〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉
+ 〈(I − αnμF)(Snxn − x∗), jq(xn+1 − x∗)〉

≤ αnγ L
∥∥xn − x∗∥∥ ∥∥xn+1 − x∗∥∥q−1 + αn〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉

+ (1 − αnτ )
∥∥xn − x∗∥∥ ∥∥xn+1 − x∗∥∥q−1

= (1 − (τ − γ L)αn)
∥∥xn − x∗∥∥ ∥∥xn+1 − x∗∥∥q−1 + αn〈γ Lx∗ − μFx∗, jq(xn+1 − x∗)〉

≤ (1 − (τ − γ L)αn)
[
1
q

∥∥xn − x∗∥∥q
+

(
q − 1
q

)∥∥xn+1 − x∗∥∥q]

+ αn〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉,

which implies that

∥∥xn+1 − x∗∥∥q ≤ 1 − (τ − γ L)αn

1 + (q − 1)(τ − γ L)αn

∥∥xn − x∗∥∥q +
qαn

1 + (q − 1)(τ − γ L)αn
〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉

≤ (1 − (τ − γ L)αn)
∥∥xn − x∗∥∥q + qαn

1 + (q − 1)(τ − γ L)αn
〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉.

(3:20)

Put an = (τ - gL)an and

bn =
q

(1 + (q − 1)(τ − γ L)αn)(τ − γ L)
〈γVx∗ − μFx∗, jq(xn+1 − x∗)〉 . Then (3.20)

reduces to formula
∥∥xn+1 − x∗∥∥q ≤ (1 − an)

∥∥xn − x∗∥∥q + anbn.

It follows from the condition (C1) and (3.19) that
∑∞

n=1 an = ∞ and lim supn®∞ bn ≤

0. From Lemma 2.4, we obtain that xn ® x* as n ® ∞. This completes the proof.

Remark 3.6. Note that Lemma 3.1 is quite similar to the result of Yamada [19] which

is obtained in a real Hilbert space but we extended that result to a real q-uniformly

smooth Banach space.

Remark 3.7. Theorems 3.4 and 3.8 extend and generalize the main result of Ceng et

al. [21] in the following ways:

(i) From a real Hilbert space to a real q-uniformly smooth Banach space which

admits a weakly sequentially continuous generalized duality mapping.

(ii) From a nonexpansive mapping to a countable family of a strict pseudo-contrac-

tions mapping.

From Lemmas 2.7, 2.8 and Theorem 3.8, we obtain the following result.

Theorem 3.8. Let C be a nonempty, closed and convex subset of a real q-uniformly

smooth Banach space X which admits a weakly sequentially continuous generalized

duality mapping jq from X into X*. Let Qc be a sunny nonexpansive retraction such

that Qc is an orthogonal from X onto C. Let F: C ® X be a �-Lipschitzian and h-
strongly accretive operator with constants �, h > 0, V: C ® X be an L-Lipschitzian

mapping with a constant L ≥ 0. Let 0 < μ <

(
qη

Cqκq

) 1
q − 1and 0 ≤ gL <τ, where

Snx := (1 − γn)x + γn
∑∞

k=1 μk
nSkx . Let {Sk}∞k=1 : C → C be a sequence of lk-strict
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pseudo-contractions such that
⋂∞

k=1 Fix(Sk) �= ∅and l := inf{lk : k Î N} > 0. Define a

mapping Snx := (1 − γn)x + γn
∑∞

k=1 μk
nSkx for all x Î C and n ≥ 1. Let {xn} be a

sequence defined by x1 Î C and

xn+1 = QC[αnγVxn + (I − αnμF)Snxn], ∀n ≥ 1, (3:21)

where {an} and {gn} are sequences in (0,1) which satisfy the conditions (C1)-(C3) of

Theorem 3.8 and {μk
n} is a sequence which satisfies the conditions (i)-(iii) of Lemma 2.8.

Let T: C ® C be the mapping defined by Tx =
∑∞

k=1
μkSkx for all x Î C. Then the

sequence {xn} defined by (3.21) converges strongly to x∗ ∈ ⋂∞
k=1 Fix(Sk)as n ® ∞, which

x* is the unique solution of the variational inequality

〈(μF − γV)x∗, jq(x∗ − z)〉 ≤ 0, ∀z ∈
⋂∞

k=1
Fix(Sk). (3:22)
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