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Abstract

In this paper, we establish one general g-exponential operator identity by solving one
simple g-difference equation. Using this g-difference equation, we get some
generalizations of Andrews-Askey and Askey-Wilson integral. In addition, we also
discuss some properties of g-polynomials H,,.
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1 Introduction and notations
For decades, various families of g-polynomials and g-integral have been investigated
rather widely and extensively due mainly to their having been found to be potentially useful
in such wide variety of fields as theory of partitions, number theory, combinatorial analy-
sis, finite vector spaces, Lie theory, etc. (¢f. [L-27]). There are many techniques to achieve
the ends; for instance, analysis methods (cf. [3—6, 14, 16]), combinatorics method (c¢f. [17]),
and g-operator method (cf [7, 9-11, 19, 24]) and so on. In resent years, the authors [8, 20—
22] derived some formulas of g-polynomials and g-integral from studying the properties
of solutions about some g-difference equations. Inspired by their work, in this paper, we
will present one more generalized g-difference equation and give some applications of it.

We adopt the notations used by Gasper and Rahman [15]. Throughout the paper unless
otherwise stated we assume that 0 < |g| < 1. Let N denote the set of non-negative integer,
C denote the set of complex numbers.

For any complex number 4, the g-shifted factorial are defined as

n-1 e
@qo=1  (@@.=]]0-ad"), @P=[](0-aq"), neN, (1)
k=0 k=0

and we also adopt the following compact notation for the multiple g-shifted factorial:
(610,611,‘-~,ﬂm;6])n = (ﬂo;q)n(ﬂl;q)n"'(ﬂm;q)m m EN,VI =ooorneN. (2)

The basic hypergeometric series ;®; is given by

o0

[ZPRRReY /2 (ar, a2, ..., a5k k_(b)1i+ts_k

s X | = ——|(-1)"q"2 x, steN. (3)
! (blr-n’bt 1 ) g (qrblh--:bt;q)k [ 1 ]
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For any function f(x) of one variable, the g-derivative of f(x) with respect to x is defined
as (cf [7-11,18-22])

_ ) —flg)

X

Dyu{f (@)}

and we further defined Dgyx{f (%)} =f(x), and for n > 1, D} _{f(x)} = Dq,x{D;;Cl{f )}
The g-binomial coefficient is defined as

_ @@
n _ ) Goraanr’ for0 <k <mn, w
k 0, otherwise.

For ag,a1,...,a5,b1,...,bs, b, c € C, we define the following generalized g-operator:

F(ag,...,asb1,...,bg;¢cDyp) = 601D
(a0 1 b) = s+l ( by,.... b,

ag,d1y...,a
071 S;q,ch,b). (5)

Some special cases of the above g-operator had been studied by many researchers. For
instance, the authors [9, 19-21, 24] made a systematic study on F(0;—;cD,;). Some ap-
plications of F(ao; —; cDg) were given in [10, 11, 22]. Some properties and applications of
F(ag,a1;b1;¢D,p) were discussed in [8, 11]. In this paper, we present the following more

generalized g-difference equation for the above g-operator.

Theorem 1.1 Let f(ao,...,as,b1,...,b5,b,c) be a 2s + 3-variable analytic function in
a neighborhood of (ay,...,asb,..., by, b,c) = (0,0,...,0) € C¥*3, s € N, satisfying the

q-difference equation

s+l

s+1 1 VB' ’ ) )
bZ( q/y, “f(a0,.... b1, b byeq) — ¢ Y (~1VAj[f (ao,.... by,..., be b,
j=0 j=0
—f(azo,...,azs,bl,...,bs,bq,cqj)] =0, (6)

where

by = q, By=40=1, B, = Zsjbb B, = Z b;b;,
-0

0<i<j<s
s
B3 = E bbby, ..., By = bob - - - by, A= E a; (7)
0<i<j<k<s i=0
Ay = E a;aj, Ajz = E aAiAjg; .. ., Ag =apa -+ - ds.
0<i<j<s 0<i<j<k<s

Then we have

flag,...,asb1,...,bs,b,c)

= F(“Or ceer sy bl; ey bs; CDq,h)f(ﬂo, ceerlsy bl; ooy bs; b) 0)' (8)
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Corollary 1.2 ([8], Eq. (1.12)) Let f(ao,a1,b1,b,c) be a 5-variable analytic function in a
neighborhood of (ay, a1, b1, b,¢c) = (0,0,0,0,0) € C°, satisfying the q-difference equation
b[f(ﬂo, a, bl) b: C) - (1 + q_lbl)f(QO) ai, bly br Cl]) + q_lblf(ao; ai, blr bx qu)]
- C[(f(“o: ai, bl; b; C) _f(aO) a, bl: bq’ C)) - (ﬂ() + ﬂl)(f(ﬂo, ai, bl: br Cq)
—f(ao,a1,b1,bq, cq)) — aoan (f (a0, ar, b1, b, cq”) — f (a0, a1, b1, bg, cq*)) ] =0, (9)

then
f(aO, ay, bl; br C) = F(ﬂo, ay; bl; CDq,b)_f(aO, ay, bl; br 0)~ (10)

Remark 1.3 Letting a; = b; =0, i = 2,3,...,s, Eq. (6) reduces to (9). Setting a; = b; = 0,
i=0,1,...,s, then replacing b, c by a, b respectively, Eq. (6) reduces to [20], Theorem 1.
Putting a; = b; =0, i = 1,2,...,s, then replacing ao, b, ¢ by a, ¢, b, respectively, Eq. (6)
reduces to [22], Proposition 1.2.

Proof of Theorem 1.1 From the theory of several complex variables in [28] (or [25], p.28,
Hartog’s theorem), we assume that

fl@o,....,auby,....byb,c) = Yy Wilao,...,as by,..., by, b)c" (11)

n=0

and then substitute the above equation into (6) yielding

s+1 (—l)jB‘ 00
>3 7 2> Wilao.... a5 by, by b)'q"
j=0 n=0

s+l o]
- CZ(_DI'A,[Z W,(ao,...,as by,..., by, b)c"q"
j=0

n=0

o0
_ Z W,,(ao,,..,as,bl,...,bs,bq)c”f’j|. (12)
n=0

Equating the coefficients of ¢, we have

s+1
b> (-1YBqd" P W,(ao,...,as,by,..., by, )
j=0
s+1
=Y (Vg VAW, (@, ... a5, by, .., by, b)
j=0

— Wn_l(ﬂo,...,ﬂs,bl,...,bs,bq)]. (13)
For each n > 1, we get

Wn(aO)'~1as;b1;-~-xbsxb)

(Q-aog" N1 -ag"") -1 -aq")

= W b L i) (= gty D Voo B BB (1)
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By iteration, we find that

Wn(aO:'~~ra51b11---ybs’b)

_ @0 9n(@39)n - (a5 @
(q; q)n(bl;q)n Tt (bs;q)n

Putting ¢ = 0 in (11), we get Wy(ao,...,ds, b1,...,bs,b) = f(ao,...,as, b1, ..., bs, b,0). Substi-
tuting (15) into (11), we get (8). This completes the proof. a

D {Wolao, ..., a5, by, ..., by, b)}. (15)

Theorem 1.4 Ifay=q % GeN, bw,u,v,a;,b; € C,i=1,2,...,s, then

(bW;('I)oo
F(ay,...,asby,...,bscD, —_—
(a0, ...,as by c q'b){(bu,bv;q)oo
() — (ao,a1,...,as;q)n<6)” q ", bu, by
= — 0] q, . 16
(bu:b‘/;q)oo ; (%blw-,bsﬂ)n b a2 0,bw 4 ( )

Proof We use f(ay,...,as,b1,...,bs, b, c) to denote the right side of (16). We have

W, - (a0, a1,...,a5q)n 17)

(g, b1,....,b5;9)n

and A;, B; (i=0,1,...,s) are defined as (7), we have

1YB; ,
bz( q)]’ "f(aoy....bis..., by b,cq)
j=0

W Do (c)” . |:ni|
_p B gy (€)T5n
(b1, v; @)oo =7 b) = |k
(bu, bv; q)k
(bW;q)k

_ b(bwg; q)e > c " o n-1| , |n-1
_(buq,bvq;q)oo;W"<b) /@Zo(|: k i|q +|:k—1:|>

(bug, bva; D1 v (5 ek a 1
X —————— (-1 )T — bog" ) -+ (1 = byq”
Gvgs (1=bog"™) - (1= bua™)

_ C(bWQ? Q)oo i Wn_l<£)n—l Z

(buq, bvg; @)oo “= Py

X (1-aog"™) - (1-ag™) - _dbwgis 3 %1( )Hi[n—l}
b) =lk-1

(bug, bvg; q)co “=

(_l)kq(§)+k—nk[1 _qun—l P (_1)S+IBS+1q(S+1)(n—1)]

n=1] Gug, bvgi @i e )k
k (bW% q)k 1

buth PVi i (s 4y ko

(bwq; q)x (L-aoq"") - (L-aq""). (18)

Replacing n — 1 by n, then applying (4), we find that the above equation is equal to

c(bw; @)oo " | bubvign, (&) +konk § )
bu bv;q) z:: ( ) ;[k} W(—l)q (l—aoq)...(l—asq)

c(bwg; @)oo~ (c)"”” n
I Mt i w, | —
(buq,bvq;q)oo; bq 2 k

k=0
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DU, DU D o Gk (1 o . (1 - ayq)

(bwq; q)x
c(bw; @)oo ~— (c)" “n
- T dloe w,( =
(bu,bv;q)oo; b kX:O: k
(bu, bv; q)«

(bw; q)x (_1)kq(§)+’<—"k(1 —dog") (1= a’)

(bW @)oo~ c\'" | n
ZW"(EI) %M

~ (bug, bvg; @)

(b, OVE Dy o 5k

(bwas ) (-ao)-(1-a)

s+1

= cZ(—l)’A,[f(ao,...,bl,...,bs,b,cqj) —f(ao,...,as, bl,...,bs,bq,cqj)]. 19)
j=0

So f(aog,...,as by,...,bs, b, c) satisfies (6), applying (8), we complete the proof. O

Letting e — 0, b — bu, ¢ — bv, d — bw in Eq. (1IL.12) ([15], p.360), we have

1\" q",bu,bv q ", wlu, by
— (o} H78 =V"3® sq, uq” . 20
(b)32( O,bwqq) V“( bwquq/v> (20)

Combining the above identity and (16), we find the following generalized formula of [11],
Lemma 2.3 (or [8], Eq. (3.4)).

Corollary 1.5 Ifag=q ¢, GeN, bw,u,v,a,b;€C,i=1,2,...,s, then

(bW;q)oo
F(ay,...,asby,...,bscD, —_—
(a0 ds; b1 C q'b){(bu,bv;q)oo
bW @)oo <= (a0, a1, .-, a5 Q) q ", wlu,bv
= LN squg’lv). 21
(b, bv; @)oo 5= (@, b1, bs; @) () b THTY 21

Letting w = 0 in (16), we find the following.

Corollary 1.6 Ifao=q% GeN,b,c,u,v,a;,b;€C,i=1,2,...,s, then

1
F(ﬂm---’ﬂs;blxuwbs;CDq,b){m}

~ 1 i(ao,m,...,as;q)n(c)nq) q",bu,bv. 22)
" b = @by b \b) P 0,007

Letting w = v = 0 in (16), we find the following.

Corollary 1.7 If max{|bul|, |cu|} <1, u,a;,b; € C,i=1,2,...,s, then

1 1 (@g,an,...,a5q),
F(a ,...,as;b,...,bs;cD,){ }: (cr)®. (23)
’ ' P b0 |~ (b1550)c0 ZO (@ b1y s b @)
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Letting v = 0 in (16), then applying g-Chu-Vandermonde summation ([15], p.354,
Eq. (IL6))

2<I>1<q_ ’“,q,q) (li @) . (24)

(¢ q)n
and we obtain the following.
Corollary 1.8 If max{|bu|, |bw|,|cu|} <1, u,v,a;,b; € C,i=1,2,...,s, then

bw; q) o
F(“O"'"as;bl)"')bs;Cqub){M}

o0
(hw, )oo Z (ag,an,...,aswlu;q),

cu)”. 25
(buq (q,bl,...,bs,bw;q)n( ) (25)

n=0

Remark 1.9 It were difficult to distinguish analysis of the functions of the right side of (16)
(or (21), (22)) if we would remove the condition a¢ = g~¢. But in (23) and (25), we do not
need the condition ag = g~¢. Under max{|bu|, |bv|, |bw|, |cu|} < 1, it is easy to verify that the
right sides of (23) and (25) are analytic functions in a neighborhood of (0,0, ...,0) € C**3,
In this paper, the symbols W), and U, are frequently used. Here W, is defined as (17), and
U, isequal to (ho, M, ..., he; Q) ul (@ &1, - > 865 D

The paper is organized in the following manner. In the next two sections we give some
generalizations of Andrews-Askey and Askey-Wilson integrals by the g-difference equa-
tion. In Section 4, we discuss some properties of g-polynomials H,,. Several special cases

and examples of our results are also pointed out, in the concluding section.

2 Generalizations of Andrews-Askey integrals
We have

4 (qxlc,qxld; @)oo doxe d(1 - q)(q,dqlc,cld,abcd; q) o
- (ac,ad, be, bd; q) oo

’ 26
¢ l(ax,bx;q)0 (26)

provided that there are no zero factors in the denominator of the integral, which could be
directly derived from Andrews-Askey integrals ([3], Eq. (2.1) or [5], Eq. (1.15)) after some
simple replacing. In [8] (or [21, 26, 27]), some generalizations and applications of (26) are
given. In this paper we give the following generalizations of the above identity.

Theorem 2.1 Ifao=q N, a;,b;€C,i=1,2,...,5, N €N, then

(gx/c, qxld; q) o ( ) q ", ax,abcd
iqq ) d
/C (ax,bx; Q)00 Z 0,ac ) Fa¥

n=0

_ d(1-q)(q,dqlc,c/d,abed; q) o Z W, (de)". (27)

(ac,ad, be, bd; q)

Applying (20), we rewrite (27) as follows.
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Corollary 2.2 Ifag=q™N,a;,b;€C,i=1,2,...,5, N €N, then

et vy oy, (TP g e
c (ax,bx, )OO n=0
_ d(-9)(g,da/c,c/d, abed; 9)s <~ Z W, (de)". (28)

(ac,ad, be, bd; q)

Ifa;=b;=0,i=2,3,...,s, then letting e = g/bcd, the left-hand side of (28) is equal to

d
(qx/c, qxld; @)oo ~ Z (a0, a1; @n ", clx,abcd
Vl 39 b d
/c‘ (ax, bx; @)oo (q’bl»q)n * ac 034" be

[ (qwlc,qxld; ) Z (@0, ar, c/x, abed; @)k
¢ (ax,bx;q)oo (g, ac, bi; @)k

qx (aoq", a1d"; 9)nq"
- - - - i s 2
() S @)

For ag = gV, the inner summation is equal to

(br/ar; @)n-r(arg“ )N ~ (C1)q &) N (bi; Qkbi*  (brlar; q)n

(1955 q)n-k Y (qaoar/bi; @)k (bi;q)n

Substituting the above identity into (29), we have the following.

Corollary 2.3 ([8], Theorem 14) Ifay=q N, a;,b1 € C, N €N, then

/d (gx/c,qxld; q) oo ® ag,ay, clx, abed
c (ax, bx; Q)oo ac, qapay /b,

4, xql bcd) dx

_ d(1-q)(q,dqlc,cld,abed; q)oo(br; @)n o (ao,al’ ,q/bc) 31)

(ac,ad, be, bd; q) o (b1/ar; @nal by

Remark 2.4 For ay = g™, we find that

by (gai/by,qao/bi; @)

= . 32
(bilay;q)nal  (gaoai/by, qlbi; @)oo (32)

So we see that the identity (31) is the same as Theorem 14 in [8] after replacing (ao, a1, b1)

by (r, w,v), respectively.
Proof of Theorem 2.1 We rewrite (27) as follows:
d ( . . o n -n
qxlc,qxld; q)oe (G q)oo ( e ) q",ax,abcd
Wil -] 3® sq,q | d,
_/C (bx59) o (ax, abcd; q) oo HX:(; a) 22 0,ac G R

dl-q)gdqlc.cdip)ss 1
= W, (de)". 33
(be, bd; q)o (ad; q)oo ; () 3
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If we use f; =fi(ao,...,as b1,...,bs,a,e) we have

(ac; q)Oo e q",ax,abcd
Wl — 5 q, .
(ax,abcd 9o ; (a) ( 0,ac 4

In the same way as proving (16), we can verify f; satisfies (6), so we have

_fL :F(a())"'}as;bl!"'ibSIqu,a){ﬁ(aO)"'1a57b17--'7b57u10)}

(ac; @)oo }

=F(aOr"'!as;bl""’bs’qu,a){W .
’ 14 )oo

We use fz = fr(ao, ...,as,b1,..., bs,a,e) and we have

1 o0
W,(de)".
(ad; @) ;
It is easy to prove f satisfies (6), so we find that

= P S) e ) 'y 1) ’ e ) ’
fR F(“O a .bl bs qua){,ﬁ%(aO ag bl bs a 0)}

1
= F(ag,...,asb1,...,bg,eD, ) ———— t.
(ag,...,as b eD,, ){(ad;q)oo}

Combining the above identity and (26), we complete the proof of (27).

Theorem 2.5 Ifay,a;,b; € C,max{|ax|, |ex|, |ac|, |abcd|, |ad|,|de|} <1,i=1,2,...

then

d ( . & .
gxlc,qxld; q) oo (ag,ay,...,asclx;q),
/ >

"d
(ax, bx; q)oo (g,b1,...,bg,ac9), (ex)” dgx

d(l q)(q,dqlc,cld,abcd,; q)ooz ag,ay,...,ds bc;q),

d n
(ac,ad, be, bd; q) oo (g, by, ..., b, abed; q), (de)”

Proof We rewrite (38) as follows:

/ 4 (qxle, qxld; @)oo (A Qoo o= (@0, a1, - ., s, 1% )
(4

(ex)" d x
bx @) (a%9)0 = (g,b1,- -, by aciq)s !

_ d(l _q)(q! dq/cr C/d;CI)oo (ade; q)oo = (a07dly oy g, bC; )

d n
(be, bd; q)oo (ad; @)oo 2= (9,1, ..., by, abed; q)n( i

(34)

(36)

(37)

O

,5, N eN,

(38)

(39)

Setting f; = fi(ag,a1,...,4as,by,...,bs,a,e) and fr = frag,ay,...,as, b1, ..., bs,a,e) denoting

the left-hand and the right-hand side of (39), respectively, and taking v = 0 in proving of

Theorem 1.4, we can verify both f; and fz satisfy (6). Letting F = F(aq, a1, ...
eD, ), from (25), we get

fr =F{fL(ao,zzl,...,as,bl,...,bs,a,O)}

4 (qxlc,qxld; @)oo (ac; @)oo }
=F d
{/c bx; ) (ax;q)oo *

)as;bl,-wrb&

Page 8 of 19
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_F d(1-q)(q,dqlc,cld; @) (abed; ) oo
- (be, bd; q)o (ad; q)oc

= F{_fR(d(),ﬂl,...,ﬂs,bl,...,bs,ﬂ,O)} :ﬁ?'
This completes the proof.

Theorem 2.6 Ifag = g N, a;,b;eC,i=12,...,s,5N eN, then

/d(qx/c,qx/d;q)oo o [0 as N
L @nbsge U\ by b, T %

dQl - dqlc,cld,abcd, ad e\” " ac,ad
_dd-9)(g.dq Q)oozw/n(;> 3sz(q a ,q).
n=0

(ac,ad, be, bd; q) 0,abcd

Proof Letting

1 ag,di,...,a
ﬁ:ﬁ,(aOIu';ﬂsrhlwnxbs:a;e): 75-4—1(1)5 s;q,ex
(a%; 9 bi,...,bs

and

fR =fR(ﬂo; o bl; .. -;bs;ﬂr e)
(abcd, q)DO " ac,ad
= Z ( ) 2 q ’ q;
(ac,ad; 9o e 0,abcd
we can easily verify both of the above identities satisfy (6), so we have

fL :F(“Owu;ﬂs;blx~n;bS)qu,u){,fL(a01-u,ﬂs;blwurbsra,o)}

1
:F(do,...,ﬂs;bl,...,bs,quﬂ){W}
’ o0

and

= 1o 'Sy PR ’ i 1o 7 ree ’ )
fR F(ﬂO a 'bl bs qua){,ﬂ?(“O as bl bs a 0)}

(abcd; ) o }

=F(ﬂ07---rﬂs;blwurbsrqu,a){W .

Combining (26), we complete the proof of (41).
Interchanging a and b in (41), we get

4 (qxlc, qxld; @)oo ao, a1, ..., ds ex ) dox
¢ (ax,bx;q)so SHTS bl,...,bs’q’ 1

d(l 9)(q,dqlc,cld, abed; ) s ~— ", bc,bd
Z 1 39,9 | -

(ac,ad, be, bd; q) oo 0,abcd

(40)

(41)

(42)

(43)

(44)

(45)

(46)

Combing the above identity and (41), then replacing (bc, bd, abed) by (b, ¢, d), respectively,

we recover the special case for e = 0 in Eq. (IIL.11) ([15], p.360).

Page 9 of 19
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Corollary 2.7 ([15], p.360, Eq. (IIL.11)) We have

q".b,c bc>" q",dlb,d/c
P 9> =\ — P
} 2( o,d”) <d } 2( 0,d

;q,q)-

(47)

Theorem 2.8 Ifag=q N, hy=qC a,b,h;,g€C,i=12,...,sj=12,...,tstGNEeN,

then

4 (qxlc, qxld; ) oo ao,dy, . . ., ds ho,
- 7 N s+l ®S ;q} ex t+1¢t

(ax, bx; q)oo b,...,bs

B d(1-q)(q,dqlc,cld,abcd; q)
N (ac,ad, be, bd; q)

ook
t;q,fx) dgx
t

gl;'u,g

oo o0 n I n | — : - ey
Sy ywai() (5) G s

(¢, abed; q)x (g, abedq®; q);

n=0 =0 k=0 j=0

Proof Letting

1
fL :fL(hO: ceey ht:gb e 8ty brf) = 7,%1(1)5

and

fR =fR(h0) oo )ht)gly oo )gt; b!f)

b

_ (abedgh; @)oo o (hoy T, his @)1 (f)’ %(q”,bc,bd'

- (bebdig)o = (@885

ho,hi,...,h
0,11 t;q,fx>
t

gl)'u,g

0,abcdq

k1q1q

we can easily verify both of the above identities satisfy (6), so we have

_fL = F(h07 .. ~1ht;gl; .. ')gt;,ﬂ)q,b){,fl/(hoy .. orht)gly .

1
- F(ho,...,ht;gl,..‘,gnfDq,b){ m}

and

fR = F(hO»« . ~1ht;glx . ';gt:fDq,b){_fR(hO’ .o -yhtyglw

(abedq®; q)o }

=F(ho,...,hs; ¢1,...,8,
(ho 581 gthq,b){ (be, b g

From (41), we conclude that

d (gx/c,qxld; q) oo ag, A1s. . ., dg
7~ s+l S
¢ (ax,bx;q)

..,gt,b,O)}

nxgtyb, 0)}

3G, a
by,...,b, qex) a*

)

a

_ d(l-q)(q,dqlc,cld; ) i - W (f) (7", ac,ad; q)rq" (abcdq’; q)oo
- " (be,bd; q) o

(ac,ad; q)c parden

By (51) and (52), we complete the proof.

(q,abed; @)k

(48)

(49)

(51)
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Interchanging 4 and b in (48), similar to (47), we find the following.
Corollary 2.9 We have

" ac,ad,; =L be, bd
an bquq 3Dy q k;q,q
= (q.abcd; )i 0,abcdq

(qg7", bc, bd; q)kq q”, ac,ad
=p! _— 3 q, . 54
kZ; (g, abcd; ) 32 0, abcdq’ 4 (54)

Setting a =d = q, b = ¢ = —q in (54), then letting ¢ — 1, we have the following.

Corollary 2.10 Ifn—1[=1(mod?2), then

3.2 2 +1) D -0
g;()(;)(kw)(ms) a0 5

where (a)o =1, (a)j=ala+1)---(a+j-1).

3 Generalizations of Askey-Wilson integral
In [12], we had derived a new of g-contour integral formula from the following elegant
Askey-Wilson integral formula (cf. [6], Theorem 2.1):

1 (257290 dz 2(abed; q) 0o
2ri Jc (az,alz,bz,blz,cz,clz,dz, dz;q) s 2z - (q,ab,ac,ad,bc,bd,cd;q)m’

(56)

where the contour C is a deformation of unit circle so that the poles of 1/(az, bz, cz, dz; q) oo
lie outside the contour and the origin and poles of 1/(a/z, b/z,c/z,d/z; )~ lie inside the
contour. In this section, we get the following generalizations of the above equation.

Theorem 3.1 Ifag=q ™, a;,b;€C,i=1,2,...,5, N €N, then

1 (275 q)x
27i Jc (az,alz, bz, blz, cz,clz,dz, d]z; q) o

> e\” q " azalz dz
Wn - O 39, -
X V?:O (a) 3 2( 0, ac q q) 2
2(abcd; q) oo > e\” " ab,ad
= W.l — (O] i q, . 57
(q,ab,ac,ad, be, bd, cd; q) 0o ; al *7? 0,abcd 4 67

Proof We rewrite (57) as follows:

L (ZZ, 2_2; q)oo (ac; q)oo
2ri Jo (bz,blz, cz,¢lz,dz,dlz; ) (az, 417 q) o

8 iw/ (e)” ® <q‘”,az,a/z ) dz
n\ — 32 9 ) —
par a 0,ac z

2 (abed; @)oo ~— " " ab,ad
W, q, 58
= (@ bo bd, cd; ) (ab, adi @) 2 ( > ( 0,abed q) (58)

n=0
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We use f1 = fi(ao,..., a5 b1,...,bs,a,€) and fr = fr(ao,...,as,b1,...,bs, a,e) to denote the
left-hand and the right-hand side of (58), respectively. By the same method as in Theo-
rem 1.4, we can verify they both satisfy (6). Letting F = F(ay,...,asb1,...,bs;eDy ), we

have
2 (abcd; ) o
=F yeeerlsy Ulyeee, U, Ay =F
Ju= Flfelaon.oss b2 b, 0)) {(q,bc,bd,cd;q)oo (db,ad;q)oo}
2 2. .
_ L (#5275 @) pl (@69~ |dz (59)
2ri Jo (bz,blz,cz,¢clz,dz,d]zq) e | (az,al%q) o

Applying (16), the above identity is equal to the left side of (58). This completes the proof.
O

Employing the above theorem, using g-operator F = F(ho,...,h;81,...,8:fDgp), similar

to the above proof, we conclude the following.

Theorem 3.2 Ifay=q N, hy=qC, ai,bi,hj,geC,i=1,...,s,j=1,...,t, GN € N, then

1 (%775 q) = e\” q " azalz
- Wl - [} H/B
2mi /c (az,alz,bz,blz,cz,clz,dz,d|z; q) o ; "(a) 32 0,ac 71

0

> f)" (q"", bz,blz dz
X Zum(_ 3P, 349 | —
— b 0, bc z

2(abed; q) o N o e e e\"(f\"
(q,ab ac,ad, be, bd, cd; q) 0o ZZ;XO: W,,L[m<;> <E>

0 m

(q7",ab,ad;q)i (77", abq",ad; q); .,

(60)
(g, abed;q)x (g, abedg; q)
4 Some properties of g-polynomials H,
For ag,ai,...,asb1,...,b5,b,c € C, s € N, we define
" n (ﬂ();flly ,ﬂsﬂ)k k -k
H, = H,(ag,a1,...,asb1,...,bs; b, c) = — b
n (a0, ay ds; D1 53 b, c) ZO: |:k] (b, .. s’Q)k
q_n;ﬂO’alyﬂb o Qg
= bns+ CDS 59 /b 61
2 ( buba.ob, P ) o0

We can get some famous polynomials from H,, e.g., lettingb=1,a;=b;=0,i=1,2,...,s,
the polynomials H,, reduce to the classical Al-Salam-Carlitz polynomials (cf. [1], Eq. (1.11)),

L(c) = d((c,q) = ) [Z } (a0 ic". (62)

k=0

Setting b =1, ¢ = g/aoq" in (61), then letting ag — oo, we have

. Y q",a1,ay,...,4s
lim H,(ag,a1,...,as5by,...,bs1,q/a0q") = 511 ®s aq ) - (63)
ag—> o0 blrbZ"H:bS
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Taking a, = abcdq"™, a, = ae”, a3 =ae™, by = ab, by =ac, by =ad, a; =b; =0,i=4,...,s

in (63), we have the Askey-Wilson polynomials ([6], Eq. (1.15))

a"pu(x;a,b,c,d|q) q",abcdq",ae’ , ae™"
— 0 =4® g 64
(ab,ac,ad;q), - ab,ac,ad’ i (64)

Putting a; = abq"", ay =g, a3 =cqg* N, by =aq, by =q N, by =bcq,a; =b;=0,i=4,...,s
in (63), we get the q-Racah polynomials ([15], Eq. (7.2.17)),

,ﬂb n+1 —-N
W, (x5, b, NIq) = 103 T _qu 0. (65)
aq,q ,bcq

In this section, we will give some properties of g-polynomials H, by g-difference equa-
tion. We now show the H,, satisfies the following g-difference equation.

Theorem 4.1 Ifay,a,...,a5by,...,b,b,c€ C,s €N, then

s+1 ( I)JB s+1
> "Hy(a0,.... by, ... by beq) = ¢ > (1Y A [H, (a0, ... by, .., by, by cd)
j=0 j=0
—Hn(ao,...,as,bl,...,bs,bq,cf)] =0, (66)

where Aj, B; are defined as (7).
Proof Letting W, defined as (17), and denoting W, = W}/(¢; q),, we have

s+1 l)lBl

bZ

ao,...,bl,...,bs,b,cqi)

b -k k ;
_ bZ (4 @)n Wk[l By (_1)s+lBS+lq(s+l)(k—1)]

k=0 (q’ q)}’l*k
n bn—(k—l)ck—l(q; q)n_1(1 _ qn) . »
- Wi (1 - N (1= agh
Ckzz(:’ (¢ D 1(1-aog ™) - (1-aq™)
et [“ : 1] pENEW L (1= aog") - (1= 2. (67)
k-1

Replacing k — 1 by k, we find that the above equation is equal to
" n-1
1-¢" bW (1 - aod") - (1 - asq"). 68
=) 3|7 |- ) -0 )

On the other hand

s+1

CZ 1)’A ao, . 1,...,bs,b,cq/)—Hn(ao,...,as,bl,..,,bs,bq,cqj)]

—cZ|: :|b"k1 7" W (1 - aog") - (1 - aq")
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=c -1 + -1 q* b"_kcszé(l—ﬂoqk)"'(l_asqk)
k=0 k-1

k
. ( n/;li|qk+ |:Z_1:|> (bg)" —k kW,ﬁ(l—aoqk)---(l—asqk)

k=0

n

—c(l-q") Y [" . 1] bW (1- aogt) - - (1 - augb). (69)

This completes the proof. O
For H, satisfies (6), applying (8), we find the following.
Corollary 4.2 IfH,(ag,a1,...,asb1,...,bs; b, ¢) is defined as (61), then

H,(ag,a1,...,a5b1,...,bsb,c) = Flag,ay,...,asb,.. .,bs;ch,b){b”}. (70)

Combining the above equation and (23), we obtain the following generating functions
for H,,.

Theorem 4.3 If max{|bul|,|cu|} <1, then

oo un 1 oo ;
;H" G Dn (bi6:9)s ; Walew' 7

Settingb=1,a;=b;=0,i=1,2,...,s in (71), we conclude the following.

Corollary 4.4 ([1], Eq. (1.13)) Ifmax{|u|, |cul|} <1, then

Z (Dgla)(c) u _ (aocu; q)oo ' (72)
n=0 (q’

Dn (Wctt;q)o0

Theorem 4.5 Ifag =g, hy = q %, G,N € N, max({|bev|, |cev|, |bfv|} <1, then

Vl

ZHn(ﬂO:aly ceerls; bl; .. ';bs; by C)Hn(hO’ hly .. oyht;gly Jgtref)

n=0 ( q)n

oo o0 m m " (q,bel/,q) y

n=0 m=0 k=0

To prove the above theorem, we need the following lemma.

Lemma 4.6 Ifa = q’N, vwu,a;,b;€C,i=1,2,...,8,5,N €N, then

b n
F(ﬂo,ﬂl,...,ﬂs;bl,...,bs;CDq,b){ ( V) }

(bu; q)oo

(BY)" v o (@ b1 @)k
- B ZZ[ } [ } W) = £, (74)

m=0 k=0
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Proof Letting f(ag,ay,...,asb1,...,bsb,c) denoting the right-hand side of (74), similar
to the proof of Theorem 1.4, we see that the functions f(ag,a1,...,ds; b1, ..., bs b, c) sat-
isfies (6). Applying (8), we complete the proof. d

Proof of Theorem 4.5 The left-hand side of (73) is equal to

Vl

ZF(ﬂOral,nuﬂs;bh~~nbs;CDq,b){bn}Hn(ao:ﬂlr~»-,ﬂs;b1; bsref)( )
n=0 DY9)n

o0
)n
:F(ao,al,...,as;bl,...,bs;ch,b){ZHn(ao,al,...,as;bl, bs,ef)

pry (@ Dn
:F(“Oralrn';ds;blrnwbS;CDq,b){(b oo ZW(bfV)n} (75)
Using Lemma 4.6, we complete the proof. g

Theorem 4.7 Ifag=q™N, a;,b;€C,i=1,2,...,s,5N €N, max{|bul, |bw|, |bv|} < 1, then

- Wy wk (-1)kq®)
ZHme-k(,)(.)(.)
m,n,k=0 LD m\G q)n\G> q)k

Wi (C)n q bu,bv
=—"— Wal =) 3@ 76
Gwima 2="\5) 22 o 76

Proof The left-hand side of (76) is equal to

o m n k(_1\k (12()
F(do,ﬂbm,ﬂs;bhm,bs;CDq,b)i Z (bu)™(bv)"(bw)*(-1)"q }

oo GDn(@ DG i
(bW;q)oo
=F(ag,a1,...,dsb1,...,bs;cD, — . 77
(ag,a,... a5 b c q,b){ Dby g)m (77)
By Theorem 1.4, the proof is complete. d

Letting w = 0 in (76), we have the following.

Corollary 4.8 Ifag=q™N,a;,b;€C,i=1,2,...,s,5,N € N, max{|bul|, |bv|} < 1, then

ind um " 1 nd c\” q", bu,bv
Hm+n = Wn 7 d Y . (78)
Z (@D T q)n  (bu,bv;q)so Z (b) ’ 2( 0,071 )

m,n=0 n=0

Setting v = 0 in (76), then applying (24), we find the following.

Corollary 4.9 If max{|bul|, |bw|,|cu|} <1, then

oo m _1)k (k) .
3 Ho wi(=1)% ¢ (bw;g)o Z(ﬂo,al, oy as, W q),

cu)”. (79
ot @GDn(@x — (busq) (@ b1, ..., by, bw; q)n ( :
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5 Some special cases

In this section, we briefly consider some consequences and special cases of the results
derived in Section 2. If we take e = g/d, a; = b; =0, i =2,3,...,s in (27), applying (24), we
obtain the following.

Proposition 5.1 Ifag = qN,a,b €C,N €N, then

4 (gxlc,qxld; @)oo N (g™, a1;9), " 7 ax,abcd
4/, ax/di) §~ (4 arig (1)3%61 arq) do
c (ax,bx;q)oo =0 (q’bl;q)n ad 0,ac

_d(1-q)(g,dqlc,cld, abcd; Qoo (br/ar; @) nar™

80
(ac,ad, be, bd; q)oo(b1; 9)N &

If we take e = by/agc, a1 =ac,a; =b; =0,i=2,3,...,sin (38), applying the g-Gauss sum-
mation ([15], p.354, Eq. (I1.8))

Y d’b;q,c/ab :(C/ﬂ,C/lEQ)oo’ (81)
c (¢, clab; q)

then replacing (b1, a0) by (b1aoc, ao/b1), respectively, we get

/d (gx/c,qxld, aox; q) oo

(ax, bx, b g)es T

(82)

_d(1-q)(g,dqlc,cld,abed, aoc; q) ® ac,ao/by, be b
- (ac,ad, bc, bd, bic; q) o 3 aoc,abed’”’ H

For 3®, series, using Hall’s transformation ([15], p.359, Eq. (I11.10))

a,b,c (b,delab,delbc; q) o d/b,elb,delabc
o sq,delabc | = (o} iq,b ), 83
3 2( de T C) (d,e,delabciq)n 2( delab, de/bc’ ) ®3)

we find the following.

Proposition 5.2 ([20], Theorem 9) We have

/d (gxlc,qxld, apx; q) oo
dgx

(ax, bx, bi1x; q) s
_d(1-q)(q,dqlc,cld,aolby,acdby, bedby; q)o
- (ac,ad, be,bd, bic, bid; q)oo

bic, bid, abedby/ay
P ;g aolby | . 84
s 2( acdby, bedb, ™ 1) (84)

Setting a¢ = abcdb; in the above identity, we obtain the following.
Proposition 5.3 ([20], Theorem 8) We have

~ d(1-q)(q,dqlc,cld,abcd, acdb,, bedby; q) o
- (ac,ad, be, bd, bic, b1d; q)

/ 4 (qxlc, qxld, abedbx; q) oo
(4

d,
(axﬁ bx1 blx; q)oo qx

. (85)
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Noting
d o] 00
/ f@dx=d1-q)) f(dg")q" -cU-q)> f(cq")q", (86)
¢ m=0 m=0

then lettinga =g, b = —¢q, ¢ = -1, d = 1 in (41), we get the following.

Proposition 5.4 If G € N, we get

XG: G|y hr- ok (@ ag @ 11— g1+ (=1)Y)
(by,..,bsqk  1—gk*

k=0

")) -Gk @1 5 D (@550
ZZZ{ M ]< q> ! R AR T

=0 k=0 (4% @
Takinge=—q,a; = q,b; = ¢%,i=1,2,...,2 in (87), then letting ¢ — 1 yields the following.

Corollary 5.5 Ifs,G € N, then

[G/2] G G n 1 (—1)"2"
Z( )(2n+1s+1 Z 0<n)<)(n+1)5 k+1 (88)

n=

Iflete=q,a;=q,b;=q* i=1,2,...,2 in (87), and setting g — 1, we have the following.
Corollary 5.6 Ifs,G €N, then

[G/2] G G n ( 1);4 ( l)kzk
;( )(2n+1s+1 Z 0( )()(n+1) k+1 (89)

n=

Combining with the above two identities, we obtain the following.

Corollary 5.7 Ifs,G €N, then

[G-1/2] 2m+1 2+ 1 1 (—1)"2"
> 3 L o0
— 2m +1 k 2m+2)y k+1

k=

Takinge = —q,a; = q*, b; =q,i=1,2,...,2 in (87), then letting ¢ — 1 yields the following.

Corollary 5.8 Ifs,G €N, then

[G/2] ( 1)k2k
Z( )(2n+1)s1 ZZ( )() 1) 1)

n=0 n=0 k=0

Settinge=gq, a; = g% b;=q,i=1,2,...,2 in (87), then letting ¢ — 1 yields the following.

Corollary 5.9 Ifs,G €N, then

[G/2] (—1)k2k
e SR

n=0 n=0 k=0
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Combining with the above two identities, we obtain the following.

Corollary 5.10 Ifs, G €N, then

[G-1/2] 2m+1 kak
G 2 1 -1)*2
D) ALY ooy T2 . (93)
— 2m+1 k k+1
m=0 k=0

Remark 5.11 The symbol [x] denotes the largest integer < x.
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