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Abstract

In this paper, we first present a fixed point theorem for set-valued fuzzy contraction
type maps in complete fuzzy metric spaces which extends and improves some well-
know results in literature. Then by presenting an endpoint result we initiate endpoint
theory for fuzzy contraction maps in fuzzy metric spaces.
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1. Introduction and preliminaries
Many authors have introduced the concept of fuzzy metric spaces in different ways

[1-4]. Kramosil and Michalek [5] introduced the fuzzy metric space by generalizing the

concept of the probabilistic metric space to fuzzy situation. George and Veeramani

[6,7] modified the concept of fuzzy metric space introduced by Kramosil and Michalek

[5] and obtained a Hausdorff topology for this kind of fuzzy metric spaces. Recently,

the fixed point theory in fuzzy metric spaces has been studied by many authors [8-18].

In [11], the following definition is given.

Definition 1.1. A sequence (tn) of positive real numbers is said to be an s-increasing

sequence if there exists m0 Î N such that tm + 1 ≤ tm+1, for all m ≥ m0.

Gregori and Sapena [11] proved the following fixed point theorem.

Theorem 1.2. Let (X, M, *) be a complete fuzzy metric space such that for every s-

increasing sequence (tn) and every x, y Î X

lim
n→∞ ∗∞

i=nM(x, y, tn) = 1.

Suppose f : X ® X is a map such that for each x, y Î X and t > 0, we have

M(fx, fy, kt) ≥ M(x, y, t),

where 0 <k < 1. Then, f has a unique fixed point.

In this article, we first give a fixed point theorem for set-valued contraction maps

which improve and generalize the above-mentioned result of Gregori and Sapena.

Then, in Section 2, we initiate endpoint theory in fuzzy metric spaces by presenting an

endpoint result for set-valued maps.
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To set up our results in the next section we recall some definitions and facts.

Definition 1.3 (3). A binary operation * : [0, 1] × [0, 1] ® [0, 1] is called a continu-

ous t-norm if ([0,1], *) is an abelian topological monoid with unit 1 such that a * b ≤ c

* d whenever a ≤ c and b ≤ d for all a, b, c, Î [0, 1]. Examples of t-norm are a * b =

ab and a * b = min{a, b}.

Definition 1.4 (6). The 3-tuple (X, M, *) is called a fuzzy metric space if X is an

arbitrary non-empty set, * is a continuous t-norm, and M is a fuzzy set on X2 × [0, ∞)

satisfying the following conditions, for each x, y, z Î X and t, s > 0,

(1) M(x, y, t) > 0,

(2) M(x, y, t) = 1 if and only if x = y,

(3) M(x, y, t) = M(y, x, t),

(4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s),

(5) M(x, y, t) : (0, ∞) ® [0,1] is continuous.

Example 1.5. [6] Let (X, d) be a metric space. Define a * b = ab (or a * b = min{a,

b}) and for all x, y Î X and t > 0,

M(x, y, t) =
t

t + d(x, y)
.

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric M induced by the

metric d the standard fuzzy metric.

Definition 1.6. Let (X, M, *) be a fuzzy metric space.

(1) A sequence {xn} is said to be convergent to a point x Î X if limn®∞ M(xn, x, t)

= 1 for all t > 0.

(2) A sequence {xn} is called a Cauchy sequence if

lim
m,n→∞M(xm, xn, t) = 1,

for all t > 0.

(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to

be complete.

(4) A subset A ⊆ X is said to be closed if for each convergent sequence {xn} with xn
Î A and xn ® x, we have x Î A.

(5) A subset A ⊆ Xis said to be compact if each sequence in A has a convergent

subsequence.

Throughout the article, let K(X) denote the class of all compact subsets of X.

Lemma 1.7. [10]For all x, y Î X, M(x, y,.) is non-decreasing.

Definition 1.8. Let (X, M, *) be a fuzzy metric space. M is said to be continuous on

X2 × (0, ∞) if

lim
n→∞M(xn, yn, tn) = M(x, y, t),

Kiany and Amini-Harandi Fixed Point Theory and Applications 2011, 2011:94
http://www.fixedpointtheoryandapplications.com/content/2011/1/94

Page 2 of 9



whenever {(xn, yn, tn)} is a sequence in X2 × (0, ∞) which converges to a point (x, y,

t) Î X2 × (0, ∞); i.e.,

lim
n→∞M(xn, x, t) = lim

n→∞M(yn, y, t) = 1 and lim
n→∞M(x, y, tn) = M(x, y, t).

Lemma 1.9. [10]M is a continuous function on X2 × (0, ∞).

2. Fixed point theory
The following lemma is essential in proving our main result.

Lemma 2.1. Let (X, M, *) be a fuzzy metric space such that for every x, y ÎX, t > 0

and h > 1

lim
n→∞ ∗∞

i=nM(x, y, thi) = 1. (2:1)

Suppose {xn} is a sequence in X such that for all n Î N,

M(xn, xn+1,αt) ≥ M(xn−1, xn, t),

where 0 <a < 1. Then {xn} is a Cauchy sequence.

Proof. For each n Î N and t > 0, we have

M(xn, xn+1, t) ≥ M
(
xn−1, xn,

1
α
t
)

≥ M
(
xn−2, xn−1,

1
α2

t
)

≥ · · · ≥ M
(
x0, x1,

1
αn−1

t
)
.

Thus for each n Î N, we get

M (xn, xn+1, t) ≥ M
(
x0, x1,

1
αn−1

t
)
.

Pick the constants h > 1 and l Î N such that

hα < 1 and
∞∑
i=l

1
hi

=

1
hl

1 − 1
h

< 1.

Hence, for m ≥ n, we get

M(xn, xm, t) ≥ M
(
xn, xm,

(
1
hl

+
1
hl+1

+ · · · + 1
hl+m

)
t
)

≥ M
(
xn, xn+1,

1
hl
t
)

∗ M
(
xn+1, xn+2,

1
hl+1

t
)

∗ · · · ∗ M
(
xm−1, xm,

1
hl+m

t
)

≥ M
(
x0, x1,

1
αn−1hl

t
)

∗ M
(
x0, x1,

1
αnhl+1

t
)

∗ · · · ∗ M
(
x0, x1,

1
αm−2hl+m−n−2

t
)

≥ M
(
x0, x1,

1

(αh)n−1 t
)

∗ M
(
x0, x1,

1
(αh)n

t
)

∗ · · · ∗ M
(
x0, x1,

1

(αh)m−2 t
)

≥ ∗∞
i=nM

(
x0, x1,

1

(αh)i−1 t
)

Then, from the above, we have

lim
m,n→∞M(xn, xm, t) ≥ lim

n→∞ ∗∞
i=nM

(
x0, x1,

1

(αh)i−1 t

)
= 1,
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for each t > 0. Therefore, we get

lim
m,n→∞M(xn, xm, t) = 1,

for each t > 0 and so {xn} is a Cauchy sequence.

In 2004, Rodríguez-López and Romaguera [19] introduced Hausdorff fuzzy metric on

the set of the non-empty compact subsets of a given fuzzy metric space.

Definition 2.2. ([19]) Let (X, M, *) be a fuzzy metric space. For each A,B ∈ K(X)

and t > 0, set

HM(A,B, t) = min{inf
x∈A

sup
y∈B

M(x, y, t), inf
y∈B

sup
x∈A

M(x, y, t)}.

Lemma 2.3. [19]Let (X, M, *) be a fuzzy metric space. Then, the 3-tuple

(K(X),HM, ∗)is a fuzzy metric space.

Now we are ready to prove our first main result.

Theorem 2.4. Let (X, M, *) be a complete fuzzy metric. Suppose F : X ® X is a set-

valued map with non-empty compact values such that for each x, y Î X and t > 0, we

have

HM(Fx, Fy,α(d(x, y, t))t) ≥ M(x, y, t), (2:2)

where a : [0, ∞) ® [0,1) satisfying

lim sup
r→t+

α(r) < 1, ∀ t ∈ [0,∞),

and d(x, y, t) =
t

M(x, y, t)
− t. Furthermore, assume that (X, M, *) satisfies (2.1) for

some x0 Î X and x1 Î Fx0. Then F has a fixed point.

Proof. Let t > 0 be fixed. Notice first that if A and B are non-empty compact subsets

of X and x Î A then by [19, Lemma 1], there exists a y Î B such that

HM(A,B, t) ≤ sup
b∈B

M(x, b, t) = M(x,B, t) = M(x, y, t).

Thus given a ≤ HM (A, B, t) there exists a point y Î B such that

M(x, y, t) ≥ α.

Let x0 Î X and x1 Î Fx0. If Fx0 = Fx1 then x1 Î Fx1 and x1 is a fixed point of F and

we are finished. So, we may assume that Fx0 ≠ Fx1. From (2.2), we get

HM(Fx0, Fx1,α(d(x0, x1, t))t) ≥ M(x0, x1, t).

Since x1 Î Fx0 and F is compact valued then by Rodríguez-López and Romaguera

[19, Lemma 1] there exists a x2 Î Fx1 satisfying

M(x1, x2, t) ≥ M(x1, x2,α(d(x0, x1, t))t) = sup
y∈Fx1

M(x1, y,α(d(x0, x1, t))t)

≥ HM(Fx0, Fx1,α(d(x0, x1, t))t)

≥ M(x0, x1, t).

Continuing this process, we can choose a sequence {xn}n ≥ 0 in X such that xn+1 Î
Fxn satisfying
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M(xn+1, xn+2, t) ≥ M(xn+1, xn+2,α(d(xn, xn+1, t))t) = sup
y∈Fxn+1

M(xn+1, y,α(d(xn, xn+1, t))t)

≥ HM(Fxn, Fxn+1,α(d(xn, xn+1, t))t)

≥ M(xn, xn+1, t).

Then, the sequence {M(xn+1, xn+2, t)}n is non-decreasing.

Thus {d(xn+1, xn+2, t)}n is a non-negative non-increasing sequence and so is conver-

gent, say to, l ≥ 0. Since by the assumption

lim sup
n→∞

α(d(xn+1, xn+2, t)) ≤ lim sup
r→t+

α(r) < 1,

then there exists k < 1 and N Î N such that

α(d(xn+1, xn+2, t)) < k, ∀ n > N. (2:4)

Since M(x, y,.) is non-decreasing then (2.3) together with (2.4) yield

M(xn+1, xn+2, kt) ≥ M(xn+1, xn+2,α(d(xn, xn+1, t))t) ≥ M(xn, xn+1, t).

Then from the above, we get

M(xn+1, xn+2, kt) ≥ M(xn, xn+1, t).

Hence by Lemma 2.1, we get {xn}, which is a Cauchy sequence. Since (X, M, *) is a

complete fuzzy metric space, then there exists x̄ ∈ X such that limn→∞ xn = x̄, that

means limn→∞ M(xn, x̄, t) = 1, for each t > 0. Thus, limn→∞ d(xn, x̄, t) = 0, for each t >

0. Since

lim sup
n→∞

α(d(xn, x̄, t)) ≤ lim sup
r→0+

α(r) < 1,

then there exists k <l < 1 such that

lim sup
n→∞

α(d(xn, x̄, t)) < l.

Now we claim that x̄ ∈ Fx̄. To prove the claim notice first that since

HM(Fxn, Fx̄, lt) ≥ HM(Fxn, Fx̄, kt) ≥ HM(Fxn, Fx̄,α(d(xn, x̄, t))t) ≥ M(xn, x̄, t), and

limn→∞ M(xn, x̄, t) = 1 then for each t > 0, we get

lim
n→∞HM(Fxn, Fx̄, t) = 1. (2:5)

Since xn+1 Î Fxn then from (2.5), we have

lim
n→∞ sup

y∈Fx̄
M(xn+1, y, t) = 1.

Thus there exists a sequence yn ∈ Fx̄ such that

lim
n→∞M(xn, yn, t) = 1,

for each t > 0. For each n Î N, we have

M(yn, x̄, s + t) ≥ M(yn, xn, s) ∗ M(xn, x̄, t).

Hence, from the above, we get

lim
n→∞M(yn, x̄, t) = 1,
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which means limn→∞ yn = x̄. Since Fx̄ is closed (note that Fx̄ is compact), yn → x̄ and

yn ∈ Fx̄ then, we get x̄ ∈ Fx̄.

Corollary 2.5. Let (X, M, *) be a complete fuzzy metric. Suppose F : X ® X is a set-

valued map with non-empty compact values such that for each x, y Î X and t > 0, we

have

HM(Fx, Fy, kt) ≥ M(x, y, t),

where 0 <k < 1. Furthermore, assume that (X, M, *) satisfies (2.1) for some x0 Î X

and x1 Î Fx0. Then F has a fixed point.

From Corollary 2.5, we get the following improvement of the above mentioned result

of Gregori and Sapena [11] (note that for each t > 0 and h > 1, the sequence tn = thn is

s-increasing).

Theorem 2.6. Let (X, M, *) be a complete fuzzy metric space. Suppose f : X ® X is a

map such that for each x, y Î X and t > 0, we have

M(fx, fy, kt) ≥ M(x, y, t),

where 0 <k < 1. Furthermore, assume that (X, M, *) satisfies (2.1) for some x0 Î X,

each t > 0 and h > 1. Then f has a fixed point.

Let (X, d) be a metric space and A and B are non-empty closed bounded subsets of

X. Now set

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

Then H is called the Hausdorff metric. Now, we are ready to derive the following

version of Mizoguchi-Takahashi fixed point theorem [20].

Corollary 2.7. Let (X, d) be a complete metric space. Suppose F : M ® M is a set-

valued map with non-empty compact values such that for some k < 1

H(Fx, Fy) ≤ α(d(x, y))d(x, y),

where a : [0, ∞) ® [0,1) satisfying

lim sup
r→t+

α(r) < 1, ∀t ∈ [0,∞).

Then F has a fixed point.

Proof. Let (X, M, *) be standard fuzzy metric space induced by the metric d with a *

b = ab. Now we show that the conditions of Theorem 2.4 are satisfied. Since (X, d) is

a complete metric space then (X, M, *) is complete. It is easy to see that (X, M, *) satis-

fies (2.1). For each non-empty closed bounded subsets of X, we have

HM(A,B, t) = min

{
inf
x∈A

sup
y∈B

M(x, y, t), inf
y∈B

sup
x∈A

M(x, y, t)

}

= min

{
inf
x∈A

sup
y∈B

t
t + d(x, y)

, inf
y∈B

sup
x∈A

t
t + d(x, y)

}

= min

{
t

t + supx∈Ainfy∈Bd(x, y)
,

t
t + supy∈Binfx∈Ad(x, y)

}

=
t

t + max
{
supx∈Ainfy∈Bd(x, y), supy∈Binfx∈Ad(x, y)

}
=

t
t +H(A,B)

.
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By the above and our assumption, we have

HM(Fx, Fy,α(d(x, y, t))t) =
α(d(x, y))t

α(d(x, y))t +H(Fx, Fy)

≥ α(d(x, y))t
α(d(x, y))(t + d(x, y))

=
t

t + d(x, y)

= M(x, y, t),

for each t > 0 and each x, y Î X. Therefore, the conclusion follows from Theorem

2.4.

3. Endpoint theory
Let X be a non-empty set and let F : X ® 2X be a set-valued map. An element x Î X is

said to be an endpoint (invariant or stationary point) of F, if Fx = {x}. The investigation

of the existence and uniqueness of endpoints of set-valued contraction maps in metric

spaces have received much attention in recent years [21-26].

Definition 3.1. Let (X, M, *) be a fuzzy metric space and let F : X ® X be a multi-

valued mapping. We say that F is continuous if for any convergent sequence xn ® x0
we have HM(Fxn, Fx0, t) ® 1 as n ® ∞, for each t > 0.

As far as we know the following is the first endpoint result for set-valued contraction

type maps in fuzzy metric spaces.

Theorem 3.2. Let (X, M, *) be a complete fuzzy metric space and let F : X → K(X)be

a continuous set-valued mapping. Suppose that for each x Î X there exists y Î Fx satis-

fying

HM(y, Fy, kt) ≥ M(x, y, t), ∀ t > 0, (3:1)

where k Î [0,1). Then, F has an endpoint.

Proof. For each x Î X, define the function f : X ® [0, ∞) by f(x, t) = HM(x, Fx, t) =

infyÎFx M(x, y, t), x Î X. Suppose that {xn} converges to x; then for any y Î Fx and z Î
Fxn, we have

M
(
x, y, t

) ≥ M
(
x, xn,

t
3

)
∗ M

(
xn, z,

t
3

)
∗ M

(
z, y,

t
3

)

≥ M
(
x, xn,

t
3

)
∗ HM

(
xn, Fxn,

t
3

)
∗ HM

(
z, Fx,

t
3

)

≥ M
(
x, xn,

t
3

)
∗ f

(
xn,

t
3

)
∗ HM

(
Fxn, Fx,

t
3

)
.

Since y Î Fx is arbitrary then from the above, we get

f (x, t) = HM(x, Fx, t) ≥ M
(
x, xn,

t
3

)
∗ f

(
xn,

t
3

)
∗ HM

(
Fxn, Fx,

t
3

)
.

It follows from the continuity of F that

f (x, t) ≥ lim sup
n→∞

(
M

(
x, xn,

t
3

)
∗ f (xn) ∗ HM

(
Fxn, Fx,

t
3

))
= lim sup

n→∞
f
(
xn,

t
3

)
.
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Hence,

f (x, t) ≥ lim sup
n→∞

f
(
xn,

t
3

)
,

whenever xn ® x. Let x0 Î X. Then by (3.1) there exists a x1 Î Fx0 such that

HM (x1, Fx1, kt) ≥ M (x0, x1, t) .

Continuing this process, we can choose a sequence {xn}n≥0 in X such that xn+1 Î Fxn
satisfying

HM (xn+1, Fxn+1, kt) ≥ M (xn, xn+1, t) . (3:2)

From the definition of HM (xn, Txn), we have

M (xn, xn+1, t) ≥ HM (xn, Fxn, t) . (3:3)

From (3.2) and (3.3), we get

HM (xn+1, Fxn+1, kt) ≥ M (xn, xn+1, t)

≥ HM (xn, Fxn, t)

≥ HM (xn, Fxn, kt)

≥ M
(
xn−1, xn,

1
k
t
)
,

(3:4)

which implies that {HM (xn, Fxn, kt)}n is a non-negative non-decreasing sequence of

real numbers and so is convergent. To find the limit of {H(xn, Fxn, kt)}n notice that

HM (xn+1, Fxn+1, kt) ≥ HM (xn, Fxn, t)

≥ HM

(
xn−1, Fxn−1,

1
k
t
)

≥ · · · ≥ HM

(
x0, Fx0,

1
kn

t
)
.

(3:5)

Since Fx0 is compact then there exists a y0 Î Fx0 such that

HM

(
x0, Fx0,

1
kn

t
)
= M

(
x0, y0,

1
kn

t
)
. (3:6)

(3.5) together with (3.6) imply that for each n Î N

HM (xn+1, Fxn+1, kt) ≥ M
(
x0, y0,

1
kn

t
)
.

From (2.1) we have limn→∞ M
(
x0, y0,

1
kn

t
)
= 1 and so

lim
n→∞HM (xn, Fxn, t) = 1, ∀ t > 0.

From (3.2), we get

M (xn, xn+1, t) ≥ M
(
xn−1, xn,

1
k
t
)
,

from which and Lemma (2.1), we get {xn} is a Cauchy sequence. Since (X, M, *) is a

complete fuzzy metric space then there exists a x̄ ∈ X such that limn→∞ xn = x̄. By

assumption the function f(x) = HM (x, Fx, t) is upper semicontinuous, then

Kiany and Amini-Harandi Fixed Point Theory and Applications 2011, 2011:94
http://www.fixedpointtheoryandapplications.com/content/2011/1/94

Page 8 of 9



HM (x̄, Fx̄, t) ≥ lim
n→∞HM (xn, Fxn, t) = 1.

Thus

HM (x̄, Fx̄, t) = 1,

and so Fx̄ = {x̄}.
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