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Abstract

In this paper, the spectrum and the resolvent of the operator L, which is generated
by the differential expression £ (y) = y™ + Z;LW (1o A py00)y ™) has been
investigated in the space L,(R). Here the coefficients py(x) = 32, pykne’“”x,
k=0,1,....,y =1;pyyX)=pyy, ¥ =1,2,...,m, are constants, p,m # 0 and p%(x),
v=0,1,2,...,m -y, are Bohr almost-periodic functions whose Fourier series are
absolutely convergent. The sequence of Fourier exponents of coefficients (these are
positive) has a unique limit point at +oo. It has been shown that if the polynomial
O =7"+p1 72" +ppz™ %+ + Pt ma1Z + Pmm has the simple roots

w1, 3,...,Wwn (Or one multiple root wy), then the spectrum of operator L, is pure
continuous and consists of lines Re(Awy) =0, k=1,2,...,m (or of line Re(Awyp) = 0).
Moreover, a countable set of spectral singularities on the continuous spectrum can
exist which coincides with numbers of the form A =0, Ay, = iat, (@) - w) ', neN,
sj=1,2,....m,j#s.If ¢(2) = (z- wo)™, then the spectral singularity does not exist. The
resolvent L;f is an integral operator in L,(IR) with the kernel of Karleman type for any
A€ p(Ly).

MSC: 34L05; 47E05
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1 Introduction
In this study, we investigate the spectrum and the resolvent of the maximal differential

operator L, which is generated by the linear differential expression

m
G0) ="+ oy (e Ay

y=1

in the space Ly(R), where X is a complex parameter,

%
py(x2) = Z)‘kpyk(x): pyy(x) =Pyy>
k=0

00
Pyk(x):ZPykneia"x, Y =1,2,...,m, k=0,1,,..,y—1,

n=1
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with p,,, pyin € C, prum # 0 and the condition

—

y—

ZZZ%’,”’V |Pyinl < +00 )

y=1 k=0 n=1

is satisfied. Here (c;,)5°; is an increasing sequence of positive numbers with «,, — +00 and
the set {o,, : m € N} is an additive semigroup.
The operator L, is defined in the domain

D(Ly) = {y(x)|y(x),y’(x), ... ,y(””l) (x) € ACla,b] forall a,b € R,

(), 6,() € Lo(R)}.

If at least one of the functions p,x(x), y =1,2,...,m,k=0,1,...,y — 1, is not zero, then the
operator L, is non-self-adjoint for each 1 € C.

Let AP* be a class of Bohr almost-periodic functions g(x) = Y ., ., where |q| =
> o1 1qul < +00. In the case a, = 1, n € N, we denote this class by Q*. It is clear that AP*
is a normed space and (2) means that p;v,Z(x) € AP fory =1,2,...,m, k=0,1,...,y -1,
v=0,1,..., m—y.

Under the assumed conditions, coefficients p, (x, 1) can be represented as

y-1 o oo /y-1
Py (x,k) :pyy)\’l’ + Z)”k Zpyknemnx =pyy)¥y + Z(Z Akpykn) glon
n=1

k=0 n=1 k=0

o0
=pyy ) + Zi?yn()&)em"x, y=12,...,m.

n=1

Here, p,,(A) is an algebraic polynomial whose degree does not exceed y — 1. Moreover,
according to (2) the series ) oo [P, (A)| is majorized in every compact set S € C, i.e. for
Dyn =SUp; e 1Pyn(M), ¥ =1,2,...,m, n € N, the series Zfﬂ[ayn converges.

Let wi, k=1,2,...,m, denote the roots of the characteristic polynomial

m m-1 m-2
d(2) =2" + puZ™ + ppd™ T+ Pruima1Z + P

corresponding to the linear differential expression £;(y), numbered as 0 < argw; <
argwy < --- < argw,, < 2w and Ay, = i, (w; —wy)MforneN,js=1,2,...,m,j#s.

Let A ={Ag,:5,j=1,2,...,m, j#s,n € N} and Ag = A U {0}. It is obvious that the roots
are different from zero according to the condition p,,, # 0. Below we shall assume that
these roots are different or all coincide and any three of these roots are not on the same
line in the complex plane. Under these conditions, for each constant s the numbers Ay, =
iy (@ — o), neN, j=1,2,...,m, j #s, are located on the m — 1 rays from the origin.
Moreover, since g, = —Aj,, the set A is symmetric with respect to the origin.

The lines [y = {A : . € C,Re(Aay) = 0}, k = 1,2,...,m, divide the complex A-plane into
2mg open sectors S, k =1,2,...,2my. Let us assume that beginning from sector S; whose
closure contains positive numbers, these sectors are numbered Sy, Ss, ..., Sy, (Mo < m)
counterclockwise successively. It is clear that if there are different roots wy, w; such that
wi/w; € R, then the lines /i and /; coincide. Therefore, the number of sectors S; may be
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less than 2. In the case ¢(z) = (z — wy)™ the line [y = {1 : A € C,Re Awg = 0} divides the
complex A-plane into two half planes S* = {A: 1 € C,Relwg >0}, S™ = {1 : 1 € C,Re rwy <
0}. In the sequel we shall see that the resolvent set of the operator L, consists of the above
defined sectors.

The interest of the investigation of the spectral properties of the differential operators
with coefficients belonging to class AP has been increased after the study of [1]. In [1] the
differential operator L(y) = —y" + q(x)y with periodic potential g(x) € Q* (case m = 2) has
been investigated in the space L, (R). In this study the spectral data {s,},cn has been deter-
mined and sufficient conditions have been obtained for solvability of the inverse problem
according to the spectral data. Afterward, in [2] were found the necessary and sufficient
conditions for a set {s,},cn to be the spectral data of the operator L(y) = —=y” + g(x)y with
periodic potential g(x) € Ly(0,2m). In [3], the results of [2] are generalized for almost-
periodic potential g(x) having only positive Fourier exponents. The spectral properties of
ordinary differential operators of high order with coefficients from AP" have been inves-
tigated in [4, 5]. The spectrum and the resolvent of the bundle of 2# order and second
order differential operators with coefficients from AP* and from Q* have been examined
in [6-9] and in [10], respectively. In all of these studies the examined operators in the space
Ly(R) have a pure continuous spectrum which consists of a half-line or a union of lines
passing from the origin. Moreover, there may be at most a countable number of spectral
singularities on the continuous spectrum of the examined operators.

In the present paper the spectrum and the resolvent of the class of a pencil of m or-
der differential operators, with coefficients from AP*, have been investigated under more
general conditions. It has been proved that the operator L, has a pure continuous spec-
trum. If the characteristic polynomial ¢(z) has only simple roots wy, k = 1,2,...,m, the
continuous spectrum consists of the lines Re(Awy) = 0, k = 1,2,...,m. Moreover, there
may be spectral singularities (in the sense of Naimark [11]) on the continuous spectrum
which coincide with numbers of the form 1 = 0, Ay, = io,(w; — ws) L s,j=1,2,...,m,j#s,
n € N. If the characteristic polynomial ¢(z) has one multiple root wy then the continuous
spectrum consists of the line Re(Awp) = 0 and a spectral singularity does not exist. The re-
solvent operator L;! is an integral operator in L,(RR) with the kernel of Karleman type for
any A € p(L;). Under weakened conditions, the obtained results of this paper generalize

all results of [5, 10] and some parts of results of [7-9].

2 Floquet solutions of the equation £, (y) =0
Here, we will show the existence of the Floquet solutions of the equation ¢, (y) = 0, which
plays an important role in the investigation of the spectrum of the operator L;. If the
characteristic polynomial has more than one multiple root, then there may arise various
cases to obtain the fundamental system of solutions. Below, we consider the cases when
there exist simple roots or one multiple root.

Case 1. The characteristic polynomial ¢(z) has different simple roots w;, wy, ..., Wy.

Theorem 1 If (1), (2) hold and w is any root of ¢(z) = 0 then for each A € C, A # iov,(w; —
w),j=12,...,m, 0 # o, n €N, the differential equation

m

P+ py Ay =0 3)

y=1
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has the solution

o0
Fe) = e (1+Zun(x>e“*"x), @
n=1
where
n m k
u,n=U — | VneNl,
nl "t Z liag + (0 — w))A] ne
k=1 j=1 J
LU/ w

with Uy, Uy, € C and series

oo
> eru,)], y=01,...,m, (5)
n=1

is majorized in each compact set S C C which does not contain the numbers ) = i, (w; —
o) forj=1,2,....,m 0, #w,neN.

Proof Let w be any root of the characteristic polynomial ¢(w). If we assume the existence
of the solution of equation (3) represented as (4) with convergent series (5), then we can
find the derivatives of f(x, A) with respect to x as

fV 1) = e’”’\x<(wk)7/ + Y iy + wx)yun(,\)eianx), y=0,1,...,m. (6)
n=1
If we substitute these derivatives in (3) and divide both sides by e***, then we get

o0 m
(@N)" + > (icty + @A) Un (L)€ + (@) pyy 1Y
n=1 y=1

m o0
+ Zp,,,,k” Z(ian + L)V UL (L)en*

y=1 n=1

m o0
+D (@)Y pya(h)e
y=1 n=1

+ Z ZPV” )elen Z(zan + @A) U, (e =

y=1 n=1

or

M)+ |:(i<xn + M)+ Y pyy M (it + @))" } U, (L)

n=1 y=1

+ ZZ @X)" 7 pyn(R)e
n=1 y=1

* i i( Y Bys(W)ioy + wk)’”‘yur(m)e"““ =0.
y=1 n

n=2 “opt+os=a,
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Taking into account the uniqueness theorem for almost-periodic functions we have

|:(zoen + o))" + pr (i, + )™ Vj| u,(n) + Z(wk)m Y Dyn(R)

y=1 y=1

30N By + 0" U (1) =0, neN.

y=1 ar+as=oy

Using the expansion

m
(i, + )™ + Zpyy)\y(ian + )Y

y=1
Am m—y ~ )\m iOln
- ( ) ZPVV( a)) = ¢(T +a))
= [ioy + Mo — an)] - [ictn + Mo — @2)] - ... - [icty + M@ — ©m)]
we obtain
U0 = - 21" Byn(W) + 301 Y e s, i + 01T By (WU (R) o

lia,, + M — w1)] - [iay, + Mw — @3)] - ... - [iy, + Mw — w,)]

for . € C, A #iaty(wj— )™, j=1,2,...,m, 0 #w,n € N.

On the contrary, if {U,(1)} satisfies the system of equations (7) and the series (5) con-
verges, then it can be shown that f(x, A) determined by (4) is a solution of (3). Therefore,
the solvability of (7) and the convergence of the series (5) are sufficient to prove the theo-
rem.

From (7), {U,(A)} is determined by the recurrent manner uniquely. It is possible to
see that U,() is the rational function which can have simple poles A = io(w; — )™,
j=L12,...,m 0 #w, k=1,2,...,n, and therefore it can be uniquely written as

() = U, Uy,
*) +Z; liag + (w — w)A] ne

wjFw

where U, Uy, € C. Let S € C be a compact set which does not contain the points A =
iot, (w) — w)forj=1,2,...,m, w; # w, n € N. Let us show that the series (5) is majorized
in S for {Ul,(A)} which is determined from (7).

It is obvious that there exist ¢y > 0, g > 1 such that

coa) < ’[iay, + (w — a)l))»] . [ia,, + (w — 0)2))\,] s [iay, + (w — wm)k]’

and |wA| < g for Vn e N, VA € S. Then from (7), we have

coo | U, (V)| < lekl’”hnyn(/\)l Z D )] - liay + @A™ |Bys(3)|
y=1

y=1 ar+as=ay

m
SZ(] pV”+Z Z |ar|+Q) ‘ays
y=1

y=1 ar+as=ay
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M1ZPV”+Z Z |U(A)|a””’(1+—> _Vi)ys

y=1 ar+as=oy

m m-1 m
<q" Y Byn+ (1 + o%) D e by
y=1 " r=t

ar+as=a

forVieS,VneNand p,, = sup, s 1pyn(M), ¥y =1,2,...,m
Let

1 q m-1 m
B,=—|1+— Dyn-
n o ( + 051) Zpyn
y=1
Then from the last inequality we obtain

|, <An+ Y a7 U()|B;, meN.

Ar+dsg=0py

If u,, = sup, .g |U,(1)|, then we have

U, <A, + Z af”_lu,Bs, neN

ar+os=oty

or

Za u,,<ZA +Z Z o u, By

n=1 ar+og=ay

t-1 t-1 t-1
<A+ E ot;”_lu, E B;,<A+B E a,’f"lun, nelN.
r=1 s=1 n=1

From (2) it is clear that A=) >°; A, < +co and B = Zoo B, < +00.

Therefore, for all t € N, 3! &”'u, <A + BY."} a”lu, is satisfied. By using this in-
equality and o, — +00, we can easily show the convergence of the series ), a"u, ac-
cording to the lemma in [12] (see [12], pp.21-22). In this case, Y o a”|U,(X)| is a ma-
jorized series in S. According to the Weierstrass theorem, the series (5) is uniform conver-
gentin S. Since S C C is an arbitrarily chosen compact set, the series (5) is convergent for
all & # o, (w; — w)Lj=12,...,m, w; # w,and n € N. Thus f(x, 1) is a solution of equation
(3). The theorem is proved. O

It is clear that Aj, = i, (w; — @)™ may be a singular point of f(x, 1) forany j=1,2,...,m,
w; # w, n € N. Actually, according to Theorem 1, the functional series in the representation

oo

[ian + (0 — @) [f (%, 1) = €2 (1 + Z[ian + (0 — wp)A] L[,(k)ei“’x)

r=1

and the obtained series by m times term by term differentiation are absolutely and uni-
formly convergent with respect to A in the closed disk with a small radius centered in
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point Aj,. Therefore, the finite limits

00
= e¥hin® E L[fnr(a))»jn +ia,)'e™*,  §=0,1,2,...,m

r=n

% (x, A
lim [ia,, +(w— wj)k] 6, 2)
A= Aj xS

exist. Moreover, the series Z Ujyla is convergent. If this limit is not zero, then it

rn|

means that the point A, is a simple pole of the functions Bségﬁ.”\) ,$=0,1,...,m

Corollary 1 For Vx € R, the functions ana(_;i,,\)’ s=0,1,...,m, are meromorphic functions
with respect to A and they can have only simple poles A, = ia,(w; — o) j=12,...,m,
w; # w, n € N. Moreover, these functions are also continuous functions of the pair (x, 1) for
all (x,1) e R x C, A Ziap(wj— )™, j=12,...,m, 0 #w,n € N.

Corollary 2 For VA # Agy, 5,j =1,2,...,m, j #s, n € N, equation (3) has the Floquet solu-
tions represented as

(0]
VCELE (l Y u,i”(x)emx),

n=1
where

(S)

/kn
u, +Zzzak+(a)s—a)])k

k=1 j=1
j#

The Wronskian of the functions fi(x,A),fo(x, 1), ..., fin(x, A) for 1 € C\A is found as

m(m-1) _ OO P10n elonx
Wlfifor oo forl = W, 2) = A5 W e P2 €, ®)

Here W, is the Vandermonde determinant of the numbers wy, ws, ..., w,,. The functions
Si@, ), fa(x, A), ..., fin(, X) form the fundamental system of solutions of equation (3) in the
interval (—00, +00) for VA € C\ Ay.

It is clear that the existence of the solutions fi (x, 1), f2(x, A), . . ., fin (%, 1) follows from The-
orem 1 for w = w, s = 1,2,...,m. Since every g(x) € AP can be extended to the upper
semi-plane as an analytic function of x and limpy s, ;00 g(x) = 0, by passing to the limit as
Imx — +00 on both sides of the equation

W (x, 1)e"P1% = W(0, ))e~ o pro®de

we get equation (8). From (8) it follows that if A # 0, then W (x, 1) # 0. Thus the system of
functions is independent.

Note that the solutions of type fi(x,1), s = 1,2,...,m, are obtained in [6-9] under the
different conditions and in various forms of the representation.

According to Corollary 1, it is obvious that the function

Sin(x) = 11111 Soloe, W) ity + (w5 — ) ]= “’SW"Z S) eir*

sjn
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is a solution of equation (3) for A = Ay, where the series hIya ay'| LI}(,S,

3(| is convergent. Asin
[4], writing the equation which is satisfied by the coefficients Ll](;}( (see [4], p.778), it is seen
easily that LI](2( = 0 forevery k > nif U](;L = 0. Therefore, f;;,(x) = 0 ifand only if LI](Z),I =0.In
this case, f;(x, 1) is regular at point A = Ay, and f;(x, A,) is a solution of equation (3). It can
be shown that the functions f;;, (x) and fj(x, Ayj,) are linearly dependent. Moreover, f;,(x) =
L[j(ﬁ)nﬁ(x, Agjn) forany s =1,2,...,m,s #j=1,2,...,m, n € N, is valid which is important for
establishing the fundamental system of solutions of equation (3) for A = A,.

Let s, j, n be fixed and f;(x, A), f5; (%, 1), fs, (%, 1), ..., f5,, (%, 1) be all functions which have a
pole at the point A = Agj,. It is only possible when the equality A, = Asgigng: B=12,.., 1,
is valid for some different indices m;, n3,...,n, € N,and1 <ji,js,...,j, < m. Then all other
functions f;(x, A), f; (%, 1), f, (%, 1), . .. ,ﬁu (x,)\),ﬁ/“l (0, A), ... f;, (%, A), L+ v +2 =m, are regu-
lar at the point A = Ag,.

If we define the functions fj,(x) = limkﬁksjnﬁ((x,k)[ian + (w5 —w)A], k = 51,82,...,5u,
then it is obvious that the functions

fsjn (x)) fslin (JC), fszjn (x)’ oo
fsujn(x): fk(x;)\sjn): k:j!jllijoo~1jv;

)

are solutions of equation (3) for A = A, and the functions of this system are linear de-
pendent in (—o0, +00), since their Wronskian is equal to zero. Moreover, any three of
the numbers Re(Ag,wi), k = 1,2,...,m, can not be equal and there are some equal pairs
between them. These equal pairs are Re(Ag,w;) = Re(Ag,w)), Re()»sjy,a)sﬁ) = Re(ksjnw,'ﬁ),
B =1,2,...,u. Then taking into our account the behaviors as x — £oco of the functions
belonging to the system (9), as it is shown in [12] (see pp.43-45), we have the existence of
some constants b, k = s, 51,52,...,5, such that

f;/'n (%) = bsf/(x: )\sjn)’ f;ﬂjn(x) = bsﬁﬁﬁ (, )‘sjn)r B=12,...,u

From the equality f;;,(x) = byfj(x, Agjn), according to the uniqueness theorem for almost-

periodic functions, it is seen that b, = L[}(;)n Using the equalities

f;/'n (%) = bs/s(x: )\sjn)’ fs,gjn(x) = bslgﬁﬁ @ Agn), B=L2,..., 1,

the system of linearly independent solutions of equation (3) corresponding to A = Ay, can
be established.
Since the functions fi(x, A), kK = j,j1,ja;...,ju, are regular at A = Ay, the functions

befi(x, 1) )

i, + (w5 — w))A

Sinx) = Jlim (ﬁ(x,/\) -
by fiy (x, 1)

iot, + (w5 — wj)A

fsﬂjn(x) = )L1—i>r>2,',, <fs/5(x,)h) - )’ B=12,...,1,

are also solutions of equation (3) corresponding to A = Ay,. According to the expres-
sions of the functions fi(x, 1), k = 5,51,52,...,8u:/,J1,J25 - - -»ju» We conclude thatfkjn(x) =
ei“’kXS/nx(wkjn (%) + Xy (x)), where Yy, (x) and ¢y, (x) are Bohr almost-periodic functions for
k =s,51,82,...,8,. From the explicit form of the functionsfs,-,,(x),ﬁlj,,(x),ﬁzjn(x), .. ,fsﬂj,,(x),
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S Agn)s k = jiji,j2s-..5jvs it is seen that these functions are linearly independent on
(—00, +00). Therefore, these functions form a fundamental system of solutions of equa-
tion (3) for A = Agj,.

Now let us construct the linearly independent solutions of equation (3) for A = 0.

Note that, since the Wronskian of the solutions f;(x, 1), s = 1,2, ..., m, is equal to zero for
A =0, they are linearly dependent. Linearly independent solutions of equation (3) corre-
sponding to A = 0 are established according to Theorem 1. It is clear that solutions of the

equation

Y 13" o)y = My (10)
y=1

corresponding to A = 0 are also solutions of equation (3) for A = 0. By Theorem 1, equation
(10) has the solution

f(x,k) =M (1 + Zfln(k)em”x) ,

n=1

which is analytic with respect to A in some small neighborhood of A = 0. By putting f (x, 1)
in (10) and by differentiating equation (10) with respect to A, it is sure that functions
fs(x) = BSJ;(;‘;M lr=0,8=0,1,...,m—1, are also solutions of (10) and (3) corresponding to A = 0.
We can see easily thatﬁ) (x) = aoo(x),fl(x) = xa1 (%) + agp(x), ... ,fm_l(x) = %" 1 1 (%) +

X201 2 (X) + -+ + Ap10(x), Where ag(x), s=0,1,...,m—-1,j=0,1,...,s, are Bohr
almost-periodic functions and a(x), s = 0,1,...,m — 1, are nonzero. The linear indepen-
dence ofﬁ(x), s=0,1,...,m—1,in (—00, +00) is seen from their open form.
Case I1. The characteristic polynomial has a unique multiple root wy, i.e. ¢(z) = (z—wo)™.
In this case, to find the particular solutions of equation (3) we will use the following

theorem.

Theorem 2 [f the characteristic polynomial has a unique multiple root w,, then for each
Sunction g(x,A) = e 3", g,(L)e"* such that g,()), n € N, are polynomials whose degree
does not exceed n(m —1) and the series Y ., |g.(\)| is majorized in any compact set S C C,

the equation

¥+ py (6, )y ) = glw, ) (11)
y=1

has a solution

n=1

h(x, 1) = 0% (1 £y hn(x)ew> (12)

in (—00,+00) for every A € C. Here the coefficients h,(1), n € N, are polynomials whose
degrees do not exceed n(m —1), and the series Y -, |h,(A)|«” is majorized in each compact
set SCC.
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Proof If we substitute the function (12) in (11), to find the coefficients sequence {4, (1)} as
in the proof of Theorem 1, we obtain a system of equations,

|:(ioz,, F M)+ Y pyy N ity + m)mr}hn(x) + 3 (@X)" Byn(3)

y=1 y=1

30> By + @2)" (1) = gu(h), nmeN,1eC

y=1 ar+ag=ay

or
(ian)mhn(k) + Z(wx)m_yﬁyn(k)
y=1
30 Bys(ior + o))"V (M) = gu(h), nmeN,xeC,
y=1 ar+as=ay
or
By () = Z’;lzl ()Lw)m_y};yn()\) + Z:/nzl ZaﬁaFan (it + w)\)m_ypys()\)hr()‘-)_gn ()
S (icty)™ '
neN,LeC. (13)

The coefficients /,(1) are found uniquely from equation (13). In fact, the degree of
21 0w)" 7 By (M)-g1 (1)
h (o)™

quently, for n = 2 the degree of the polynomial /,(X) does not exceed 2(m — 1) and, for

the polynomial /() = for n = 1 does not exceed m — 1. Subse-

each n, h,()) is found as a polynomial whose degree does not exceed n(m — 1). If for
the obtained coefficients 4,(A), n € N, h,, = sup, ¢ |1,(1)|, then convergence of the se-
ries Y % o, and so majorization of the series Y ' |k, (1) in the set S € C eas-
ily can be shown as in the proof of Theorem 1. Therefore, for each A € S the function
h(x, ) = e”*(1 + Yo7 hy(1)e®™) is the solution of equation (11) in (00, +00). The theo-
rem is proved. g

Corollary 3 Ifthe characteristic polynomial ¢(z) has a unique multiple root wy, then equa-
tion (3) has a solution f(x,)\) = e q(x, 1) in (=00, +00) for every ) € C. Here q(x, 1) =
1+ Y02 gu(A)e ™ is a Bohr almost-periodic function. The q,(1), n € N, are polynomi-

als whose degree does not exceed n(m — 1), the series Y > a”|q,(\)| is majorized in each

compact set S C C.f’(x, A), afé’;’k), e % are continuous functions in R x C with respect

to the ordered pair (x,)) and they are an entire function of A.

To prove Corollary 3, it is enough to take g(x,A) = 0 in Theorem 2 and to see m times
differentiability term by term of the series in the expression of the obtained solution f (%, A)

with respect to x. Here the obtained series are uniformly convergent in each bounded
3 (1) 3" (1)
ax 1 o

functions of the ordered pairs (x, A) and they are entire functions of X.

set of the ordered pairs (x, A), therefore functions f (x, 1), are continuous

Theorem 3 If ¢(z) = (z — wy)"™, then equation (3) has Floquet solutions in the interval
(=00, +00) as

]A”l(x,)») = Mgy (x, 1), fz(x,)») = e‘“’\"[qu(x,k) + qz(x,)»)], cee
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xml

7 _ wAx
Julen) =0 [on =

(1 (%, 1) + -+xqm_1(x,k)+qm(x,k)],

where the functions qi(x, A), q2(x, 1), ..., qm(x, A) are almost-periodic function:

o0
qs(x,A) =1+ qun(k)ef“"", s=1,2,...,m

n=1

forVx € C. Here qs4,(A), s=1,2,...,m, n € N, are polynomials whose degrees do not exceed
n(m —1) and the series Y ., o |qs,,( )| are majorized in each compact set S C C.

Proof When ¢(z) = (z—wp)™, equation (3) has a solution fl (x,A) = e*** ¢ (x, 1) according to
Corollary 3. In order to obtain other solutions which form a fundamental system of solu-
tions of equation (3) together with fl (%, 1), let us use the properties of the linear differential
operator L : C"(R) — C(R), which is defined as

L) = po@)y"™ + pr )y + pa@)y”" ) 4 - 4 pra @)y + p®)y, (14)
where p,(x) € C(R), j =0,1,...,m. Let us define the operators L®(y) = Zm k Ak Py (%) X
Y=k LK CMR) - CR), k=1,2,...,m. Here, AK =m(m -1)-...- (m -k +1), k =

1,2,...,m,and AY, = 1. For any system of functions y;(x), y2(%), ..., y(x) € C"™(R) it is not
difficult to show that the identities

L(xyy +2) = L(ys) + LY (1) + xL(y1),
2 2
L(’; Y+ xys + y3> = L(ys) + LO(p) + %L(z)(yl) +a[Ln) + LY ()] + %L(yl),

vey

xs—l xs—2 x
O e A TR

1
=L09) + LY0s0) + 510 (s2) + L5 V()

BTy
x| L(y. )+1L<1>(y Y+ o+ ! LD (y) | +
s—1 1 s—2 (S—Z)‘ 1

S—2 -1

x 2)'[ () + LY ()] +

——L(y), s=2,3,...,mVxeR,

-1)!
hold. Therefore, when the equations
Liy;) =0,
L) +LY() = 0,
1
L(ys) + L () + 5,12 (1) =0, (15)

cey

L V() =0

1
Ly, L - —L@ -
) + L7y 1)+2! m-2) + AP
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are satisfied, the functions

N xj—l xj—Z

-~ X .
y1=J1 yj=my1+myz+---+l—!y,_1+y,, j=2,3,...,m, (16)

are solutions of the equation L(y) = 0.

WAX

Let us show the existence of functions y; = e”"*¢q,(x, 1), s = 1,2,..., m, satisfying the sys-

tem of equations (15) for the operators L = L,, L% = L;k), k=1,2,...,m. If we set in these

WAX

equations L = L, and y; = ﬁ(x, A), the solution y, = e®**¢,(x, 1), which satisfies the equation

L) + L) =0,

exists according to Theorem 2 for g(x, 1) = —Lf\l)(yl). It is not difficult to verify that the
conditions of Theorem 2 are satisfied. In the same manner, when the functions y, =
e ps(x, 1), s = 1,2,...,k — 1, were found, the existence of the function y; = e”**q(x, )

which satisfies the equation

1 _
L(k 1)()/1)’ k=2,3,...,m,

1
L0 =L 0k = i1 0r) =+ = g

is obtained according to Theorem 2 by induction for g(x, 1) = —LE\D (Yk-1) — %L(f)(yk,z) -
R ﬁLik_l)(yl), Consequently, according to (15), (16) the functions

Filx,A) = ey (x, ), Folx, 1) = e [xqi(x, 1) + q2(x, 1) ],

vey

R m—1
(o, 1) = e [hm(x, A+ X1 (% A) + (%, A)]

are solutions of equation (3) in (—o00, +00) for A € C. The theorem is proved. (]

Note that the solutions of type ]A’S(x,)»), s=1,2,...,m, are obtained in [7] under the dif-
ferent conditions and in various form of the representation.

Corollary 4 When ¢(z) = (z — wy)", for each A € C, x € R Wronskian of functions
A A A fon 1) is found as

00 Pl10n Liopx
Zn:l g Vlelﬂtn

W (x, 1) = ™0 2n=1 Ty @ £ 17)

and hence for each ) € C, thefunctionsfl(x,A),fz(x,)»), . ,fm(x,k)form the fundamental
system of solutions of equation (3) in the interval (—00, +00).

3 The spectrum and resolvent of the operator L,
Here we investigate the structure of the spectrum of the operator L, and the resolvent

operator L;".

Theorem 4 The operator L, does not have eigenvalues, i.e. 0,(L,) = @.
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Proof Let us show that equation L,y = 0 has only a trivial solution which belongs to L,(R)
for VA € C. In the case of simple roots of characteristic polynomial for A # 0, A # Ay,
s,j=12,...,m,j#s, n € N, it follows from the properties of the solutions fi(x, 1), k =
1,2,...,m. Really, the solution y(x, 1) = c1fi (%, ) + cofa(%, A) + - -+ + Cfrn(, X) is in Ly(R) if
and onlyif ¢; = ¢y = - - - = ¢, = 0. If we take linearly independent solutions of (3) according
to A = 0 or A = Agj,, then a similar result is also valid. Hence 0,(L,) = @. The theorem is

proved. d
Theorem 5 The residual spectrum of the operator L;_ is an empty set, i.e. 0,(L;) = @.

Proof Since 0,(L,) = @ and for every A € C the operator L, is one to one, A € 0,(L;) if
and only if the range R(L,) is not dense in Ly(R). It means the equation L}(z) = 0 has a

nontrivial solution z(x, 1) € L,(R), in other words z(x, A) satisfies the conjugate equation
m
(=12 + 3" ()" [p, (6, 1)2] " = 0. (18)
y=1

Since (18) can be written as
m
2 4 Z py(x, AZ"m ) =0 (19)
y=1

which is in type of equation (3), equation (18) does not have a nontrivial solution which

belongs to Ly(R). Therefore z(x,1) = 0 and 0,(L}) = @, which means R(L,) = L»(R), or
oy(L;) = @. The theorem is proved. O

From Theorem 4 and Theorem 5 it follows that o (L;) = 0.(L;) and L;! is defined in a
dense set in Ly(R) for eachA € C.
In order to find L;'and the resolvent set p(L;), let us investigate the existence of the

solution y(x, 1) € Ly(R) of the equation

Y+ py (0, My = f(x) (20)

y=1

when f(x) € Ly(R).

Let us consider cases I and II separately.

In case I if we apply the Lagrange method by using the Floquet solutions f;(x, 1), s =
1,2,...,m, of equation (3) and linearly independent solutions (see [13], pp.208-210)

—l)erS W[fly 27 ';fs—l; s+lr e -’fm](x! A)

Zs(o, 1) = ( Wfifor oo fin) (1) ’

s=1,2,...,m,
of (18) for A € C\ Ay, then we find the solution of (20) as

y(x,A) = /+00 G(x, t, \)f (¢) dt,

(o¢]
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where the expression of G(x, £, ) can be written explicitly via f;(x, A), z;(x, 1), s = 1,2,...,m.
Using the properties of the functions f;(x, 1) we can show that

W[fi, 2,...,fs_1,fs+1,...,fm](x,k)

fl(xr )") e fs—l (x: )‘) fs+1(x: )") e fm(x7 )”)
fer) - fawr) fa@d) e fen)
=l fxr) e L) faa) e i A)
) e [P0 [P )
= e—(P11+ws)kx (A(S)(k) + AS)()\)eianx> )
n=1

where A® (1), Agf)(k) are complex valued functions of A for which the series Y .-, |A§f) 08]]
is convergent and

1 el 1 1 . 1
wiA e ws_1A W1 .- WA
C)™PAYG) = (D)™ (@A)? o (@ah)? (@) (@mh)?
(@A) - (@ad)" 2 (@ead)™? e (@A)
1 1 1 1
w1 o Ws-1 Ws11 e Wy
nesy =Dm=1) 2 2 2 2
= (D)™ 2 w; Wy Weyp o Wy,
"™ o ol i
(m=2)(m-1)
= )\, 2 Wms,

where W, s =1,2,...,m, are cofactors of elements of mth row of the Vandermonde de-
terminant W,,.
Thus we find that

e_(I’ll*“’S))‘x(A(s)(k) + Z;il A;S) ())ei@n*) epuxx+22°:1 ng_o;,eianx

m(m-1)

zs(x, ) = (=1)"™*

Az W,
e o (A ()) + T A () lon oo Plom ians
— (_1)m+s ( ( ),,,(m_%:HJ rl( ) )6‘2”:1 Tan € , S=1,2,...,Wl.
2 m

On the other hand, it can be seen that equation (18) which is equivalent to (19) is in the
type of equation (3) and, moreover, the characteristic polynomial corresponding to the

expression

m
Go)=2" + ijj (x, 1))
y=1

is in the form of ¢*(A) = (-1)"@(=A). Then, if w;,w,,...,w,, are roots of ¢(1), then
-1, —W3, ..., —wy, Will be roots of ¢*(1). According to Theorem 1, for all A € C\ A equa-
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tion (19) has solutions as

o0
s (D WCIC)
n=1

where

V(S)

jkn
VOM) =V + E E — | neN.
P lak—(a)s—a),)k
j#

Taking into consideration that for every point A # Ay, 5,7 =1,2,...,m, j # s, each func-
tion z,(x, 1) is a linear combination of the functions ¢;(x, ), g2(x,A), ..., ¢m(x, 1) and by
virtue of the behavior of the function z;(x, A) as x — £00, it is possible to show that for
some constants C;(A) the equality

Zs(x! )\') = CS()")QDS(xl }"); s= 1; 2; cee m

is satisfied.
This means that for every x € R the equality

e_ws)‘x(A(S)()\. Zn 1A (A)e’“”x) Zoo PlOn lonx
m(m-1)

A2 W,
= C(Mgs(x,2), s=1,2,...,m

(_1)m+s

holds and hence dividing this equality by e~*** we obtain

+ 220:1 A;S)()\)eianx) Zgol 1713();, i
m(m-1)

Win

o0
(*) (1 + V,E”(x)ef“"x), $=1,2,...,m
n=1

A®)
(_1)m+s (

According to the uniqueness theorem of analytic functions, this equality is satisfied for
the analytic continuations of the functions on the semi-plane Imx > 0 with respect to x,
which are on both sides of the given equality.

Thus, taking the limit as Imx — +00 we have

(rm=2)(m-1)
ADG) AW, W,

C) = ()" g —— = =~ $=L2,..,m.
ATz W, AW, AT W

Therefore, the equalities

Zs(,A) = ———@s(x,A), s=1,2,...,m

A= IW

are valid.
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Forallj=1,2,...,m, k=1,2,...,2m, and VA € S the value of Re(Aw;) has a constant
sign. Hence, there are My C {1,2,...,2m} and M} = {1,2,...,2m}\M; such that if j € M;,
VA € Si then Re(Awj) < 0,ifj € M}< then Re(Aw;) > 0. Thus, forany k =1,2,...,2m, Va e R,
and YA € Si\A, if [ € My then fi(x, 1) € Ly(a, +00), fi(x, 1) & Ly(—00,a), and if [ € M, then
filx, &) € Ly(~00,4a), fi(x,A) € La(a, +00). In the same manner, for Va € R, VA € S\ A and
I € My then ¢;(x,A) ¢ Ly(a, +00), ¢i(x, 1) € Ly(—00,a), if | € M} then ¢;(x, 1) ¢ Ly(—00,a),
@i(x, 1) € Ly(a, +00). Taking into account all these properties, for k = 1,2,...,2my, V1 €
Si\A, the kernel G(x, £, A) can be written as

1 ZleMk Wi, Vu(t,4), £ <x,

G, t,A) = ————
( ) AW, ZleM/ Wouifilxe, Vi, 1),  t>x.

(21)

From the expression of the functions f;(x,A) and ¢s(x, 1) and from (21) it follows that for
everyx,t € Rand A € Sp\A, k=1,2,...,2my,

|Glx, 2,0)| < C()e ™4, (22)

where C(A) >0, T = min{|Re(Aw;)|:s=1,2,...,m}. From (22) we have

+00 +00
/ ’G(x,t,k)|2dt<+oo and / |G(x,t,k)‘2dx<+oo.

o0 —00

Using (22) it can be proved by the standard method (see [11], pp.302-304) that the operator

+00
L'f(x) = / G(x, t, \)f (t) dt
—00
as L7 : Ly(R) — Ly(R) is bounded for A € S; U S, U+ -+ U Sy, (itis A € p(Ly)). In the case
L € UL, Ik the operator L;* is a closed operator defined on a dense proper subset R(L;) of
Ly(R) and so L;! is an unbounded operator which means A € o,(L;). On the other hand,
since the functions f;(x, A) and ¢;(¢, ) do not have the same poles the points A = Ay, may be
simple poles of G(x, £, A). If any A = A, belong to any set Sy then these points can be only
eigenvalues of the operator L, . Since L, does not have eigenvalue, there is no singularity of
operator L;" at these points. Therefore Asin € p(Ly) and G(x, t, 1) is regular at these points
too. So the lines Re(Aws) =0, s =1,2,...,m, consist of a continuous spectrum of L, i.e.
o.(L;) = km=1 lx. Then the resolvent set of operator L, is p(L;) = S U Sy U --- U Sypy. An
analytic continuation of the kernel G(x, £, A), with respect to A, may have some poles at the
points A € Ay, which belong to o.(L;). These poles are called spectral singularities (in the
sense of [11], p.306) of the operator L;.

Similarly, in case II the kernel G(x, £, ) can be written as

Y Rl D@t ), <,
0, t>=x

Glx, t,A) = :

for A € S~ oras

Glx, t,A) = 0, L<x,
’ S R @), t=x
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for A € §7, wherefk(x, A), k=1,2,...,m, are solutions of equation (3) and @x(x, 1) are solu-
tions of (11) according to Theorem 4. In order to have y(x, 1) = ff;o Gx, t, M)f (t) dt € L,(R),
for each A € C, Re(wo) # 0 and f(x) € Ly(R) we use

H(x,t A)
Fieloe, N@re(t,1) = ———————
kXI: [fl’ 2 fm
Here
H(x, t,A)
VACTS I YUY S IR (28
F&2) Hr) e f’ (t1)
TAGRRICT N I AIC ) BRI Al (WY
Awr) har) Mmm
ewMQI(tr)‘) wM[tql(t! )L) + qZ(tt}‘)] e e /ml (f,:,”/] Q;(t )“)
@M qt1) (Mg R + @) e (@MY (;T_,’)!q,u »)Y
(e qu(t, 1) (ew“[tqla,m F @B DD (M B (e 1)
wkqu(x’ )‘) ewkx[qu(x’ )") + 6]2(%”] e e ]ml (f,,_;).q;(x’)»)

When we make elementary operations on rows and columns of this determinant, we

can transform this determinant as follows:

H(x, t,\)

ql(tr)\') tQI(t: )\) + 42(74‘,)\) e ZWI i ] q[(t )")
qi(t,k) [t (&2 + @260 - (T m_j,q;(t 1)

= eM(m-1)t+a] .. . .
" D60) [a(60) + a6 D (D (e, 1)
751 (x) )") Xq1 (xx )") + q2(xr )‘) e Z;Zl (m_]-)!%(x, }")
q1 (tx )\) 612(!3 )") o qm(t }")
ALYS) g5t A) + q1(t, 1) q(t, /\) + qm-1(t, 1)

_ ewk[(m—l)ﬂx] e . e ,

"N @ s m-daEn) o Y CLa ,;”/ t,1)

q1(x, 1) (x=Dq1(x, A) + g2(x,A) -~ pay xmt),, qj(x, 1)

_oM(m=1)t+x] M

=¢ alx b))+ (x—t)ca(x, t,A) + -+ + ( o (X6 A) ). (23)

m—1)!

Here, c;(x,¢,1),i=1,2,...,m, are continuous and bounded functions of (x, ¢) in R? for each
constant A. According to equations (17), (23), for 7 = Re(wpA) and some constant C'(1) > 0,

we obtain the inequality

G, t,)| < C(We ™ 1+ |x—)"", VxteRVieC. (24)
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From (24) we have

+00 5 +00 )
/ |G(x,£,1)|"dt < +00  and / |G(x,£,1)|” dx < +00.
— —00

00

By considering inequality (24) it can be proved by the standard method (see [11], pp.302-
304) that the operator

+00

Lf(x) = / G(x, t, \f (t) dt

—00

as Ly : Ly(R) — Ly(R) is bounded for A € C, Re(Awp) # 0 (it is A € p(Ly)). If Re(hawo) = 0,
then, as in case I, the operator L;' is a closed operator defined on a dense proper subset
R(L;) of Ly(R) and so L;' is an unbounded operator, which means A € o,(L;). From the
expression of G(x, £, ) we see that G(x, ¢, 1) is a holomorphic function in S* and S~. Ana-
lytic continuation of the function G(x, £, 1) with respect to A out of sectors S* and S~ does
not have a singularity on the line Re(Awp) = 0. Therefore, the line Re(Awp) = 0 consists of
a continuous spectrum of L, , i.e. 0.(L;) = o and does not have a spectral singularity of this
operator. Then the resolvent set of the operator L, is p(L;) = S* U S™. Thus, the following

theorem is true.

Theorem 6 The operator L; has a pure continuous spectrum o (L;). If the characteristic
polynomial ¢(z) has simple roots ws, s =1,2,...,m, then it is made up of lines Re(Awy) = 0,
s=1,2,...,m. The countable set of simple spectral singularities may exist at the points A =
Asjin € 0c(Ly) and the spectral singularity degree, which does not exceed m — 1, may exist at
the point ) = 0. If the characteristic polynomial ¢(z) has a unique multiple root wy, then a
continuous spectrum consists of the line Re(Awo) = 0 and spectral singularities of L, do not
exist. For any A € p(L;) the resolvent L;" is an integral operator with a kernel of Karleman

type.
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