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Abstract. In this work, we consider a mathematical model describing the dynamics of visceral
leishmaniasis in a population of dogs𝐷. First, we consider the case of constant total population
𝐷, this is the case where birth and death rates are equal, in this case transcritical bifurcation
occurs when the basic reproduction number ℛ0 is equal to one, and global stability is shown
by the mean of suitable Lyapunov functions. After that, we consider the case where the birth
and death rates are different, if the birth rate is great than death rate the total dog population
increases exponentially, while the infectious dogs 𝐼 dies out if the basic reproduction number is
less than one, if it is great than one then𝐷 goes to infinity.We also prove that the total population
𝐷 will extinct for birth rate less than death rate. Finally we give numerical simulations.
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1. Introduction

In this paper, we investigate a mathematical model of zoonotic visceral leishmaniasis (ZVL),
the model studied here is inspired from [1, 4, 5]. Zoonotic visceral leishmaniasis (ZVL) caused
by Leishmania infantum is a disease of humans and domestic dogs (the reservoir) transmitted
by phlebotomize sandflies. According to the World Health Organization, leishmaniasis is one
of the diseases affecting the poorest in developing countries, 350 million people are considered
at risk of contracting leishmaniasis (see [11]).

Many works have considered mathematical models for ZVL, we can cite [1, 4–10], where
behavior of infection, and stability of free disease and endemic equilibria are studied.

Following [1, 4], at time 𝑡 let the dog population of size𝐷(𝑡), it is divided into two categories,
ever-infectious dogs (that become infectious) and never-infected dogs. Ever-infectious dogs
category is partitioned into three subclasses who are susceptible (uninfected), latent (infected
but not infectious) and infectious dogs, with sizes (numbers) denoted by 𝑆(𝑡), 𝐿(𝑡) and 𝐼(𝑡)
respectively. Never-infected dogs category is partitioned into two subclasses who are uninfected
and infected dogs, with sizes denoted by 𝑅(𝑡) and 𝑄(𝑡) respectively (Figure 1).

The sum 𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑄(𝑡) is the total population 𝐷(𝑡). The natural death rate
𝛿 is assumed to be identical in all subclasses. A proportion 𝛼 of the dogs born susceptible to
ZVL with 0 < 𝛼 < 1. Consequently, the birth flux into the susceptible class is 𝛼𝛽𝐷(𝑡) and
into the resistant class is (1 − 𝛼)𝛽𝐷(𝑡) where 𝛽 is the natural birth rate of dogs. The latent
dogs become infectious and re-enter into infected class with rate 𝜎. The force of infection is
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Figure 1: Compartmental model.

𝐶𝐼(𝑡)/𝐷(𝑡), where 𝐶 is the vectorial capacity of the sandfly population transmitting infection
between dogs. It is denoted by 𝐶𝐼(𝑡)𝑆(𝑡)/𝐷(𝑡) (resp. 𝐶𝐼(𝑡)𝑅(𝑡)/𝐷(𝑡)) for the contact between
infectious and susceptible (resp. infectious and uninfected) dogs.

Based on the above assumptions, we obtain the epidemic model governed by the following
system of ordinary differential equations (see [1, 4])

⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝛼𝛽𝐷 − 𝐶𝐼𝑆

𝐷 − 𝛿𝑆,

𝑑𝐿
𝑑𝑡 = 𝐶𝐼𝑆

𝐷 − (𝜎 + 𝛿)𝐿,

𝑑𝐼
𝑑𝑡 = 𝜎𝐿 − 𝛿𝐼,

𝑑𝑅
𝑑𝑡 = (1 − 𝛼) 𝛽𝐷 − 𝐶𝐼𝑅

𝐷 − 𝛿𝑅,

𝑑𝑄
𝑑𝑡 = 𝐶𝐼𝑅

𝐷 − 𝛿𝑄

(1)

with initial conditions

𝑆(0) ≥ 0, 𝐿(0) ≥ 0, 𝐼(0) ≥ 0,𝑅(0) ≥ 0 and 𝑄(0) ≥ 0. (2)

From system (1), it follows that the total dog population𝐷(𝑡) = 𝑆(𝑡) +𝐿(𝑡) + 𝐼(𝑡) +𝑅(𝑡) +𝑄(𝑡)
can be determined from the differential equation 𝑑𝐷

𝑑𝑡 = (𝛽 − 𝛿)𝐷 which gives 𝐷(𝑡) = 𝐷0𝑒(𝛽−𝛿)𝑡,
where 𝐷0 = 𝐷(0).

Therefore

lim
𝑡→∞

𝐷(𝑡) =
⎧⎪
⎨
⎪⎩

0 if 𝛽 < 𝛿,
𝐷0 if 𝛽 = 𝛿,
∞ if 𝛽 > 𝛿.

In [1], the case of constant total population is considered (i.e. 𝛽 = 𝛿), where well-posedness
of (1), (2) is proved and local stability of equilibria is investigated. In fact, the disease free
equilibrium 𝐸𝑓 = (𝑆0, 𝐿0, 𝐼0, 𝑅0, 𝑄0) = (𝛼𝐷, 0, 0, (1−𝛼)𝐷, 0) is locally asymptotically stable
for ℛ0(𝛿) = 𝐶𝛼𝜎

𝛿(𝜎+𝛿) < 1, and unstable for ℛ0(𝛿) > 1. For ℛ0(𝛿) > 1, the endemic equilibrium
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𝐸∗ = (𝑆∗, 𝐿∗, 𝐼∗, 𝑅∗, 𝑄∗) = (
𝛼𝐷
ℛ0(𝛿)

, 𝛿
2𝐷(ℛ0(𝛿)−1)

𝜎𝐶 , 𝛿𝐷(ℛ0(𝛿)−1)
𝐶 , (1−𝛼)𝐷ℛ0(𝛿)

, (1−𝛼)𝐷(ℛ0(𝛿)−1)
ℛ0(𝛿) ) exists and

is locally asymptotically stable.
In this paper, we study the global stability of equilibria of (1) by constructing a suitable Lya-

punov functions and using LaSalle’s invariance principle when 𝛿 = 𝛽. A critical caseℛ0(𝛿) = 1
is also investigated. After that, we consider the case where 𝛽 ≠ 𝛿. Numerical simulations are
given in section four to illustrate our results. We end our work by some conclusions.

2. Constant Total Population (Case 𝛿 = 𝛽)
The results of Boukhalfa et al. [1] are given in Theorems 2.1 and 2.2.

Theorem 2.1 (see [1]). Assume that 𝛽 = 𝛿. System (1) has the following equilibria:

• The disease free equilibrium 𝐸𝑓 = (𝑆0, 𝐿0, 𝐼0, 𝑅0, 𝑄0) = (𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 0) which
exists always.

• If ℛ0(𝛿) > 1, the system (1) admits a unique positive equilibrium 𝐸∗ = (𝑆∗, 𝐿∗, 𝐼∗,
𝑅∗, 𝑄∗) = (

𝛼𝐷
ℛ0
, 𝛿

2𝐷(ℛ0−1)
𝜎𝐶 , 𝛿𝐷(ℛ0−1)

𝐶 , (1−𝛼)𝐷ℛ0
, (1−𝛼)𝐷(ℛ0−1)

ℛ0 ) namely the endemic equilib-
rium.

Theorem 2.2 (see [1]). Let 𝛽 = 𝛿.

• Ifℛ0(𝛿) < 1, then the disease free equilibrium (DFE) 𝐸𝑓 of (1) is locally asymptotically
stable. Ifℛ0(𝛿) > 1, 𝐸𝑓 is unstable.

• Ifℛ0(𝛿) > 1, the endemic equilibrium 𝐸∗ of (1) is locally asymptotically stable.

The first four equations of (1) are independent of 𝑄, therefore the last equation of (1) can be
omitted without loss of generality. Hence, system (1) is reduced to

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝛼𝛽𝐷 − 𝐶𝐼𝑆

𝐷 − 𝛿𝑆,

𝑑𝐿
𝑑𝑡 = 𝐶𝐼𝑆

𝐷 − (𝜎 + 𝛿)𝐿,

𝑑𝐼
𝑑𝑡 = 𝜎𝐿 − 𝛿𝐼,

𝑑𝑅
𝑑𝑡 = (1 − 𝛼) 𝛽𝐷 − 𝐶𝐼𝑅

𝐷 − 𝛿𝑅

(3)

with initial conditions

𝑆(0) ≥ 0, 𝐿(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 (4)

and 𝐷(𝑡) = 𝐷0𝑒(𝛽−𝛿)𝑡.
The considered region for (3) is

Γ̃𝐷 ∶= {(𝑆, 𝐿, 𝐼, 𝑅) ∈ ℝ4
+\𝑆 + 𝐿 + 𝐼 + 𝑅 ≤ 𝐷}.

which is positively invariant since all solutions of (3) in Γ̃𝐷 remain there for all 𝑡 ≥ 0.
Let 𝐸̃𝑓 = (𝑆0, 0, 0, 𝑅0) and 𝐸̃∗ = (𝑆∗, 𝐿∗, 𝐼∗, 𝑅∗) be the equilibria of (3).

doi:10.11131/2017/101263 Page 3



Research in Applied Mathematics

2.1. Bifurcation analysis

The caseℛ0(𝛿) = 1 corresponding to 𝐶 = 𝐶1 = 𝛿(𝜎+𝛿)
𝛼𝜎 .

To prove bifurcation for ℛ0(𝛿) = 1, we use center manifold method described in Castillo-
Chavez and Song [2]. To this aim, let 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) such that 𝑥1 = 𝑆, 𝑥2 = 𝐿, 𝑥3 = 𝐼 ,
𝑥4 = 𝑅.

From (3) we obtain

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑑𝑥1
𝑑𝑡 = 𝛼𝛽𝐷 − 𝐶𝑥3𝑥1

𝐷 − 𝛽𝑥1 = 𝑓1(𝑥, 𝐶),

𝑑𝑥2
𝑑𝑡 = 𝐶𝑥3𝑥1

𝐷 − (𝜎 + 𝛽) 𝑥2 = 𝑓2(𝑥, 𝐶),

𝑑𝑥3
𝑑𝑡 = 𝜎𝑥2 − 𝛽𝑥3 = 𝑓3(𝑥, 𝐶),

𝑑𝑥4
𝑑𝑡 = (1 − 𝛼) 𝛽𝐷 − 𝐶𝑥3𝑥4

𝐷 − 𝛽𝑥4 = 𝑓4(𝑥, 𝐶).

(5)

The linearization matrix of system (3) around the disease-free equilibrium for 𝐶 = 𝐶1 is

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝛿 0 −𝐶1𝛼 0

0 − (𝜎 + 𝛿) 𝐶1𝛼 0

0 𝜎 −𝛿 0

0 0 −(1 − 𝛼)𝐶1 −𝛿

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The eigenvalues of 𝐴 are 𝜆1 = −𝛿 with multiplicity two, 𝜆2 = 0 and 𝜆3 = −𝜎 − 2𝛿. Zero is a
simple eigenvalue of 𝐴 and the other eigenvalues have negative real parts.

A right eigenvector𝑊 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)𝑇 such that𝐴𝑊 = 𝜆2𝑊 (corresponding to the zero
eigenvalue) is𝑊 = (−𝜎+𝛿

𝛿 , 1, 𝜎𝛿 , −(1 − 𝛼)𝐶1𝜎𝛿2 )
𝑇 and the left eigenvector 𝑉 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) such

that 𝑉𝐴 = 𝜆2𝑉 and 𝑉.𝑊 = 1 is 𝑉 = (0, 𝛿
𝜎+2𝛿 ,

𝛿(𝜎+𝛿)
𝜎(𝜎+2𝛿) , 0).

Let

𝑎 =
4

∑
𝑘,𝑖,𝑗=1

𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

and

𝑏 =
4

∑
𝑘,𝑖=1

𝑣𝑘𝑤𝑖
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝐶

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1).
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The second partial derivatives of 𝑓2 and 𝑓3 are given by

𝜕2𝑓2
𝜕𝑥1𝜕𝑥3

= 𝐶
𝐷, 𝜕2𝑓2

𝜕𝑥21
= 𝜕2𝑓2
𝜕𝑥1𝜕𝑥2

= 𝜕2𝑓2
𝜕𝑥1𝜕𝑥4

= 0,

𝜕2𝑓2
𝜕𝑥1𝜕𝐶

= 𝑥3
𝐷 , 𝜕2𝑓2

𝜕𝑥22
= 𝜕2𝑓2
𝜕𝑥1𝜕𝑥2

= 𝜕2𝑓2
𝜕𝑥2𝜕𝑥3

= 𝜕2𝑓2
𝜕𝑥2𝜕𝑥4

= 0,

𝜕2𝑓2
𝜕𝑥3𝜕𝑥3

= 𝜕2𝑓2
𝜕𝑥23

= 𝜕2𝑓2
𝜕𝑥3𝜕𝑥4

= 0, 𝜕2𝑓2
𝜕𝑥3𝜕𝐶

= 𝑥1
𝐷 ,

𝜕2𝑓2
𝜕𝑥4𝜕𝑥1

= 𝜕2𝑓2
𝜕𝑥4𝜕𝑥2

= 𝜕2𝑓2
𝜕𝑥4𝜕𝑥3

= 𝜕2𝑓2
𝜕𝑥24

= 0,

𝜕2𝑓3
𝜕𝑥𝑖𝜕𝑥𝑗

= 0, 1 ≤ 𝑖, 𝑗 ≤ 4.

It follows that

𝑎 = 𝑣2
4

∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗
𝜕2𝑓2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

+𝑣3∑4
𝑖,𝑗=1𝑤𝑖𝑤𝑗

𝜕2𝑓3
𝜕𝑥𝑖𝜕𝑥𝑗

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

= 2𝑣2𝑤1𝑤3
𝜕2𝑓2
𝜕𝑥1𝜕𝑥3

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

= −2 𝜎(𝜎 + 𝛿)
𝛿(𝜎 + 2𝛿) < 0,

and

𝑏 = 𝑣2
4

∑
𝑖=1

𝑤𝑖
𝜕2𝑓2
𝜕𝑥𝑖𝜕𝐶

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

+𝑣3∑4
𝑖=1𝑤𝑖

𝜕2𝑓3
𝜕𝑥𝑖𝜕𝐶

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

= 𝑣2𝑤3
𝜕2𝑓2
𝜕𝑥3𝜕𝐶

(𝛼𝐷, 0, 0, (1 − 𝛼)𝐷, 𝐶1)

= 𝛼𝜎
2𝛿 + 𝜎 > 0.

Thus 𝑎 < 0 and 𝑏 > 0, from result of Theorem 4.1 in Castillo-Chavez and Song [2] we deduce
the following theorem.

Theorem 2.3. A transcritical bifurcation occurs atℛ0(𝛿) = 1. When 𝐶 crosses 𝐶1, a disease
free equilibrium 𝐸̃𝑓 changes its stability from stable to unstable. Correspondingly, a negative
unstable equilibrium 𝐸̃∗ for 𝐶 < 𝐶1, becomes positive and locally asymptotically stable for
𝐶 > 𝐶1 (Figure 2).
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Figure 2: Bifurcation diagram for (3).

2.2. Global stability

In this subsection we investigate the global asymptotic stability of disease free equilibrium 𝐸𝑓
and endemic equilibrium 𝐸∗.

We state the following theorem.

Theorem 2.4.

• If 𝑅0(𝛿) ≤ 1, then 𝐸̃𝑓 is globally asymptotically stable in Γ̃𝐷.
• If 𝑅0(𝛿) > 1, then 𝐸̃∗ is globally asymptotically stable in Γ̃𝐷 \̃Λ𝐷 where Λ̃𝐷 = {(𝑆, 0,
0, 𝑅) ∈ ℝ4

+\0 ≤ 𝑆 + 𝑅 ≤ 𝐷}.

Proof. To study the global stability, we reduce system (3) as follow

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑑𝑆
𝑑𝑡 = 𝛼𝛿𝐷 − 𝐶𝐼𝑆

𝐷 − 𝛿𝑆,

𝑑𝐿
𝑑𝑡 = 𝐶𝐼𝑆

𝐷 − (𝜎 + 𝛿)𝐿,

𝑑𝐼
𝑑𝑡 = 𝜎𝐿 − 𝛿𝐼.

(6)

Since 𝑆, 𝐿 and 𝐼 are independent of 𝑅, we study the system (6) in the closed set

Ω̃𝐷 = {(𝑆, 𝐿, 𝐼) ∈ ℝ3
+\0 ≤ 𝑆 + 𝐿 + 𝐼 ≤ 𝐷}.

• By means of a Lyapunov function we show that the disease free equilibrium 𝐸̃𝑓 is
globally asymptotically stable.
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We set

𝑉1(𝑆, 𝐿, 𝐼) =
1
2𝑆0 (𝑆 − 𝑆0)2 + 𝐿 + 𝜎 + 𝛿

𝜎 𝐼 + 1
2(𝑆 − 𝑆0 + 𝐿 + 𝐼)2.

𝑉1(𝑆, 𝐿, 𝐼) ≥ 0 and 𝑉1(𝑆, 𝐿, 𝐼) = 0 if and only if 𝑆 = 𝑆0 and 𝐿 = 𝐼 = 0.

Computing the time derivative of 𝑉1, we find

𝑑𝑉1
𝑑𝑡 = 1

𝑆0 (𝑆 − 𝑆0)𝑑𝑆𝑑𝑡 +
𝑑𝐿
𝑑𝑡 +

𝜎 + 𝛿
𝜎

𝑑𝐼
𝑑𝑡 + (𝑆 − 𝑆0 + 𝐿 + 𝐼) (

𝑑𝑆
𝑑𝑡 +

𝑑𝐿
𝑑𝑡 +

𝑑𝐼
𝑑𝑡 )

= 1
𝑆0 (𝑆 − 𝑆0) (𝛼𝛿𝐷 − 𝐶𝐼𝑆

𝐷 − 𝛿𝑆) +
𝐶𝐼𝑆
𝐷 − (𝜎 + 𝛿)𝐿

+𝜎 + 𝛿
𝜎 (𝜎𝐿 − 𝛽𝐼) + (𝑆 − 𝑆0 + 𝐿 + 𝐼) (𝛼𝛿𝐷 − 𝛿𝑆 − 𝛿𝐿 − 𝛿𝐼)

= (
𝑆 − 𝑆0

𝑆0 )(−
𝐶𝐼𝑆
𝐷 − 𝛿(𝑆 − 𝑆0)) +

𝐶𝐼𝑆
𝐷 − (𝜎 + 𝛿)𝐿

+𝜎 + 𝛿
𝜎 (𝜎𝐿 − 𝛿𝐼) − 𝛿(𝑆 − 𝑆0 + 𝐿 + 𝐼)2

= − 𝛿
𝑆0 (𝑆−𝑆

0)2+(2𝑆−
𝑆2

𝑆0 −𝑆
0
)
𝐶
𝐷𝐼+(𝑆

0𝐶
𝐷−𝛿𝜎 + 𝛿

𝜎 )𝐼−𝛿(𝑆−𝑆
0+𝐿+𝐼)2.

We can show that the coefficients of the term 𝐼 in the last equality are negative. In fact,
since 𝑆0 = 𝛼𝐷 andℛ0(𝛿) = 𝐶𝜎𝛼

𝛿(𝛿+𝜎) , we have 𝑆
0 𝐶
𝐷 −𝛿

𝜎+𝛿
𝜎 = 𝐶𝛼(ℛ0(𝛿)−1)

ℛ0(𝛿)
,which is negative

for 𝑅0(𝛿) ≤ 1. Further, we have 2𝑆 − 𝑆2

𝑆0 − 𝑆0 ≤ 0 for 𝑆 ≥ 0.

Thus, for 𝑅0(𝛿) ≤ 1 we have 𝑑𝑉1
𝑑𝑡 (𝑆, 𝐼, 𝐿) ≤ 0 for all (𝑆, 𝐿, 𝐼) ∈ Ω̃𝐷. And

𝑑𝑉1
𝑑𝑡 = 0 if and

only if (𝑆, 𝐿, 𝐼) = (𝑆0, 0, 0) holds.

Thus, the only invariant set contained in Ω̃𝐷 is {̃𝐸𝑓}. Hence, LaSalle’s theorem implies
convergence of the solutions (𝑆, 𝐿, 𝐼) to (𝑆0, 0, 0) if initial values are in Ω̃𝐷.

Further, we have

lim
𝑡→+∞

𝐼(𝑡) = 0 ⇔ ∀𝜖 > 0, ∃𝐴𝜖 > 0 such that for 𝑡 > 𝐴𝜖 we have |𝐼(𝑡)| < 𝜖.

Let 𝜖 > 0, from equation four of system (3) we have

−(𝜖 𝐶𝐷 + 𝛿)𝑅 + (1 − 𝛼)𝛿𝐷 ≤ 𝑑
𝑑𝑡𝑅(𝑡) ≤ −(−𝜖 𝐶𝐷 + 𝛿)𝑅 + (1 − 𝛼)𝛿𝐷.
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After integrating between 𝐴𝜖 and 𝑡 we obtain

(1 − 𝛼)𝛿𝐷

𝜖𝐶𝐷 + 𝛿
≤ lim

𝑡→∞
𝑅(𝑡) ≤ (1 − 𝛼)𝛿𝐷

−𝜖𝐶𝐷 + 𝛿

for all 𝜖 such that 0 < 𝜖 < 𝐷
𝐶 𝛿. Thus lim

𝑡→∞
𝑅(𝑡) = (1 − 𝛼)𝐷 = 𝑅0.

Therefore, for ℛ0(𝛿) ≤ 1 the disease free equilibrium 𝐸̃𝑓 is globally asymptotically
stable in Γ̃𝐷.

• Let

𝑉2(𝑆, 𝐿, 𝐼) =
𝛿𝐷
𝐶𝑆∗ (𝑆−𝑆∗−𝑆∗ ln 𝑆

𝑆∗ )+
𝛿𝐷
𝐶𝑆∗ (𝐿−𝐿∗−𝐿∗ ln 𝐿

𝐿∗ )+ (𝐼−𝐼∗−𝐼∗ ln
𝐼
𝐼∗ )

for (𝑆, 𝐿, 𝐼) ∈ Γ̃𝐷 \̃Λ𝐷.
Then, we have

𝑑𝑉2
𝑑𝑡 = 𝛿𝐷

𝐶𝑆∗ (1 −
𝑆∗

𝑆 )𝑑𝑆𝑑𝑡 +
𝛿𝐷
𝐶𝑆∗ (1 −

𝐿∗

𝐿 )𝑑𝐿𝑑𝑡 + (1 − 𝐼∗
𝐼 )𝑑𝐼𝑑𝑡

= 𝛿𝐷
𝐶𝑆∗ (−

𝛿
𝑆 (𝑆 − 𝑆∗)2 − 𝐶𝑆∗

𝐷𝑆 (𝐼 − 𝐼∗)(𝑆 − 𝑆∗) − 𝐶
𝐷(𝑆 − 𝑆∗)𝐼 𝑆 − 𝑆∗

𝑆 )

+ 𝛿𝐷
𝐶𝑆∗ (

𝐶𝐼𝑆
𝐷 − (𝜎 + 𝛿)𝐿 − 𝐿∗

𝐿
𝐶𝐼𝑆
𝐷 + 𝐿∗(𝜎 + 𝛿))

+(𝜎𝐿 − 𝛿𝐼 − 𝐼∗
𝐼 𝜎𝐿 + 𝐼∗𝛿)

= 𝛿𝐷
𝐶𝑆∗ (−

𝛿
𝑆 (𝑆 − 𝑆∗)2 + 𝐶𝑆∗2

𝐷
𝐼
𝑆 − 𝐶𝑆∗2𝐼∗

𝐷𝑆 − 𝐶
𝐷𝐼𝑆 − 𝐶

𝐷𝑆∗2 𝐼
𝑆 + 2𝐶𝐷𝑆∗𝐼)

+ 𝛿𝐷
𝐶𝑆∗ (

𝐶
𝐷𝐼𝑆 − (𝜎 + 𝛿)𝐿 − 𝐶𝐿∗

𝐷
𝐼𝑆
𝐿 + 𝐿∗(𝜎 + 𝛿))

+𝜎𝐿 − 𝛿𝐼 − 𝐼∗
𝐼 𝜎𝐿 + 𝐼∗𝛿

= − 𝛿𝐷
𝐶𝑆∗

𝛿
𝑆 (𝑆 − 𝑆∗)2 + 𝛿𝐼∗ − 𝛿𝑆∗𝐼∗

𝑆 − 𝛿
𝑆∗ 𝐼𝑆 + 𝛿𝐼

+ 𝛿
𝑆∗ 𝐼𝑆 −

𝛿𝐷
𝐶𝑆∗ (𝜎 + 𝛿)𝐿 − 𝛿𝐿∗

𝑆∗
𝐼𝑆
𝐿 + 𝛿𝐷

𝐶𝑆∗𝐿∗(𝜎 + 𝛿)

+𝜎𝐿 − 𝛿𝐼 − 𝐼∗
𝐼 𝜎𝐿 + 𝐼∗𝛿

= − 𝛿𝐷
𝐶𝑆∗

𝛿
𝑆 (𝑆 − 𝑆∗)2 + 2𝛿𝐼∗ − 𝛿𝑆∗𝐼∗

𝑆 + (𝜎 −
𝛿𝐷
𝐶𝑆∗ (𝜎 + 𝛿))𝐿

−𝛿𝐿
∗

𝑆∗
𝐼𝑆
𝐿 + 𝛿𝐷

𝐶𝑆∗𝐿∗(𝜎 + 𝛿) − 𝐼∗
𝐼 𝜎𝐿.
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Since 𝑆∗ = 𝐷𝛿(𝜎 + 𝛿)
𝐶𝜎 and 𝐿∗ = 𝛿

𝜎 𝐼
∗, we have

𝑑𝑉2
𝑑𝑡 = − 𝜎

𝜎 + 𝛿
𝛿
𝑆 (𝑆 − 𝑆∗)2 + 3𝛿𝐼∗ − 𝛿𝑆∗𝐼∗

𝑆 − 𝛿𝐿∗

𝑆∗
𝐼𝑆
𝐿 − 𝐼∗

𝐼 𝜎𝐿

= − 𝜎
𝜎 + 𝛿

𝛿
𝑆 (𝑆 − 𝑆∗)2 − 𝛿𝐼∗( 𝑆𝑆∗

𝛿
𝜎
𝐼
𝐿 + 𝑆∗

𝑆 + 𝜎
𝛿
𝐿
𝐼 − 3)

which is negative if ( 𝑆𝑆∗
𝛿
𝜎
𝐼
𝐿 +

𝑆∗

𝑆 + 𝜎
𝛿
𝐿
𝐼 − 3) is positive.

Set 𝑢 = 𝑆∗

𝑆 and 𝑣 = 𝜎
𝛿
𝐿
𝐼 and consider the function

ℎ(𝑢, 𝑣) = 𝑢 + 𝑣 + 1
𝑣𝑢 − 3.

Computing the first derivatives of ℎ, we have 𝜕ℎ(𝑢,𝑣)
𝜕𝑢 = 1 − 1

𝑢2𝑣 and 𝜕ℎ(𝑢,𝑣)
𝜕𝑣 = 1 − 1

𝑢𝑣2 .
Moreover 𝜕ℎ(1,1)

𝜕𝑢 = 0 and 𝜕ℎ(1,1)
𝜕𝑣 = 0, thus (1, 1) is a critical point of ℎ. For the second

derivatives of ℎ, we have 𝜕2ℎ(𝑢,𝑣)
𝜕𝑢𝜕𝑣 = 1

𝑢2𝑣2 ,
𝜕2ℎ(𝑢,𝑣)
𝜕𝑢2 = 2

𝑣𝑢3 and
𝜕2ℎ(𝑢,𝑣)
𝜕𝑣2 = 2

𝑢𝑣3 .

We obtain

𝐻𝑒𝑠𝑠(ℎ)(1, 1) = (
𝜕2ℎ(1, 1)
𝜕𝑢𝜕𝑣 )

2
− 𝜕2ℎ(1, 1)

𝜕𝑢2
𝜕2ℎ(1, 1)
𝜕𝑣2 = 3.

We have 𝐻𝑒𝑠𝑠(ℎ)(1, 1) < 0 and 𝜕2ℎ(1,1)
𝜕𝑢2 > 0, therefore the function ℎ has a minimum

point (𝑢, 𝑣) = (1, 1).

Moreover, ℎ(1, 1) = 0 and ℎ ≥ 0 which imply that ( 𝑆𝑆∗
𝛿
𝜎
𝐼
𝐿 +

𝑆∗

𝑆 + 𝜎
𝛿
𝐿
𝐼 − 3) is positive.

Thus 𝑑
𝑑𝑡𝑉2(𝑆, 𝐿, 𝐼) ≤ 0.

The function 𝑉2 is a Lyapunov function for system (6), and 𝑑
𝑑𝑡𝑉2(𝑆, 𝐿, 𝐼) = 0 if and only

if 𝑆 = 𝑆∗ and 𝜎𝐿 = 𝛿𝐼 . Looking at the first equation in system (6) for 𝑆 = 𝑆∗ we obtain
𝐼 = 𝐼∗.

Hence 𝐿 = 𝐿∗ and the equilibrium (𝑆∗, 𝐿∗, 𝐼∗) is the only point satisfying 𝑑
𝑑𝑡𝑉2(𝑆, 𝐿, 𝐼)

= 0.

Thus the only invariant set contained in Ω̃𝐷 is {̃𝐸∗}, hence LaSalle’s theorem implies
convergence of the solutions (𝑆, 𝐿, 𝐼) to (𝑆∗, 𝐿∗, 𝐼∗) for all initial values in Ω̃𝐷 \̃Σ𝐷 where

Σ̃𝐷 ∶= {(𝑆, 0, 0) ∈ ℝ3
+\0 ≤ 𝑆 ≤ 𝐷}.

Moreover, using the procedure above, we can show that lim
𝑡→∞

𝑅(𝑡) = 𝑅∗. Therefore, for

ℛ0(𝛿) > 1 the endemic equilibrium 𝐸̃∗ is globally asymptotically stable in Γ̃𝐷 \̃Λ𝐷.
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Remark 2.1. If ℛ0(𝛿) > 1 and the initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0)) ∈ Γ̃𝐷 with
(𝑆(0), 𝐿(0), 𝐼(0)) ∈ Σ̃𝐷, then the solution of (3) converges to the disease free equilibrium
𝐸̃𝑓 .

Corollary 2.1.

• If 𝑅0(𝛿) ≤ 1, then 𝐸𝑓 is globally asymptotically stable in Γ𝐷 ∶= {(𝑆, 𝐿, 𝐼, 𝑅,𝑄) ∈
ℝ5\𝑆 + 𝐿 + 𝐼 + 𝑅 + 𝑄 = 𝐷}.

• If 𝑅0(𝛿) > 1, then 𝐸∗ is globally asymptotically stable in Γ𝐷\Λ𝐷 where Λ𝐷 ∶=
{(𝑆, 0, 0, 𝑅,𝑄) ∈ ℝ5

+\0 ≤ 𝑆 + 𝑅 + 𝑄 ≤ 𝐷}. In addition, if the initial conditions
(𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0)) ∈ Λ𝐷 then the solution of (1) converges to the disease free
equilibrium 𝐸𝑓 .

3. Non Constant Total Population (Case 𝛿 ≠ 𝛽)
Let us introduce new non-dimensional variables

𝑠 = 𝑆
𝐷, 𝑙 = 𝐿

𝐷, 𝑖 = 𝐼
𝐷, 𝑟 = 𝑅

𝐷 and 𝑞 = 𝑄
𝐷.

We obtain the system

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑠′ = 𝛼𝛽 − 𝐶𝑖𝑠 − 𝛽𝑠,

𝑙′ = 𝐶𝑖𝑠 − (𝜎 + 𝛽)𝑙,

𝑖′ = 𝜎𝑙 − 𝛽𝑖,

𝑟′ = (1 − 𝛼) 𝛽 − 𝐶𝑖𝑟 − 𝛽𝑟,

𝑞′ = 𝐶𝑖𝑟 − 𝛽𝑞

(7)

with initial conditions

𝑠(0) ≥ 0, 𝑙(0) ≥ 0, 𝑖(0) ≥ 0, 𝑟(0) ≥ 0, 𝑞(0) ≥ 0. (8)

From the homogeneity of (1), note that the total population size 𝐷 does not appear in (7). Also
observe that the first four equations in (7) do not depend on 𝑞 and 𝑠+𝑙+𝑖+𝑟+𝑞 = 1. Therefore
the last equation can be omitted without loss of generality. Hence, system (7) can be reduced to

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝑠′ = 𝛼𝛽 − 𝐶𝑖𝑠 − 𝛽𝑠,

𝑙′ = 𝐶𝑖𝑠 − (𝜎 + 𝛽)𝑙,

𝑖′ = 𝜎𝑙 − 𝛽𝑖,

𝑟′ = (1 − 𝛼) 𝛽 − 𝐶𝑖𝑟 − 𝛽𝑟.

(9)

We study (9) in the closed set

Γ̃1 = {(𝑠, 𝑙, 𝑖, 𝑟) ∈ ℝ4
+\0 ≤ 𝑠 + 𝑙 + 𝑖 + 𝑟 ≤ 1}.
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Figure 3: Bifurcation diagram for system (1). In left figure, the initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) ∈
Γ𝐷0 \Λ𝐷0 , whenever 𝛽 > 𝛿 and 𝛽 > 𝛽1 = −𝜎+√𝜎2+4𝐶𝜎𝛼

2 the disease dies out while the total population increases
exponentially. Although the disease spreads (that is, the number of infected grows in total number) when 𝛽1 < 𝛽. In
right figure, the initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) ∈ Λ𝐷0

. Then, whenever 𝛽 > 𝛿 the disease dies out
while the total population increases exponentially. Note that when 𝛽 < 𝛿, the total population decreases exponentially.

The set Γ̃1 is positively invariant with respect to (9).
Note that (9) is equivalent to (3) for 𝐷 = 1 and 𝛿 = 𝛽. The basic reproduction number is

given by

ℛ0(𝛽) =
𝐶𝛼𝜎

𝛽(𝜎 + 𝛽) .

From Theorem 2.4 and Remark 2.1 we deduce the following results.

Theorem 3.1.

(i) If ℛ0(𝛽) ≤ 1, then 𝑒𝑓 = (𝑠0, 𝑙0, 𝑖0, 𝑟0) = (𝛼, 0, 0, 1 − 𝛼) is the only equilibrium of (9),
namely disease free equilibrium, it is globally asymptotically stable in Γ̃1.

(ii) If ℛ0(𝛽) > 1, then 𝑒𝑓 is unstable and there exists a unique endemic equilibrium 𝑒∗ =
(𝑠∗, 𝑙∗, 𝑖∗, 𝑟∗) = (

𝛼
ℛ0
, 𝛽

2(ℛ0−1)
𝜎𝐶 , 𝛽(ℛ0−1)

𝐶 , (1−𝛼)ℛ0
, (1−𝛼)(ℛ0−1)

ℛ0 ) of (9), it is globally asymptoti-

cally stable in Γ̃1 \̃Λ1.

(iii) Ifℛ0(𝛽) > 1, then for all initial conditions (𝑠(0), 𝑙(0), 𝑖(0), 𝑟(0)) ∈ Λ̃1 the solution of (9)
converges to the disease free equilibrium 𝑒𝑓 .

From Theorem 3.1 we deduce the following results.

Corollary 3.1. If 𝛽 < 𝛿, then lim
𝑡→∞

𝑆(𝑡) = lim
𝑡→∞

𝐿(𝑡) = lim
𝑡→∞

𝐼(𝑡) = lim
𝑡→∞

𝑅(𝑡) = lim
𝑡→∞

𝑄(𝑡) = 0.

Corollary 3.2. Let 𝛽 > 𝛿.

(i) Ifℛ0(𝛽) ≤ 1, then for all initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) ∈ Γ𝐷0
we have

lim
𝑡→∞

𝑆(𝑡) = lim
𝑡→∞

𝑅(𝑡) = +∞ and lim
𝑡→∞

𝐿(𝑡) = lim
𝑡→∞

𝐼(𝑡) = lim
𝑡→∞

𝑄(𝑡) = 0.
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Table 1: Parameter values for (1).

parameter value (case 𝛽 = 𝛿) value (case 𝛽 < 𝛿) value (case 𝛽 > 𝛿)
𝛼 0.43 0.43 0.43

𝛽 0.0011 0.0011 0.00167

𝛿 0.0011 0.00167 0.0011

𝜎 0.0050 0.0050 0.0050

𝐷0 50 50 50

(ii) Ifℛ0(𝛽) > 1, then for all initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) ∈ Γ𝐷0
\Λ𝐷0

we
have lim

𝑡→∞
𝑆(𝑡) = lim

𝑡→∞
𝐿(𝑡) = lim

𝑡→∞
𝐼(𝑡) = lim

𝑡→∞
𝑅(𝑡) = lim

𝑡→∞
𝑄(𝑡) = +∞.

(iii) Ifℛ0(𝛽) > 1, then for all initial conditions (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) ∈ Λ𝐷0
we have

lim
𝑡→∞

𝑆(𝑡) = lim
𝑡→∞

𝑅(𝑡) = +∞ and lim
𝑡→∞

𝐿(𝑡) = lim
𝑡→∞

𝐼(𝑡) = lim
𝑡→∞

𝑄(𝑡) = 0.

Remark 3.1. In the above results we can see that asymptotic behaviors of total population and
infection subclasses depend on the values of birth and death rates and initial conditions (Figure
3).

4. Numerical Simulations

In this section we give numerical simulations for our model. The parameters values used were
inspired from [4, 5] (see Table 1).

We discuss the simulation results of the system (1) according to the values of 𝛽 and 𝛿.

4.1. Case 𝛽 = 𝛿

(1) Whenℛ0(𝛿) ≤ 1, the disease free equilibrium 𝐸𝑓 is globally asymptotically stable in Γ𝐷
(see Figure 4).

(2) Whenℛ0(𝛿) > 1, the endemic equilibrium 𝐸∗ is globally asymptotically stable in Γ𝐷\Λ𝐷
and if the initial condition is in Λ𝐷, the solution tends to disease free equilibrium 𝐸𝑓 (see
Figure 5).

4.2. Case 𝛽 < 𝛿

In this case we have extinction of total dog population (see Figure 6).

4.3. Case 𝛽 > 𝛿

(1) When ℛ0(𝛽) ≤ 1 (i.e. 𝛽 > 𝛽1), the disease dies that is lim𝑡→∞
𝐿(𝑡) = 𝐼(𝑡) = 𝑄(𝑡) = 0, and

total dog population increases exponentially, that is lim
𝑡→∞

𝑁(𝑡) = 𝑆(𝑡) = 𝑅(𝑡) = ∞ (see
Figure 7).
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Figure 4: Simulation results forℛ0(𝛿) = 0.4806, 𝐶 = 0.0015 and initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) =
(4, 5, 20, 10, 11)

Figure 5: Simulation results forℛ0(𝛿) = 8.9076, 𝐶 = 0.0278 and initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) =
(4, 5, 20, 10, 11) (resp. (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) = (29, 0, 0, 10, 11)) in left (resp. right) figure.

(2) When ℛ0(𝛽) > 1 (i.e. 𝛽 < 𝛽1), all subclasses of 𝐷 grow and we have lim
𝑡→∞

𝐿(𝑡) = 𝐼(𝑡) =
𝑄(𝑡) = 𝑆(𝑡) = 𝑅(𝑡) = ∞ if the initial condition is in Γ𝐷\Λ𝐷. The disease dies if the initial
condition is inΛ𝐷, in this case we have lim𝑡→∞

𝐿(𝑡) = 𝐼(𝑡) = 𝑄(𝑡) = 0 and lim
𝑡→∞

𝑁(𝑡) = 𝑆(𝑡) =
𝑅(𝑡) = ∞ (see Figure 8).

5. Conclusions

We have studied a ZVL mathematical model considered in [1, 4, 5] where only constant dog
population is considered. In our work we have investigated the both cases where 𝐷 is constant
or not, our main results are given in Theorems 3, 4 and 6. .

In fact, in the case of constant dog population, we have analyzed the bifurcation of disease
free equilibrium 𝐸𝑓 to the endemic equilibrium 𝐸∗ (Theorem 3), where stability is transmitted
from 𝐸𝑓 to 𝐸∗, the bifurcation studied with respect to the force of infection 𝐶 , this is possible
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Figure 6: Simulation results forℛ0(𝛽) = 5.3659, 𝐶 = 0.0278 and initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) =
(4, 5, 20, 10, 11).

Figure 7: Simulation results forℛ0(𝛽) = 0.2895, 𝐶 = 0.0015 and initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) =
(4, 5, 20, 10, 11).

for 𝐶 = 𝐶1 corresponding to the basic reproduction numberℛ0(𝛿) = 1. In Theorem 4, we have
found Lyapunov functions to prove the global stability of equilibria 𝐸̃𝑓 and 𝐸̃∗. These results
allow us to find a global asymptotic stability domains of 𝐸𝑓 and 𝐸∗ (Corollary 5). In the case
of non constant dog population, we have transformed (1) to a new model (7) equivalent to (1)
by the mean of fraction of subclasses of the dog population𝐷. We have obtained an interesting
results concerning the behavior of each subclasses of𝐷 (Corollaries 7 and 8). Our results allows
us to determine the cases where the infection goes to extinction or persistence depending on the
parameter values. In fact, the birth and death rates values 𝛽 and 𝛿 are important for the behavior
of the size of total population 𝐷, which remains constant for equal values of birth and death
rates. If 𝛽 < 𝛿 the total population goes to zero (Figure 6). In the contrary, if 𝛽 > 𝛿 then total
population explodes, in this case the behavior of the infection depends on the value of the basic
reproduction number ℛ0(𝛽) and on domains of global asymptotic stability of the disease free
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Figure 8: Simulation results forℛ0(𝛿) = 5.3659, 𝐶 = 0.0278 and initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) =
(4, 5, 20, 10, 11) (resp. (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)) = (29, 0, 0, 10, 11)) in left (resp. right) figure.

and endemic equilibria. In fact, forℛ0(𝛽) ≤ 1 the infection subclasses go to extinction (Figure
7), but forℛ0(𝛽) > 1 the behaviors of 𝐼 and𝐿 depend on the domain of initial conditions, more
precisely the infection vanishes only for 𝐼(0) = 𝐿(0) = 0 (Figure 8). If birth and death rates are
equal then the behavior of infection subclasses goes to extinction forℛ0(𝛿) ≤ 1 (Figure 4). The
infection persists if ℛ0(𝛽) > 1 for all initial conditions such that 𝐼(0) ≠ 0 ≠ 𝐿(0) (Figure 5).
Moreover, our results are illustrated by interesting numerical simulations for each cases.

This work could be continued, for example to see in what cases we must use control of the
disease in order to reduce infection or to eradicate it. We can also consider the interaction with
infected dog population and populations of sandflies and humans in order to obtain a more
global model.
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