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Abstract: This paper is concerned with weighted energy estimates and diffusion phenomena for
the initial-boundary problem of the wave equation with space-dependent damping term in an exterior
domain. In this analysis, an elliptic problem was introduced by Todorova and Yordanov. This attempt
was quite useful when the coefficient of the damping term is radially symmetric. In this paper, by
modifying their elliptic problem, we establish weighted energy estimates and diffusion phenomena
even when the coefficient of the damping term is not radially symmetric.
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1. Introduction

Let N ≥ 2. We consider the wave equation with space-dependent damping term in an exterior
domain Ω ⊂ RN with a smooth boundary:

utt − ∆u + a(x)ut = 0, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
(u, ut)(x, 0) = (u0, u1)(x), x ∈ Ω,

(1.1)

where we denote by ∆ the usual Laplacian in RN and by ut and utt the first and second derivative of u
with respect to the variable t, and u = u(x, t) is a real-valued unknown function. The coefficient of the
damping term a(x) satisfies a ∈ C2(Ω), a(x) > 0 on Ω and

lim
|x|→∞

(
⟨x⟩αa(x)

)
= a0 (1.2)

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2017.1.1


2

with some constants α ∈ [0, 1) and a0 ∈ (0,∞), where ⟨y⟩ = (1 + |y|2)
1
2 for y ∈ RN . In this moment,

the initial data (u0, u1) are assumed to have compact supports in Ω and to satisfy the compatibility
condition of order k ≥ 1:

(uℓ−1, uℓ) ∈ (H2 ∩ H1
0(Ω)) × H1

0(Ω), for all ℓ = 1, . . . , k (1.3)

where uℓ is successively defined by uℓ = ∆uℓ−2 − a(x)uℓ−1 (ℓ = 2, . . . , k). We note that existence and
uniqueness of solution to the problem (1.1) have been discussed (see e.g., Ikawa [2, Theorem 2]).

It is proved in Matsumura [4] that if Ω = RN and a(x) ≡ 1, then the solution u of (1.1) satisfies the
energy decay estimate∫

RN
(|∇u(x, t)|2 + |ut(x, t)|2) dx ≤ C(1 + t)−

N
2 −1∥(u0, u1)∥2H1×L2 ,

where the constant C depends on the size of the supprot of initial data. Moreover, it is shown in
Nishihara [7] that u has the same asymptotic behavior as the one of the problem{

vt − ∆v = 0, x ∈ RN , t > 0,
v(x, 0) = u0(x) + u1(x), x ∈ RN .

(1.4)

In particular, we have
∥u(·, t) − v(·, t)∥L2 = o(t−

N
4 )

as t → ∞. Energy decay properties of solutions to (1.1) for general cases with a(x) ≥ ⟨x⟩−α (0 ≤ α ≤ 1)
have been dealt with by Matsumura [5]. On the other hand, Mochizuki [6] proved that if 0 ≤ a(x) ≤
C⟨x⟩−α for some α > 1, then the energy of the solution to (1.1) does not vanish as t → ∞ for suitable
initial data. (The solution has an asymptotic behavior similar to the solution of the usual wave equation
without damping). Therefore one can expect that diffusion phenomena occur only when a(x) ≥ C⟨x⟩−α
for α ≤ 1.

In this paper, we discuss precise decay rates of the weighted energy∫
RN

(|∇u(x, t)|2 + |ut(x, t)|2)Φ(x, t) dx

with a special weight function

Φ(x, t) = exp
(
β

A(x)
1 + t

)
(for some A ∈ C2(RN) and β > 0) which is introduced by Todorova and Yordanov [12] based on the
ideas in [11] and in [3]. They proved weighted energy estimates∫

RN
a(x)|u(x, t)|2Φ(x, t) dx ≤ C(1 + t)−

N−α
2−α +ε,∫

RN
(|∇u(x, t)|2 + |ut(x, t)|2)Φ(x, t) dx ≤ C(1 + t)−

N−α
2−α −1+ε

when a(x) is radially symmetric and satisfies (1.2). After that, Radu, Todorova and Yordanov [8]
extended it to higher-order derivatives. In [13], the second author proved diffusion phenomena for
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(1.1) with Ω = RN and a(x) = ⟨x⟩−α (α ∈ [0, 1)) by comparing the solution of the following problem
a(x)vt − ∆v = 0, x ∈ RN , t > 0,

v(x, 0) = u0(x) +
1

a(x)
u1(x), x ∈ RN .

(1.5)

In [10], diffusion phenomena for (1.1) with an exterior domain and for general radially symmetric
damping term are obtained. However, the weighted energy estimates and diffusion phenomena for (1.1)
with non-radially symmetric damping are still remaining open. The difficulty seems to come from
the choice of auxiliary function A in the weighted energy, which strongly depends on the existence
of positive solution to the Poisson equation ∆A(x) = a(x). In fact, an example of non-existence of
positive solution to ∆A = a for non-radial a(x) is shown in [10]. Radu, Todorova and Yordanov [9]
considered the case Ω = RN and used a solution A∗(x) of ∆A∗ = a1(1 + |x|)−α with a1 > 0 satisfying
a1(1 + |x|)−α ≥ a(x) for x ∈ RN , that is, A∗(x) is a subsolution of the equation ∆A = a. In general one
cannot obtain the optimal decay estimate via this choice because of the luck of the precise behavior of
a(x) at the spatial infinity which can be expected to determine the precise decay late of weighted energy
estimates. Our main idea to overcome this difficulty is to weaken the equality ∆A = a and consider
the inequality (1 − ε)a ≤ ∆A ≤ (1 + ε)a, and to construct a solution having appropriate behavior, we
employ a cut-off argument.

The aim of this paper is to give a proof of Ikehata–Todorova–Yordanov type weighted energy es-
timates for (1.1) with non-radially symmetric damping and to obtain diffusion phenomena for (1.1)
under the compatibility condition of order 1 and the condition (1.2) (without any restriction).

This paper is originated as follows. In Section 2, we discuss related elliptic and parabolic problems.
The weighted energy estimates for (1.1) are established in Section 3 (Proposition 3.5). Section 4 is
devoted to show diffusion phenomena (Proposition 4.1).

2. Related elliptic and parabolic problems

2.1. An elliptic problem for weighted energy estimates

As we mentioned above, in general, existence of positive solutions to the Poisson equation ∆A(x) =
a(x) is false for non-radial a(x). Thus, we weaken this equation and consider the following inequality

(1 − ε)a(x) ≤ ∆A(x) ≤ (1 + ε)a(x), x ∈ Ω, (2.1)

where ε ∈ (0, 1) is a parameter. Here we construct a positive solution A of (2.1) satisfying

A1ε⟨x⟩2−α ≤ A(x) ≤ A2ε⟨x⟩2−α, (2.2)

|∇A(x)|2
a(x)A(x)

≤ 2 − α
N − α + ε (2.3)

for some constants A1ε, A2ε > 0.

Lemma 2.1. For every ε ∈ (0, 1), there exists Aε ∈ C2(Ω) such that Aε satisfies (2.1)–(2.3).

Proof. Firstly, we extend a(x) as a positive function in C2(RN); note that this is possible by virtue of
the smoothness of ∂Ω. To simplify the notation, we use the same symbol a(x) as a function defined on
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RN . We construct a solution of approximated equation

∆Aε(x) = aε(x), x ∈ RN

for some aε ∈ C2(RN) satisfying

(1 − ε)a(x) ≤ aε(x) ≤ (1 + ε)a(x), x ∈ RN . (2.4)

Noting (1.2), we divide a(x) as a(x) = b1(x) + b2(x) with

b1(x) = ∆
(

a0

(N − α)(2 − α)
⟨x⟩2−α

)
= a0⟨x⟩−α +

a0α

N − α⟨x⟩
−α−2,

b2(x) = a(x) − a0⟨x⟩−α −
a0α

N − α⟨x⟩
−α−2.

Then we have

lim
|x|→∞

(
b2(x)
a(x)

)
= lim
|x|→∞

[
1

⟨x⟩αa(x)

(
⟨x⟩αa(x) − a0 −

a0α

N − α⟨x⟩
−2

)]
= 0. (2.5)

Let ε ∈ (0, 1) be fixed. Then by (2.5) there exists a constant Rε > 0 such that |b2(x)| ≤ εa(x) for
x ∈ RN \B(0,Rε). Here we introduce a cut-off function ηε ∈ C∞c (RN , [0, 1]) such that ηε ≡ 1 on B(0,Rε).
Define

aε(x) := b1(x) + ηε(x)b2(x) = a(x) − (1 − ηε(x))b2(x), x ∈ RN .

Then aε(x) = a(x) on B(0,Rε) and for x ∈ RN \ B(0,Rε),∣∣∣∣∣aε(x)
a(x)

− 1
∣∣∣∣∣ = (1 − ηε(x))

|b2(x)|
a(x)

≤ ε

and therefore (2.4) is verified.
Next we define

B1ε(x) :=
a0

(N − α)(2 − α)
⟨x⟩2−α, x ∈ RN ,

B2ε(x) := −
∫
RN
N(x − y)ηε(y)b2(y) dy, x ∈ RN ,

where N is the Newton potential given by

N(x) =


1

2π
log

1
|x| if N = 2,

Γ( N
2 + 1)

N(N − 2)π
N
2

|x|2−N if N ≥ 3.

Then we easily see that ∆B1ε(x) = b1(x) and ∆B2ε = ηε(x)b2(x). Moreover, noting that supp (ηεb2) is
compact, we see from a direct calculation that there exist a constant Mε > 0 such that

|B2ε(x)| ≤
Mε(1 + log⟨x⟩) if N = 2,

Mε⟨x⟩2−N if N ≥ 3,
|∇B2ε(x)| ≤ Mε⟨x⟩1−N , x ∈ RN .
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This yields that Bε := B1ε + B2ε is bounded from below and positive for x ∈ RN with sufficiently large
|x|. Moreover, we have

lim
|x|→∞

(
⟨x⟩α−2Bε(x)

)
=

a0

(N − α)(2 − α)
and

lim
|x|→∞

(
|∇Bε(x)|2
a(x)Bε(x)

)
= lim
|x|→∞

(
1

⟨x⟩αa(x)
· 1
⟨x⟩α−2Bε(x)

∣∣∣∣∣ a0

N − α⟨x⟩
−1x + ⟨x⟩α−1∇B2ε(x)

∣∣∣∣∣2)
=

2 − α
N − α.

Using the same argument as in the proof of [10, Lemma 3.1], we can see that there exists a constant
λε ≥ 0 such that Aε(x) := λε + Bε(x) satisfies (2.1)-(2.3). �

2.2. A parabolic problem for diffusion phenomena

Here we consider Lp-Lq type estimates for solutions to the initial-boundary value problem of the
following parabolic equation 

a(x)wt − ∆w = 0, x ∈ Ω, t > 0,
w(x, t) = 0, x ∈ ∂Ω, t > 0,
w(x, 0) = f (x), x ∈ Ω.

(2.6)

Here we introduce a weighted Lp-spaces

Lp
dµ :=

 f ∈ Lp
loc(Ω) ; ∥ f ∥Lp

dµ
:=

(∫
Ω

| f (x)|pa(x) dx
) 1

p

< ∞
 , 1 ≤ p < ∞

which is quite reasonable because the corresponding elliptic operator a(x)−1∆ can be regarded as a
symmetric operator in L2

dµ.
The Lp-Lq type estimates for the semigroup associated with the Friedrichs’ extension −L∗ (in L2

dµ) of
−a(x)−1∆ are stated in [10]. The proof is based on Beurling–Deny’s criterion and Gagliardo–Nirenberg
inequality.

Proposition 2.2 ([10, Proposition 2.6]). Let etL∗ be a semigroup generated by L∗. For every f ∈
L1

dµ ∩ L2
dµ, we have

∥etL∗ f ∥L2
dµ
≤ Ct−

N−α
2(2−α) ∥ f ∥L1

dµ
(2.7)

and

∥L∗etL∗ f ∥L2
dµ
≤ Ct−

N−α
2(2−α)−1∥ f ∥L1

dµ
. (2.8)

3. Weighted energy estimates

In this section we establish weighted energy estimates for solutions of (1.1) by introducing Ikehata–
Todorova–Yordanov type weight function with an auxiliary function Aε constructed in Subsection 2.1.

To begin with, let us recall the finite speed propagation property of the wave equation (see [2]).
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Lemma 3.1 (Finite speed of propagation). Let u be the solution of (1.1) with the initial data (u0, u1)
satisfying supp (u0, u1) ⊂ B(0,R0) = {x ∈ Ω; |x| ≤ R0}. Then, one has

supp u(·, t) ⊂ {x ∈ Ω ; |x| ≤ R0 + t}

and therefore |x|/(R0 + 1 + t) ≤ 1 for t ≥ 0 and x ∈ supp u(·, t).
Before introducing a weight function, we also recall two identities for partial energy functionals

proved in [10].

Lemma 3.2 ([10, Lemma 3.7]). Let Φ ∈ C2(Ω × [0,∞)) satisfy Φ > 0 and ∂tΦ < 0 and let u be a
solution of (1.1). Then

d
dt

[∫
Ω

(
|∇u|2 + |ut|2

)
Φ dx

]
=

∫
Ω

(∂tΦ)−1
∣∣∣∂tΦ∇u − ut∇Φ

∣∣∣2 dx

+

∫
Ω

(
− 2a(x)Φ + ∂tΦ − (∂tΦ)−1|∇Φ|2

)
|ut|2 dx.

Lemma 3.3 ([10, Lemma 3.9]). Let Φ ∈ C2(Ω × [0,∞)) satisfy Φ > 0 and ∂tΦ < 0 and let u be a
solution to (1.1). Then, we have

d
dt

[∫
Ω

(
2uut + a(x)|u|2

)
Φ dx

]
= 2

∫
Ω

uut(∂tΦ) dx + 2
∫
Ω

|ut|2Φ dx − 2
∫
Ω

|∇u|2Φ dx

+

∫
Ω

(
a(x)∂tΦ + ∆Φ

)|u|2 dx.

Here we introduce a weight function for weighted energy estimates, which is a modification of the
one in Todorova-Yordanov [12].

Definition 3.4. Define h := 2−α
N−α and for ε ∈ (0, 1),

Φε(x, t) = exp
(

1
h + 2ε

Aε(x)
1 + t

)
, (3.1)

where Aε is given in Lemma 2.1. And define for t ≥ 0,

E∂x(t; u) :=
∫
Ω

|∇u|2Φε dx, E∂t(t; u) :=
∫
Ω

|ut|2Φε dx, (3.2)

Ea(t; u) :=
∫
Ω

a(x)|u|2Φε dx, E∗(t; u) := 2
∫
Ω

uutΦε dx, (3.3)

and also define E1(t; u) := E∂x(t; u) + E∂t(t; u) and E2(t; u) := E∗(t; u) + Ea(t; u).

Now we are in a position to state our main result for weighted energy estimates for solutions of
(1.1).

Proposition 3.5. Assume that (u0, u1) satisfies supp (u0, u1) ⊂ B(0,R0) and the compatibility condition
of order k0 ≥ 1. Let u be a solution of the problem (1.1). For every δ > 0 and 0 ≤ k ≤ k0 − 1, there
exist ε > 0 and Mδ,k,R0 > 0 such that for every t ≥ 0,

(1 + t)
N−α
2−α +2k+1−δ

(
E∂x(t; ∂k

t u) + E∂t(t; ∂k
t u)

)
+ (1 + t)

N−α
2−α +2k−δEa(t; ∂k

t u) ≤ Mδ,k,R0∥(u0, u1)∥2Hk+1×Hk(Ω).
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To prove, this, we prepare the following two lemmas.

Lemma 3.6. For t ≥ 0, we have

1 − ε
h + 2ε

1
1 + t

Ea(t; u) ≤ E∂x(t; u). (3.4)

Proof. As in the proof of [10, Lemma 3.6], by integration by parts we have∫
Ω

∆(logΦε)|u|2Φε dx =
∫
Ω

(
∆Φε −

|∇Φε|2
Φε

)
|u|2 dx ≤

∫
Ω

|∇u|2Φε dx.

Noting that

∆(logΦε(x)) =
1

h + 2ε
∆Aε(x)
1 + t

≥ 1 − ε
h + 2ε

a(x)
1 + t
,

we have (3.4). �

In order to clarify the effect of the finite propagation property, we now put

a1 := inf
x∈Ω

(
⟨x⟩αa(x)

)
.

Then

Lemma 3.7. For t ≥ 0, we have

E∂t(t; u) ≤ 1
a1

(R0 + 1 + t)αEa(t; ∂tu), (3.5)∫
Ω

Aε(x)
a(x)

|ut|2Φε dx ≤ A2ε

a1
(R0 + 1 + t)2E∂t(t; u), (3.6)

|E∗(t; u)| ≤ 2
√

a1
(R0 + 1 + t)

α
2
√

Ea(t; u)E∂t(t; u). (3.7)

Proof. By a(x)−1 ≤ a−1
1 ⟨x⟩α ≤ a−1

1 (1 + |x|)α and the finite propagation property we have∫
Ω

|ut|2Φε dx =
∫
Ω

a(x)
a(x)
|ut|2Φε dx ≤ 1

a1
(R0 + 1 + t)αEa(t; ∂tu).

Using the Cauchy-Schwarz inequality and the above inequality yields (3.6):∣∣∣∣∣∫
Ω

uutΦε dx
∣∣∣∣∣2 ≤ (∫

Ω

|u|2Φε dx
) (∫

Ω

|ut|2Φε dx
)

≤ (R0 + 1 + t)α

a1

(∫
Ω

a(x)|u|2Φε dx
)

E∂t(t; u)

≤ (R0 + 1 + t)α

a1
Ea(t; u)E∂t(t; u).

We can prove (3.7) in a similar way. �
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Lemma 3.8. (i) For every t ≥ 0, we have

d
dt

E1(t; u) ≤ −Ea(t; ∂tu). (3.8)

(ii) For every ε ∈ (0, 1
3 ) and t ≥ 0,

d
dt

E2(t; u) ≤ −1 − 3ε
1 − ε E∂x(t; u) +

(
2
a1
+

A2ε(R0 + 1)2

εa2
1

)
(R0 + 1 + t)αEa(t; ∂tu). (3.9)

Proof. Noting (2.3), we have

−2a(x)Φε + ∂tΦε − (∂tΦε)−1|∇Φε|2 =
(
−2a(x) − Aε(x)

(h + 2ε)(1 + t)2 +
1

h + 2ε
|∇Aε(x)|2

Aε(x)

)
Φε

≤
(
−2a(x) +

h + ε
h + 2ε

a(x)
)
Φε

≤ −a(x)Φε.

This implies (3.8). On the other hand, from (2.3) and (2.1) we see

a(x)∂tΦε + ∆Φε =
1

h + 2ε

(
−a(x)Aε(x)

(1 + t)2 +
|∇Aε(x)|2

(h + 2ε)(1 + t)2 +
∆Aε(x)
1 + t

)
Φε

≤ 1
h + 2ε

(
−a(x)Aε(x)

(1 + t)2 +
(h + ε)a(x)Aε(x)
(h + 2ε)(1 + t)2 +

(1 + ε)a(x)
1 + t

)
Φε

≤
(
− ε

(h + 2ε)2

a(x)Aε(x)
(1 + t)2 +

1 + ε
h + 2ε

a(x)
1 + t

)
Φε.

Therefore combining it with Lemma 3.6, we have∫
Ω

(
a(x)∂tΦε + ∆Φε

)|u|2 dx ≤ 1 + ε
1 − ε

∫
Ω

|∇u|2Φε dx − ε

(h + 2ε)2

1
(1 + t)2

∫
Ω

a(x)Aε(x)|u|2Φε dx.

Using (3.6), we have

2
∫
Ω

uut(∂tΦε) dx = − 2
h + 2ε

1
(1 + t)2

∫
Ω

uutAε(x)Φε dx

≤ 2
h + 2ε

1
(1 + t)2

(∫
Ω

a(x)Aε(x)|u|2Φε dx
) 1

2
(∫
Ω

Aε(x)
a(x)

|ut|2Φε dx
) 1

2

≤ 2(R0 + 1)
h + 2ε

1
1 + t

(∫
Ω

a(x)Aε(x)|u|2Φε dx
) 1

2
(

A2ε

a1
E∂t(t; u)

) 1
2

≤ ε

(h + 2ε)2

1
(1 + t)2

∫
Ω

a(x)Aε(x)|u|2Φε dx +
A2ε(R0 + 1)2

εa1
E∂t(t; u).

Applying (3.5), we obtain (3.9). �
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Lemma 3.9. The following assertions hold:

(i) Set t∗(R0, α,m) := max
{(

2m
a1

) 1
1−α
,R0 + 1

}
. Then for every t,m ≥ 0 and t1 ≥ t∗(R0, α,m),

d
dt

(
(t1 + t)mE1(t; u)

)
≤ m(t1 + t)m−1E∂x(t; u) − 1

2
(t1 + t)mEa(t; ∂tu). (3.10)

(ii) for every t, λ ≥ 0 and t2 ≥ R0 + 1,

d
dt

(
(t2 + t)λE2(t; u)

)
≤ λ(1 + ε)(t2 + t)λ−1Ea(t; u) − 1 − 3ε

1 − ε (t2 + t)λE∂x(t; u)

+

(
2
a1
+

A2ε(R0 + 1)2

εa2
1

+
λ

2εa2
1t1−α

2

)
(t2 + t)λ+αEa(t; ∂tu). (3.11)

(iii) In particular, setting

ν :=
4
a1
+

2A2ε(R0 + 1)2

εa2
1

+
1

4εa1
,

t∗∗(ε,R0, α, λ) := max


(
(1 − ε)(λ + α)ν

ε

) 1
1−α

,

(
2(λ + α)

a1

) 1
1−α

,R0 + 1

 ,
one has that for t, λ ≥ 0 and t3 ≥ t∗∗(ε,R0, α, λ),

d
dt

(
ν(t3 + t)λ+αE1(t; u) + (t3 + t)λE2(t; u)

)
≤ −1 − 4ε

1 − ε (t3 + t)λE∂x(t; u) + λ(1 + ε)(t3 + t)λ−1Ea(t; u). (3.12)

Proof. (i) Let m ≥ 0 be fixed and let t1 ≥ t∗(R0, α,m). Using (3.8) and (3.5), we have

(t1 + t)−m d
dt

(
(t1 + t)mE1(t; u)

)
≤ m

t1 + t
E∂x(t; u) +

m
t1 + t

E∂t(t; u) +
d
dt

E1(t; u)

≤ m
t1 + t

E∂x(t; u) +
m

t1 + t
E∂t(t; u) − Ea(t; ∂tu)

≤ m
t1 + t

E∂x(t; u) +
(
m(R0 + 1 + t)α

a1(t1 + t)
− 1

)
Ea(t; ∂tu).

Therefore we obtain (3.10).
(ii) For t ≥ 0, and t ≥ R0 + 1,

(t2 + t)−λ
d
dt

(
(t2 + t)λE2(t; u)

)
≤ λ

t2 + t
E∗(t; u) +

λ

t2 + t
Ea(t; u) +

d
dt

E2(t; u)

≤ λ

t2 + t
E∗(t; u) +

λ

t2 + t
Ea(t; u) − 1 − 3ε

1 − ε E∂x(t; u) +
(

2
a1
+

A2ε(R0 + 1)2

εa2
1

)
(R0 + 1 + t)αEa(t; ∂tu).
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Noting that by (3.7) and (3.5),

λ

t2 + t
E∗(t; u) ≤ 2λ(R0 + 1 + t)α

a1(t2 + t)

√
Ea(t; u)Ea(t; ∂tu)

≤ λε

t2 + t
Ea(t; u) +

λ

εa2
1

(R0 + 1 + t)2α

t2 + t
Ea(t; ∂tu)

≤ λε

t2 + t
Ea(t; u) +

λ

εa2
1t1−α

2

(t2 + t)αEa(t; ∂tu),

we deduce (3.11).
(iii) Combining (3.10) with m = λ + α and (3.11), we have for t3 ≥ t∗∗(ε,R0, α, λ) and t ≥ 0,

d
dt

(
ν(t3 + t)λ+αE1(t; u) + (t3 + t)λE2(t; u)

)
≤

(
ν(λ + α)(t3 + t)α−1 − 1 − 3ε

1 − ε

)
(t3 + t)λE∂x(t; u) + λ(1 + ε)(t3 + t)λ−1Ea(t; u)

+

(
2
a1
+

A2ε(R0 + 1)2

εa2
1

+
λ

2εa2
1t1−α

3

− ν
2

)
(t3 + t)λ+αEa(t; ∂tu)

≤ −1 − 4ε
1 − ε (t3 + t)λE∂x(t; u) + λ(1 + ε)(t3 + t)λ−1Ea(t; u).

This proves the assertion. �

Proof of Proposition 3.5. Firstly, by (3.7) we observe that

ν(t3 + t)αE1(t; u) + E2(t; u) ≥ 4
a1

(t3 + t)αE1(t; u) − |E∗(t; u)| + Ea(t; u)

≥ 4
a1

(t3 + t)αE∂t(t; u) − 2
√

a1
(t3 + t)

α
2
√

Ea(t; u)E∂t(t; u) + Ea(t; u)

≥ 3
4

Ea(t; u).

By using the above estimate, we prove the assertion via mathematical induction.
Step 1 (k = 0). By (3.12) using Lemma 3.6 implies that

d
dt

(
ν(t3 + t)λ+αE1(t; u) + (t3 + t)λE2(t; u)

)
≤

(
−1 − 4ε

1 − ε +
λ(1 + ε)(h + 2ε)

1 − ε

)
(t3 + t)λE∂x(t; u).

Therefore taking λ0 =
(1−ε)(1−4ε)
(1+ε)(h+2ε) , (λ0 ↑ h−1 as ε ↓ 0) we have

d
dt

(
ν(t3 + t)λ0+αE1(t; u) + (t3 + t)λ0 E2(t; u)

)
≤ −ε(1 − 4ε)

1 − ε (t3 + t)λ0 E∂x(t; u).

Integrating over (0, t) with respect to t, we see

3
4

(t3 + t)λ0 Ea(t; u) +
ε(1 − 4ε)

1 − ε

∫ t

0
(t3 + s)λ0 E∂x(s; u) ds
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≤ ν(t3 + t)λ0+αE1(t; u) + (t3 + t)λ0 E2(t; u) +
ε(1 − 4ε)

1 − ε

∫ t

0
(t3 + s)λ0 E∂x(s; u) ds

≤ νtλ0+α
3 E1(0; u) + tλ0

3 E2(0; u).

Using (3.10) with m = λ0 + 1 and integrating over (0, t), we obtain

(t3 + t)λ0+1E1(t; u) +
1
2

∫ t

0
(t3 + s)λ0+1Ea(s; ∂tu) ds

≤ tλ0+1
3 E1(0; u) + (λ0 + 1)

∫ t

0
(t3 + s)λ0 E∂x(s; u) ds

≤ tλ0+1
3 E1(0; u) +

(λ0 + 1)(1 − ε)
ε(1 − 4ε)

(
νtλ0+α

3 E1(0; u) + tλ0
3 E2(0; u)

)
.

This proves the desired assertion with k = 0 and also the integrability of (t3 + s)λ0+1Ea(s; ∂tu).

Step 2 (1 < k ≤ k0 − 1). Suppose that for every t ≥ 0,

(1 + t)λ0+2k−1E1(t; ∂k−1
t u) + (1 + t)λ0+2k−2Ea(t; ∂k−1

t u) ≤ Mε,k−1∥(u0, u1)∥2Hk×Hk−1(Ω)

and additionally, ∫ t

0
(1 + s)λ0+2k−1Ea(s; ∂k

t u) ds ≤ M′ε,k−1∥(u0, u1)∥2Hk×Hk−1(Ω).

Since the initial value (u0, u1) satisfies the compatibility condition of order k, ∂k
t u is also a solu-

tion of (1.1) with replaced (u0, u1) with (uk−1, uk). Applying (3.12) with λ = λ0 + 2k, putting
t3k = t∗∗(ε,R0, α, λ0 + 2k) (see Lemma 3.9 (iii)) and integrating over (0, t), we have

3
4

(t3k + t)λ0+2kEa(t; ∂k
t u) +

1 − 4ε
1 − ε

∫ t

0
(t3k + s)λ0+2kE∂x(s; ∂k

t u) ds

≤ ν(t3k + t)λ0+2k+αE1(t; ∂k
t u) + (t3k + t)λ0+2kE2(t; ∂k

t u) +
1 − 4ε
1 − ε

∫ t

0
(t3k + s)λ0+2kE∂x(s; ∂k

t u) ds

≤ νtλ0+2k+α
3k E1(0; ∂k

t u) + tλ0+2k
3k E2(0; ∂k

t u) + (λ0 + 2k)(1 + ε)
∫ t

0
(t3k + s)λ0+2k−1Ea(s; ∂k

t u) ds

≤ νtλ0+2k+α
3k E1(0; ∂k

t u) + tλ0+2k−1
3k E2(0; ∂k

t u) + (λ0 + 2k)(1 + ε)M′ε,k−1∥(u0, u1)∥2Hk×Hk−1(Ω).

Moreover, from (3.10) with m = λ0 + 2k + 1 we have

(t3k + t)λ0+2k+1E1(t; ∂k
t u) +

1
2

∫ t

0
(t3k + s)λ0+2k+1Ea(s; ∂k+1

t u) ds

≤ tλ0+2k+1
3k E1(0; ∂k

t u) + (λ0 + 2k + 1)
∫ t

0
(t3k + s)λ0+2kE∂x(s; ∂k

t u) ds

≤ M′′ε,k
(
E1(0; ∂k

t u) + E2(0; ∂k
t u) + ∥(u0, u1)∥2Hk×Hk−1(Ω)

)
with some constant M′′ε,k > 0. By induction we obtain the desired inequalities for all k ≤ k0 − 1. �
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4. Diffusion phenomena as an application of weighted energy estimates

Proposition 4.1. Assume that (u0, u1) ∈ (H2∩H1
0(Ω))×H1

0(Ω) and suppose that supp (u0, u1) ⊂ B(0,R0).
Let u be the solution of (1.1). Then for every ε > 0, there exists a constant Cε,R0 > 0 such that∥∥∥∥u(·, t) − etL∗[u0 + a(·)−1u1]

∥∥∥∥
L2

dµ

≤ Cε,R0(1 + t)−
N−α

2(2−α)−
1−α
2−α+ε∥(u0, u1)∥H2×H1 .

To prove Proposition 4.1 we use the following lemma stated in [10, Section 4].

Lemma 4.2. Assume that (u0, u1) ∈ (H2 ∩ H1
0(Ω)) × H1

0(Ω) and suppose that supp (u0, u1) ⊂ {x ∈
Ω; |x| ≤ R0}. Then for every t ≥ 0,

u(x, t) − etL∗[u0 + a(·)−1u1] = −
∫ t

t/2
e(t−s)L∗[a(·)−1utt(·, s)]ds

− e
t
2 L∗[a(·)−1ut(·, t/2)]

−
∫ t/2

0
L∗e(t−s)L∗[a(·)−1ut(·, s)]ds, (4.1)

where L∗ is the (negative) Friedrichs extension of −L = −a(x)−1∆ in L2
dµ.

Proof of Proposition 4.1. First we show the assertion for (u0, u1) satisfying the compatibility condition
of order 2. Taking L2

dµ-norm of both side, we have∥∥∥∥u(x, ·) − etL∗[u0 + a(·)−1u1]
∥∥∥∥

L2
dµ

≤ J1(t) +J2(t) +J3(t),

where

J1(t) :=
∫ t

t/2

∥∥∥e(t−s)L∗[a(·)−1utt(·, s)]
∥∥∥

L2
dµ

ds,

J2(t) :=
∥∥∥e

t
2 L∗[a(·)−1ut(·, t/2)]

∥∥∥
L2

dµ
,

J3(t) :=
∫ t/2

0

∥∥∥L∗e(t−s)L∗[a(·)−1ut(·, s)]
∥∥∥

L2
dµ

ds.

Noting that for x ∈ Ω,

a(x)−1Φε(x, t)−1 ≤ 1
a1
⟨x⟩α exp

(
− A1ε

h + 2ε
⟨x⟩2−α
1 + t

)
≤ 1

a1

(
α(h + 2ε)

(2 − α)eA1ε

) α
2−α

(1 + t)
α

2−α ,

we see that for k = 0, 1,∥∥∥a(·)−1∂k+1
t u(·, s)

∥∥∥2

L2
dµ
=

∫
Ω

a(x)−1|∂k+1
t u(·, s)|2 dx

≤ ∥a(·)−1Φε(·, t)−1∥L∞(Ω)

∫
Ω

|∂k+1
t u(·, s)|2Φε dx

≤ C̃(1 + t)
α

2−αE∂t(t, ∂k
t u)
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≤ C̃Mε,k(1 + t)−λ0− 2−2α
2−α −2k∥(u0, u1)∥2Hk+1×Hk .

Therefore from Proposition 3.5 with k = 1 and k = 0 we have

J1(t) ≤
∫ t

t/2

∥∥∥a(·)−1utt(·, s)
∥∥∥

L2
dµ

ds

≤
√

C̃M1∥(u0, u1)∥H2×H1

∫ t

t/2
(1 + s)−

λ0
2 −

1−α
2−α−1ds

≤ 2(2 − α)
λ0(2 − α) + 1 − α

√
C̃Mε,1(1 + t)−

λ0
2 −

1−α
2−α ∥(u0, u1)∥H2×H1

and

J2(t) ≤
∥∥∥a(·)−1ut(·, t/2)

∥∥∥
L2

dµ
≤

√
C̃Mε,0(1 + t)−

λ0
2 −

1−α
2−α ∥(u0, u1)∥H1×L2 .

Moreover, by Lemma 2.2, we see by Cauchy–Schwarz inequality that for t ≥ 1,

J3(t) ≤ C
∫ t/2

0
(t − s)−

N−α
2(2−α)−1

∥∥∥a(·)−1ut(·, s)
∥∥∥

L1
dµ

ds

≤ C
( t
2

)− N−α
2(2−α)−1 ∫ t/2

0

√
∥Φ−1
ε (·, s)∥L1(Ω)E∂t(s; u) ds.

Since

∥Φ−1(·, t)∥L1(Ω) ≤
∫
RN

exp
(
− A1ε

h + 2ε
|x|2−α
1 + t

)
dx

= (1 + t)
N

2−α

∫
RN

exp
(
− A1ε

h + 2ε
|y|2−α

)
dy,

we deduce

J3(t) ≤ C′(1 + t)−
N−α

2(2−α)−1∥(u0, u1)∥H1×L2

∫ t/2

0
(1 + s)

N−α
2(2−α)−

λ0
2 −

1−α
2−α ds

≤ C′
(

N − α
2(2 − α)

− λ0

2
+

1
2 − α

)
(1 + t)−

N−α
2(2−α)−1(1 + t/2)

N−α
2(2−α)−

λ0
2 −

1−α
2−α+1∥(u0, u1)∥H1×L2

≤ C′′(1 + t)−
λ0
2 −

1−α
2−α ∥(u0, u1)∥H1×L2 .

Consequently, we obtain∥∥∥∥u(·, t) − etL∗[u0 + a(·)−1u1]
∥∥∥∥

L2
dµ

≤ C′′′(1 + t)−
λ0
2 −

1−α
2−α ∥(u0, u1)∥H2×H1 .

Next we show the assertion for (u0, u1) satisfying (u0, u1) ∈ (H2×H1
0(Ω))×H1

0(Ω) (the compatibility
condition of order 1) via an approximation argument. Fix ϕ ∈ C∞c (RN , [0, 1]) such that ϕ ≡ 1 on B(0,R0)
and ϕ ≡ 0 on RN \ B(0,R0 + 1) and define for n ∈ N,(

u0n

u1n

)
=

(
ϕũ0n

ϕũ1n

)
,

(
ũ0n

ũ1n

)
=

(
1 +

1
n
A

)−1 (
u0

u1

)
,
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whereA is an m-accretive operator inH = H1
0(Ω) × L2(Ω) associated with (1.1), that is,

A =
(

0 −1
−∆ a(x)

)
endowed with domain D(A) = (H2∩H1

0(Ω))×H1
0(Ω). Then (u0n, u1n) satisfies supp(u0n, u1n) ⊂ B(0,R0+

1) and the compatibility condition of order 2. Let vn be a solution of (1.1) with (u0n, u1n). Observe that

∥(u0n, u1n)∥2H2×H1 ≤ C2∥ϕ∥2W2,∞∥(ũ0, ũ1)∥2H2×H1

≤ C′2∥ϕ∥2W2,∞(∥(ũ0, ũ1)∥2H + ∥A(ũ0, ũ1)∥2H )
≤ C′2∥ϕ∥2W2,∞(∥(u0, u1)∥2H + ∥A(u0, u1)∥2H )
≤ C′′2∥ϕ∥2W2,∞∥(u0, u1)∥2H2×H1

with suitable constants C, C′, C′′ > 0, and(
u0n

u1n

)
→

(
ϕu0

ϕu1

)
=

(
u0

u1

)
inH

as n → ∞ and also u0n + a−1u1n → u0 + a−1u1 in L2
dµ as n → ∞. Using the result of the previous step,

we deduce ∥∥∥∥vn(·, t) − etL∗[u0n + a(·)−1u1n]
∥∥∥∥

L2
dµ

≤ C̃(1 + t)−
λ0
2 −

1−α
2−α ∥(u0, u1)∥H2×H1

with some constant C̃ > 0. Letting n → ∞, by continuity of the C0-semigroup e−tA in H we also
obtain diffusion phenomena for initial data in (H2 ∩ H1

0(Ω)) ∩ H1
0(Ω). �
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