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Abstract

In this paper, we study a free boundary problem for compressible Navier-Stokes
equations with density-dependent viscosity and a non-autonomous external force.
The viscosity coefficient μ is proportional to rθ with 0 <θ < 1, where r is the density.
Under certain assumptions imposed on the initial data and external force f, we
obtain the global existence and regularity. Some ideas and more delicate estimates
are introduced to prove these results.
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1 Introduction
We study a free boundary problem for compressible Navier-Stokes equations with

density-dependent viscosity and a non-autonomous external force, which can be written

in Eulerian coordinates as:

ρτ + (ρu)ξ = 0, τ > 0 (1:1)

(ρu)τ + (ρu2 + P(ρ))ξ = (μuξ )ξ + ρf , a(τ ) < ξ < b(τ ) (1:2)

with initial data

(ρ, u)(ξ , 0) = (ρ0, u0)(ξ), a = a(0) ≤ ξ ≤ b(0) = b, (1:3)

where r = r (ξ,τ), u = u(ξ,τ), P = P(r) and f = f(ξ,t) denote the density, velocity, pres-

sure and a given external force, respectively, μ = μ(r) is the viscosity coefficient. a(τ)

and b(τ) are the free boundaries with the following property:

d
dτ

a(τ ) = u(a(τ ), τ ),
d
dτ

b(τ ) = u(b(τ ), τ ), (1:4)

(−P(ρ) + μ(ρ)uξ )(ξ , τ ) = 0, ξ = a(τ ), b(τ ). (1:5)

The investigation in [1] showed that the continuous dependence on the initial data of

the solutions to the compressible Navier-Stokes equations with vacuum failed. The

main reason for the failure at the vacuum is because of kinematic viscosity coefficient

being independent of the density. On the other hand, we know that the Navier-Stokes

equations can be derived from the Boltzmann equation through Chapman-Enskog
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expansion to the second order, and the viscosity coefficient is a function of

temperature. For the hard sphere model, it is proportional to the square-root of the

temperature. If we consider the isentropic gas flow, this dependence is reduced to the

dependence on the density function by using the second law of thermal dynamics.

For simplicity of presentation, we consider only the polytropic gas, i.e. P(r) = Arg

with A > 0 being constants. Our main assumption is that the viscosity coefficient μ is

assumed to be a functional of the density r, i.e. μ = crθ, where c and θ are positive

constants. Without loss of generality, we assume A = 1 and c = 1.

Since the boundaries x = a(τ) and x = b(τ) are unknown in Euler coordinates, we will

convert them to fixed boundaries by using Lagrangian coordinates. We introduce the

following coordinate transformation

x =

ξ∫
a(τ)

ρ(y, τ ) dy, t = τ , (1:6)

then the free boundaries ξ = a(τ) and ξ = b(τ) become

x = 0, x =

b(τ)∫
a(τ)

ρ(z, τ ) dz =

b∫
a

ρ0(z) dz (1:7)

where

b∫
a

ρ0(z) dz is the total initial mass, and without loss of generality, we can nor-

malize it to 1. So in terms of Lagrangian coordinates, the free boundaries become

fixed. Under the coordinate transformation, Eqs. (1.1)-(1.2) are now transformed into

ρt + ρ2ux = 0, t > 0, (1:8)

ut + P(ρ)x = (ρμ(ρ)ux)x + f (r, t), 0 < x < 1 (1:9)

where r =
x∫
0

ρ−1(y, t) dy. The boundary conditions (1.4)-(1.5) become

(−ργ + ρ1+θux)(d, t) = 0, d = 0, 1, (1:10)

and the initial data (1.3) become

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ [0, 1]. (1:11)

Now let us first recall some previous works in this direction. When the external

force f ≡ 0, there have been many works (see, e.g., [2-9]) on the existence and unique-

ness of global weak solutions, based on the assumption that the gas connects to

vacuum with jump discontinuities, and the density of the gas has compact support.

Among them, Liu et al. [4] established the local well-posedness of weak solutions to

the Navier-Stokes equations; Okada et al. [5] obtained the global existence of weak

solutions when 0 <θ < 1/3 with the same property. This result was later generalized to

the case when 0 <θ < 1/2 and 0 <θ < 1 by Yang et al. [7] and Jiang et al. [3], respec-

tively. Later on, Qin et al. [8,9] proved the regularity of weak solutions and existence

of classical solution. Fang and Zhang [2] proved the global existence of weak solutions
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to the compressible Navier-Stokes equations when the initial density is a piece-wise

smooth function, having only a finite number of jump discontinuities.

For the related degenerated density function and viscosity coefficient at free bound-

aries, see Yang and Zhao [10], Yang and Zhu [11], Vong et al. [12], Fang and Zhang

[13,14], Qin et al. [15], authors studied the global existence and uniqueness under

some assumptions on initial data.

When f ≠ 0, Qin and Zhao [16] proved the global existence and asymptotic behavior

for g = 1 and μ = const with boundary conditions u(0,t) = u(1,t) = 0; Zhang and Fang

[17] established the global behavior of the Equations (1.1)-(1.2) with boundary condi-

tions u(0,t) = r(1,t) = 0. In this paper, we obtain the global existence of the weak solu-

tions and regularity with boundary conditions (1.4)-(1.5). In order to obtain existence

and higher regularity of global solutions, there are many complicated estimates on

external force and higher derivations of solution to be involved, this is our difficulty.

To overcome this difficulty, we should use some proper embedding theorems, the

interpolation techniques as well as many delicate estimates. This is the novelty of the

paper.

The notation in this paper will be as follows:

Lp, 1 ≤ p ≤ +∞,Wm,p,m ∈ N,H1 = W1,2,H1
0 = W1,2

0 denote the usual (Sobolev)

spaces on [0,1]. In addition, || · ||B denotes the norm in the space B; we also put
|| · || = || · ||L2([0,1]).
The rest of this paper is organized as follows. In Section 2, we shall prove the global

existence in H1. In Section 3, we shall establish the global existence in H2. In Section

4, we give the detailed proof of Theorem 4.1.

2 Global existence of solutions in H1

In this section, we shall establish the global existence of solutions in H1.

Theorem 2.1 Let 0 <θ < 1, g > 1, and assume that the initial data (r0,u0) satisfies
inf
[0,1]

ρ0 > 0,ρ0 ∈ W1,2n, u0 ∈ H1
and external force f satisfies f(r(x,·),·) Î L2n([0,T], L2n

[0,1]) for some n Î N satisfying n(2n - 1)/(2n2 + 2n - 1) >θ, then there exists a unique

global solution (r (x,t),u(x,t)) to problem (1.8)-(1.11), such that for any T > 0,

0 < C−1
1 (T) ≤ ρ(x, t) ≤ C1(T), ρ ∈ L∞([0,T],H1[0, 1]),

u ∈ L∞([0,T],H1[0, 1])∩ ∈ L2([0,T],H2[0, 1]), ut ∈ L2([0,T], L2[0, 1]).

The proof of Theorem 2.1 can be done by a series of lemmas as follows.

Lemma 2.1 Under conditions of Theorem 2.1, the following estimates hold

1∫
0

(
1
2
u2 +

1
γ − 1

ργ−1
)

dx +

t∫
0

1∫
0

ρ1+θu2x (x, s) dxds ≤ C1(T), (2:1)

ρ(x, t) ≤ C1(T), (x, t) ∈ [0, 1] × [0,T], (2:2)

1∫
0

u2ndx + n(2n − 1)

t∫
0

1∫
0

ρ1+θu2n−2u2x (x, s) dxds ≤ C1(T) (2:3)
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where C1(T) denotes generic positive constant depending only on
||ρ0||W1,2n[0,1], ||u0||H1[0,1], time T and ||f ||L2n([0,T], L2n[0, 1]).
Proof Multiplying (1.8) and (1.9) by rg-2 and u, respectively, using integration by

parts, and considering the boundary conditions (1.10), we have

d
dt

1∫
0

(
1
2
u2 +

1
γ − 1

ργ−1
)
dx +

1∫
0

ρ1+θu2xdx =

1∫
0

fudx (2:4)

Integrating (2.4) with respect to t over [0,t], using Young’s inequality, we have

1∫
0

(
1
2
u2 +

1
γ − 1

ργ−1
)
dx +

t∫
0

1∫
0

ρ1+θu2xdxds ≤ C1(T) +
1
2

t∫
0

1∫
0

u2dx+C1

t∫
0

1∫
0

f 2dxds

≤ 1
2

t∫
0

1∫
0

u2dx + C1(T)

which, by virtue of Gronwall’s inequality and assumption f(r(x,·),·) Î L2n([0,T], L2n

[0,1]), gives (2.1).

We derive from (1.8) that

(ρθ)t = −θρ1+θux (2:5)

Integrating (2.5) with respect to t over [0,t] yields

ρθ(x, t) = ρθ
0 − θ

t∫
0

ρ1+θux(x, s)ds. (2:6)

Integrating (1.9) with respect to x, applying the boundary conditions (1.10), we

obtain

ρ1+θux =

x∫
0

utdy + ργ −
x∫

0

f (r(y, t), t)dy (2:7)

Inserting (2.7) into (2.6) gives

ρθ + θ

t∫
0

ργds = ρθ
0 + θ

t∫
0

x∫
0

f (r, (y, s), s)dyds − θ

x∫
0

(u − u0)dy (2:8)

Thus, the Hölder inequality and (2.1) imply∣∣∣∣∣∣
x∫

0

u(y, t)dy

∣∣∣∣∣∣ ≤ C1 (2:9)

and (2.2) follows from (2.8) and (2.9).
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Multiplying (1.9) by 2nu2n-1 and integrating over x and t, applying the boundary con-

ditions (1.10), we have

1∫
0

u2ndx + 2n(2n − 1)

t∫
0

1∫
0

u2n−2ρ1+θu2xdxds

=

1∫
0

u2n0 dx + 2n(2n − 1)

t∫
0

1∫
0

u2n−2ργ uxdxds + 2n

t∫
0

1∫
0

f u2n−1dxds.

(2:10)

Applying the Young inequality and condition f(r(x, ·), ·) Î L2n([0,T],L2n[0,1]) to the

last two terms in (2.10) yields

1∫
0

u2ndx + n(2n − 1)

t∫
0

1∫
0

u2n−2ρ1+θu2xdxds

≤ C1 +

t∫
0

1∫
0

f 2ndxds + (2n − 1)

t∫
0

1∫
0

u2ndxds

+n(2n − 1)

t∫
0

1∫
0

u2n−2ρ2γ−1−θdxds

≤ C1(T) + n(2n − 1)

t∫
0

1∫
0

(
1
n

ρ(2γ−1−θ)n +
n − 1
n

u2n
)
dxds + (2n − 1)

t∫
0

1∫
0

u2ndxds

≤ C1(T) + n(2n − 1)

t∫
0

1∫
0

u2ndxds.

(2:11)

Applying Gronwall’s inequality, we conclude

1∫
0

u2ndx ≤ C1(T) (2:12)

, which, along with (2.11), yields (2.3). The proof of Lemma 2.1 is complete.

Lemma 2.2 Under conditions of Theorem 2.1, the following estimates hold

1∫
0

(ρθ)2nx dx ≤ C1(T), (2:13)

ρ(x, t) ≥ C−1
1 (T) > 0. (2:14)

Proof We derive from (2.5) and (1.9) that

(ρθ)xt = −θ(ut + (ργ )x − f ). (2:15)

Integrating it with respect to t over [0,t], we obtain

(ρθ)x = (ρθ
0)x − θ(u − u0) − θ

t∫
0

(ργ )xds + θ

t∫
0

fds. (2:16)
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Multiplying (2.16) by [(rθ) x]
2n-1, and integrating the resultant with respect to x to

get

1∫
0

(ρθ)2nx dx =

1∫
0

(ρθ)2n−1
x (ρθ

0)xdx

−θ

1∫
0

⎡
⎣(u − u0) +

t∫
0

(ργ )xds −
t∫

0

fds

⎤
⎦ (ρθ )2n−1

x dx

≤ C

⎛
⎝ 1∫

0

(ρθ)2nx dx

⎞
⎠
2n − 1
2n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ 1∫

0

(ρθ
0)

2n
x dx

⎞
⎠

1
2n

+‖u − u0‖ L2n +

⎛
⎜⎝

1∫
0

⎛
⎝ t∫

0

(ργ )xds

⎞
⎠

2n

dx

⎞
⎟⎠

1
2n

+

⎛
⎜⎝

1∫
0

⎛
⎝ t∫

0

fds

⎞
⎠

2n

dx

⎞
⎟⎠

1
2n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ C

⎛
⎝ 1∫

0

(ρθ)2nx dx

⎞
⎠
2n − 1
2n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ 1∫

0

(ρθ
0)

2n
x dx

⎞
⎠

1
2n

+‖u − u0‖ L2n +

t∫
0

⎛
⎝ 1∫

0

(ργ )2nx ds

⎞
⎠

1
2n

dx

+

t∫
0

⎛
⎝ 1∫

0

f 2ndx

⎞
⎠

1
2n

ds

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2:17)

here, we use the inequality

∥∥∥∥
∫

g (·, s)∥∥Lp ≤
∫ ∥∥g (·, s)∥∥ Lpds. Using Young’s inequality

and assumptions of external of f, we get from (2.17) that

1∫
0

(ρθ )
2n

x dx ≤ 1
2

1∫
0

(ρθ)
2n
x
dx

+C

t∫
0

1∫
0

(ργ )2nx dxds + C

t∫
0

1∫
0

f 2ndxds + C1(T)

≤ 1
2

1∫
0

(ρθ )2nx dx + C1(T)

t∫
0

1∫
0

(ργ )2nx dxds + C1(T).

(30)
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Hence,

1∫
0

(ρθ)2nx dx ≤ C1(T) + C1(T)

t∫
0

1∫
0

(ργ )2nx dxds (2:18)

Using the Gronwall inequality to (2.18), we obtain (2.13).

The proof of (2.14) can be found in [3], please refer to Lemma 2.3 in [3] for detail.

Lemma 2.3 Under the assumptions in Theorem 2.1, for any 0 ≤ t ≤ T, we have the

following estimate

∥∥ux (t)∥∥ 2
+

t∫
0

∥∥ut (s)∥∥ 2
ds ≤ C1(T). (2:19)

Proof Multiplying (1.9) by ut, then integrating over [0,1] × [0,t], we obtain

t∫
0

1∫
0

u2t dxds =

t∫
0

1∫
0

ut(ρ1+θux − ργ )xdxds +

t∫
0

1∫
0

utfdxds. (2:20)

Using integration by parts, (1.8) and the boundary conditions (1.10), we have

t∫
0

1∫
0

u1
(
ρ1+θux − ργ

)
xdxds =

t∫
0

1∫
0

utx(ργ − ρ1+θux) dxds

=

1∫
0

{
ux

(
ργ − 1

2
ρ1+θux

)
−u0x

(
ρ

γ

0 − 1
2

ρ1+θ
0 u0x

)}
dx

+

t∫
0

1∫
0

{
γ u2xρ

γ+1 − 1 + θ

2
u3xρ

2+θ

}
dxds.

Thus,

t∫
0

1∫
0

u2t dxds +
1
2

1∫
0

ρ1+θu2xdx =

1∫
0

{
uxρ

γ − u0x

(
ρ

γ

0 − 1
2

ρ1+θ
0 u0x

)}
dx

+

t∫
0

1∫
0

{
γ u2xρ

γ+1 − 1 + θ

2
u3xρ

2+θ

}
dxds +

t∫
0

1∫
0

utfdxds

≤ C1(T) +

1∫
0

(
1
4

ρ1+θu2x + ρ2γ−1−θ

)
dx + C1(T)

t∫
0

sup
[0,1]

ργ−θ

1∫
0

ρ1+θu2xdxds

+C1(T)

t∫
0

1∫
0

ρ1+θ |ux|3dxds + 1
4

t∫
0

1∫
0

u2t dxds + C1(T)

t∫
0

1∫
0

f 2dxds.

Using Lemmas 2.1-2.2, we derive

1∫
0

u2xdx +

t∫
0

1∫
0

u2t dxds ≤ C1(T) + C1(T)

t∫
0

1∫
0

ρ1+θ |ux|3dxds (2:21)
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The last term on the right-hand side of (2.21) can be estimated as follows, using

(1.8), conditions (1.10) and Lemmas 2.1-2.2,

C1(T)

t∫
0

1∫
0

ρ1+θ |ux|3dxds

≤ C1(T)

t∫
0

max
[0,1]

|ρ1+θux|u2xdxds

≤ C1(T)

t∫
0

max
[0,1]

|ρ1+θux − ργ |
1∫

0

u2xdxds + C1(T)

t∫
0

1∫
0

u2xdxds

≤ C1(T) + C1(T)

t∫
0

1∫
0

|(ρ1+θux − ργ )xds

1∫
0

u2x dxds

≤ C1(T) + C1(T)

t∫
0

1∫
0

|ut—ds

1∫
0

u2xdxds + C1(T)

t∫
0

1∫
0

|f |ds
1∫

0

u2xdxds

≤ C1(T) +
1
4

t∫
0

1∫
0

u2t dxds+C1(T)

t∫
0

1∫
0

f 2dxds + C1(T)

t∫
0

⎛
⎝ 1∫

0

u2xdx

⎞
⎠

2

ds

≤ C1(T) +
1
4

t∫
0

1∫
0

u2t dxds + C1(T)

t∫
0

⎛
⎝ 1∫

0

u2xdx

⎞
⎠

2

ds.

(2:22)

Inserting the above estimate into (2.21),

1∫
0

u2xdx +

t∫
0

1∫
0

u2t dxds ≤ C1(T) + C

t∫
0

‖ux‖2
1∫

0

u2xdxds.

which, by virtue of Gronwall’s inequality, (2.1) and (2.14), gives (2.19).

Proof of Theorem 2.1 By Lemmas 2.1-2.3, we complete the proof of Theorem 2.1.

3 Global existence of solutions in H2

For external force f(r, t), we suppose

f (r, t) ∈ L∞([0,T], L2[0, 1]), fr(r, t) ∈ L2([0,T], L2[0, 1]), ft(r, t) ∈ L2([0,T], L2[0, 1]) (3:1)

Constant C2(T) denotes generic positive constant depending only on the H 2-norm of

initial data (ρ0, u0),
∥∥f∥∥L∞([0,T]),L2[0,1]),

∥∥fr∥∥L2([0,T],L2[0,1]), ∥∥ft∥∥L2 ([0,T],L2[0,1]), time T and

constant C1(T).

Remark 3.1 By (3.1), we easily know that assumptions (3.1) is equivalent to the fol-

lowing conditions

f (r(x, t), t) ∈ L∞([0,T], L2[0, 1]), (3:2)

fr(r(x, t), t) ∈ L2([0,T], L2[0, 1]), ft(r(x, t), t) ∈ L2([0,T], L2[0, 1]). (3:3)

Therefore, the generic constant C2(T) depending only on the norm of initial data (r0,
u0) in H2, the norms of f in the class of functions in (3.2)-(3.3) and time T.
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Theorem 3.1 Let 0 <θ < 1, g > 1, and assume that the initial data satisfies (r0,u0) Î
H2 and external force f satisfies conditions (3.1), then there exists a unique global solu-

tion (r (x,t),u(x,t)) to problem (1.8)-(1.11), such that for any T > 0,

ρ ∈ L∞([0,T],H2[0, 1]), u ∈ L∞([0,T],H2[0, 1]∩ ∈ L2([0,T],H3[0, 1]), (3:4)

ut ∈ L∞([0,T], L2[0, 1])∩ ∈ L2([0,T],H1[0, 1]). (3:5)

The proof of Theorem 3.1 can be divided into the following several lemmas.

Lemma 3.2 Under the assumptions in Theorem 3.1, for any 0 ≤ t ≤ T, we have the

following estimates

∥∥ut(t)∥∥2 +
t∫

0

1∫
0

u2tx(x, s) dxds ≤ C2(T), (3:6)

∥∥ux(t)∥∥2L ∞ +
∥∥uxx(t)∥∥2dx ≤ C2(T). (3:7)

Proof Differentiating (1.9) with respect to t, multiplying the resulting equation by ut
in L2[0,1], performing an integration by parts, and using Lemma 2.1, we have

1
2
d
dt

‖ut‖2 +
1∫

0

ρ1+θu2txdx =

1∫
0

(
(θ + 1)ρθ+2u2x − γ ργ+1ux +

∂f
∂t

)
utxdx

≤ 1
2

1∫
0

ρ1+θu2txdx + C1(T)

1∫
0

(
ρ2θ+3u4x + ρ2γ+1−θu2x

)
dx

+C1(T)

1∫
0

(
(frrt)

2 + f 2t
)
dx.

(3:8)

Integrating (3.8) with respect to t, applying the interpolation inequality, we conclude

∥∥ut(t)∥∥2 +
t∫

0

1∫
0

ρ1+θu2tx dxds

≤ ∥∥ut(x, 0)∥∥ + C1(T)

t∫
0

1∫
0

(
u4x + u2x + f 2r u

2 + f 2t
)
dxds

≤ ∥∥ut(x, 0)∥∥ + C1(T)

t∫
0

[
u2x +

(
‖uxx‖

1
4 ‖ux‖

3
4 + ‖ux‖4

)
(s)

]
ds

+

t∫
0

‖u‖2L∞

1∫
0

f 2r dxds + C1(t)

t∫
0

1∫
0

f 2t dxds.

(3:9)

On the other hand, by (1.9), we get

u0t = −γρ
γ−1
0 ρ0x + ρθ+1

0 u0xx + (θ + 1)ρθ
0ρ0xu0x + f (r0, 0). (3:10)
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We derive from assumption (3.1) and (3.10) that

1∫
0

u20t(x) dx ≤ C2(T). (3:11)

Inserting (3.11) into (3.9), by virtue of Lemmas 2.1-2.3 and assumption (3.1), we

obtain (3.6). We infer from (1.9),

ut = −γ ργ−1ρx + ρθ+1uxx + (θ + 1)ρθρxux + f (r, t). (3:12)

Multiplying (3.12) by uxx in L2[0,1], we deduce

1∫
0

ρθ+1u2xx dx =

1∫
0

uxx
(
ut + γ ργ−1ρx − (θ + 1)ρθρxux − f (r, t)

)
dx. (3:13)

Using Young’s inequality and Sobolev’s embedding theorem W1,1
↪ W∞, Lemma 2.1

and (3.6), we deduce from (3.13) that

1∫
0

u2xxdx ≤ C1(T)

1∫
0

(
u2t + ρ2

x + ρ2
x u

2
x + f 2

)
dx +

1
4

1∫
0

u2xx dx

≤ C2(T) + C1(T) ‖ux‖2L∞

1∫
0

ρ2
x dx +

1
4

1∫
0

u2xx dx

≤ C2(T) +
1
2

1∫
0

u2xx dx

whence

1∫
0

u2xxdx ≤ C2(T). (3:14)

Applying embedding theorem, we derive from (3.14) that

‖ux‖2L∞ ≤ C1(T)
(‖ux‖2 + ‖uxx‖2

) ≤ C2(T)

which, along with (3.14), gives (3.7). The proof is complete.

Lemma 3.3 Under the assumptions in Theorem 3.1, for any 0 ≤ t ≤ T, we have the

following estimates

∥∥ρxx(t)
∥∥2 +

t∫
0

∥∥ρxx(s)
∥∥2ds ≤ C2(T), (3:15)

t∫
0

∥∥uxxx(s)∥∥2 dx ≤ C2(T). (3:16)
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Proof Differentiating (1.9) with respect to x, exploiting (1.8), we have

utx =
(−ργ + ρ1+θux

)
xx +

df
dx

= −γ (γ − 1)ργ−2ρ2
x − γ ργ−1ρxx + (θ + 1)θρθ−1ρ2

x ux

+(θ + 1)ρθρxxux + 2(θ + 1)ρθρxuxx + ρθ+1uxxx +
1
ρ
fr

(3:17)

which gives(
ρθ−1ρxx

)
t + Pρρxx = E(x, t), (3:18)

with

E(x, t) = −Pρρρ2
x − 2(1 − θ)ρθρxuxx + (1 + θ)θρθ−1ρ2

x ux − 2ρθ−1ρ2
x ux − utx +

1
ρ
fr.

Multiplying (3.18) by rθ-1rxx, integrating the resultant over [0,1], using condition

(3.1), Young’s inequality, Lemma 3.2 and Theorem 2.1, we deduce

d
dt

∥∥ρθ−1ρxx
∥∥2 +

1∫
0

γ ργ+θ−2ρ2
xx dx ≤ C1(T)

1∫
0

(
ρ4
x + u2tx + ρ4

x u
2
x + ρ2

x u
2
xx + f 2x

)
dx.(3:19)

Integrating (3.19) with respect to t over [0,t], using Theorem 2.1, Lemma 3.2 and the

interpolation inequality, we derive

∥∥ρxx(t)
∥∥2 +

t∫
0

∥∥ρxx(s)
∥∥2ds

≤ C2(T) + C1(T)

t∫
0

‖ux‖2L∞

1∫
0

ρ2
x dxds + C1(T)

t∫
0

1∫
0

(
ρ4
x + u2tx

)
dxds

+C1(T)

t∫
0

‖ρx‖2L∞

1∫
0

u2xx dxds + C1(T)

t∫
0

1∫
0

f 2r dxds

≤ C2(T) + C1(T)

t∫
0

1∫
0

ρ2
x dxds +

1
2

t∫
0

∥∥ρxx(s)
∥∥2 ds

(3:20)

which, along with Lemma 2.1, gives estimate (3.15).

Differentiating (1.9) with respect to x, we can obtain

uxxx = ρ−1−θ
(
utx + γ (γ − 1)

)
ργ−2ρ2

x + γ ργ−1ρxx

− (
(θ + 1)ρθρxxux + 2(θ + 1)ρθρxuxx + (θ + 1)θρθ−1ρ2

x ux
) − ∂f

∂x

)
.

(3:21)
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Integrating (3.21) with respect to x and t over [0,1] × [0,t], applying the embedding

theorem, Lemmas 2.1-2.3 and Lemma 3.1, and the estimate (3.15), we conclude

t∫
0

1∫
0

u2xxx dxds ≤ C1(T)

t∫
0

1∫
0

(
u2tx + ρ4

x + ρ2
xx + ρ2

x u
2
xx + ρ4

x u
2
x + ρ2

xxu
2
x + f 2r

)
dxds

≤ C1(T)

t∫
0

‖ux‖2L∞

1∫
0

(
ρ2
xx + ρ4

x

)
dxds + C1(T)

t∫
0

‖ρx‖2L∞ ‖uxx‖2ds

+C1(T)

t∫
0

1∫
0

(
ρ4
x + u2tx + ρ2

xx + f 2r
)
dxds

≤ C2(T).

(3:22)

The proof is complete.

Proof of Theorem 3.1 By Lemmas 3.2-3.3, Theorem 2.1 and Sobolev’s embedding

theorem, we complete the proof of Theorem 3.1.

4 Global existence of solutions in H4

For external force f(r,t), besides (3.1), we assume that

fr , ft , frt ∈ L∞([0,T], L2[0, 1]), frr , frt , ftt, frrr ∈ L2([0,T], L2[0, 1]). (4:1)

Remark 4.1 By (4.1), we easily know that assumptions (4.1) is equivalent to the fol-

lowing conditions

fr(r(x, t), t), ft(r(x, t), t), frr(r(x, t), t) ∈ L∞([0,T], L2[0, 1]), (4:2)

frr(r(x, t), t), frt(r(x, t), t), ftt(r(x, t), t), frrr(r(x, t), t) ∈ L2([0,T], L2[0, 1]). (4:3)

Therefore, the generic constant C4(T) depending only on the norm of initial data (r0,
u0) in H4, the norms of f in the class of functions in (4.2)-(4.3) and time T.

Theorem 4.1 Let 0 <θ < 1, g > 1, and assume that the initial data satisfies (r0,u0) Î
H4 and external force f satisfies conditions (4.1), then there exists a unique global solu-

tion (r (x,t),u(x,t)) to problem (1.8)-(1.11), such that for any T > 0,

ρ ∈ L∞([0,T],H4[0, 1]), ρt ∈ L∞([0,T],H3[0, 1])∩ ∈ L2([0,T],H4[0, 1]), (4:4)

ρtt ∈∈ L∞([0,T],H1[0, 1])∩ ∈ L2([0,T],H2[0, 1]), (4:5)

u ∈ L∞([0,T],H4[0, 1])∩ ∈ L2([0,T],H5[0, 1]), (4:6)

ut ∈ L∞([0,T],H2[0, 1])∩ ∈ L2([0,T],H3[0, 1]), (4:7)

utt ∈ L∞([0,T], L2[0, 1])∩ ∈ L2([0,T],H1[0, 1]). (4:8)

The proof of Theorem 4.1 can be divided into the following several lemmas.
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Lemma 4.2 Under the assumptions of Theorem 4.1, the following estimates hold for

any t Î [0,T],∥∥utx(x, 0)∥∥ +
∥∥utxx(x, 0)∥∥ + ∥∥utt(x, 0)∥∥ ≤ C4(T), (4:9)

∥∥utt(t)∥∥2 +
t∫

0

∥∥uttx(s)∥∥2ds ≤ C4(T). (4:10)

Proof We easily infer from (1.9) and Theorem 2.1, Theorem 3.1 that∥∥ut(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H1 +

∥∥ρx(t)
∥∥ +

∥∥f (t)∥∥). (4:11)

Differentiating (1.9) with respect to x and exploiting Lemmas 2.1-2.3, we have∥∥utx(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H2 +

∥∥ρx(t)
∥∥
H1 +

∥∥fr(t)∥∥), (4:12)

or ∥∥uxxx(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H1 +

∥∥ρx(t)
∥∥
H1 +

∥∥utx(t)∥∥ + ∥∥fr(t)∥∥). (4:13)

Differentiating (1.9) with respect to x twice, using Lemmas 2.1-2.3, 3.2-3.3 and the

embedding theorem, we have∥∥utxx(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H3 +

∥∥ρx(t)
∥∥
H2 +

∥∥fr(t)∥∥ + ∥∥frr(t)∥∥), (4:14)

or ∥∥uxxxx(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H2 +

∥∥ρx(t)
∥∥
H2 +

∥∥utxx(t)∥∥ + ∥∥fr(t)∥∥ +
∥∥frr(t)∥∥). (4:15)

Differentiating (1.9) with respect to t, and using Lemmas 2.1-2.3 and (1.8), we deduce

that ∥∥utt(t)∥∥ ≤ C2(T)(
∥∥utx(t)∥∥ + ∥∥ux(t)∥∥H1 +

∥∥ρx(t)
∥∥ + ∥∥utxx(t)∥∥ + ∥∥fr(t)∥∥ + ∥∥ft(t)∥∥) (4:16)

which together with (4.12) and (4.14) implies∥∥utt(t)∥∥ ≤ C2(T)(
∥∥ux(t)∥∥H3 +

∥∥ρx(t)
∥∥
H2 +

∥∥fr(t)∥∥ + ∥∥ft(t)∥∥ + ∥∥frr(t)∥∥). (4:17)

Thus, estimate (4.9) follows from (4.12), (4.14), (4.17) and condition (4.1).

Now differentiating (1.9) with respect to t twice, multiplying the resulting equation

by utt in L2([0,1]), and using integration by parts, (1.8) and the boundary condition

(1.10), we deduce

1∫
0

utttuttdx =

1∫
0

[
(−ργ + ρ1+θux)ttx +

d2f
dt2

]
utt dx

= −
1∫

0

(−ργ + ρ1+θux)ttuttxdx +

1∫
0

(
frrr

2
t + frrtt + frt + frtrt + ftt

)
uttdx

≤ −
1∫

0

ρ1+θu2ttxdx +
1
2

1∫
0

ρ1+θu2ttxdx +
1
2

1∫
0

u2ttdx

+C1(T)

1∫
0

(
u4x + u2tx + u2x u

2
tx + u6x + f 2r u

2
t + f 2rr + f 2t + f 2tt

)
dx

(4:18)
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here, we use d2f
dt2

= frrr
2
t + frtrt + frr

2
1 + ftt. Integrating (4.18) with respect to t, applying

assumption (4.1) and (4.9), we have

∥∥utt(t)∥∥2 +
t∫

0

1∫
0

ρ1+θu2ttxdxds

≤ C4(T) +
1
2

t∫
0

∥∥utt(s)∥∥2ds + C1(T)

t∫
0

(‖ux‖2 + ‖utx‖2 + ‖ux‖6L6

+ ‖ux‖2L∞ ‖utx‖2 +
∥∥fr∥∥2 ‖ut‖2L∞

)
(s) ds

≤ C4(T) +
1
2

t∫
0

∥∥utt(s)∥∥2ds + C2(T)

t∫
0

(‖ux‖2H1 + ‖ut‖2H1

)
(s) ds

which, with Lemmas 2.1-2.3 and Theorem 3.1, implies

∥∥utt(t)∥∥2 +
t∫

0

1∫
0

ρ1+θu2ttxdxds ≤ C4(T) +
1
2

t∫
0

∥∥utt(s)∥∥2ds, ∀t ∈ [0,T]. (4:19)

If we apply Gronwall’s inequality to (4.19), we conclude (4.11). The proof is

complete.

Lemma 4.3 Under the assumptions of Theorem 4.1, the following estimate holds for

any t Î [0,T],

∥∥utx(t)∥∥2 +
t∫

0

∥∥utxx(s)∥∥2ds ≤ C4(T). (4:20)

Proof Differentiating (1.9) with respect to x and t, multiplying the resulting equation

by utx in L2[0,1], and integrating by parts, we deduce that

1∫
0

uttxutxdx =

1∫
0

(
(−ργ + ρ1+θux)txx +

∂2f
∂t∂x

)
utxdx

= (−ργ + ρ1+θux)txutx|10 −
1∫

0

(−ργ + ρ1+θux)txutxxdx

+

1∫
0

(frrrtrx + frrtx + frtrx) utxdx

= B1 + B2 + B3

(4:21)

where

B1 = (−ργ + ρ1+θux)txutx10, B2 = −
1∫

0

(−ργ + ρ1+θux)txutxxdx,

B3 =

1∫
0

(frrrtrx + frrtx + frtrx)utxdx.
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Employing Theorem 2.1, Theorem 3.1 Lemma 4.2 and the interpolation inequality,

we conclude

B1 ≤ C2(T)(‖uxx‖L∞ + ‖ρx‖L∞‖ux‖L∞ + ‖ρx‖L∞‖utx‖L∞ + ‖utxx‖L∞

+‖ux‖L∞‖uxx‖L∞ + ‖ρx‖L∞ ‖ux‖2L∞
) ‖utx‖L∞

≤ C2(T)(B01 + B02)‖utx‖
1
2 ‖utxx‖

1
2

(4:22)

with

B01 = ||ux||H2 + ||ρx||H1 , B02 = ||utx||
1
2 ||utxx||

1
2 + ||utxx||

1
2 ||utxxx||

1
2 .

Applying Young’s inequality several times, we have that for any ε Î (0,1),

C2(T)B01||utx||
1
2 ||utxx||

1
2 ≤ ε2

2
||utxx||2 + C2(T)ε−3(||utx||2 + ||ux||2H2 = +||ρx||2H1),

(4:23)

and

C2(T)B02||utx||
1
2 ||utxx||

1
2 ≤ ε2

2
||utxx||2 + ε2||utxxx||2 + ||C2(T)ε−6||utx||2. (4:24)

Thus we infer from (4.22)-(4.24) that

B1 ≤ ε2
(||utxx||2 + ||utxxx||2

)
+ C2(T)ε−6 (||utx||2 + ||ux||2H2 + ||ρx||2H1

)
(4:25)

which, together with Theorem 2.1, Theorem 3.1 and Lemma 4.2, implies

t∫
0

B1(s)ds ≤ C2(T) + ε2

t∫
0

(||utxx||2 + ||utxxx||2
)
(s)ds. (4:26)

On the other hand, differentiating (1.9) with respect to x and t, and using Theorem

3.1 and Lemma 4.2, we derive

||utxxx(t)||2 ≤ C2(T)
(

||ux||2H2 + ||ρx||2H1 + ||utx||2H1 + ||uttx||2 + || ∂2f
∂x∂t

||2
)

≤ C2(T)
(||ux||2H2 + ||ρx||2H1 + ||utx||2H1 + ||uttx||2

+||frr||2 + ||fr||2||ux||2L∞ + ||frt||2
) (4:27)

Inserting (4.27) into (4.26), employing Theorem 2.1, Theorem 3.1 and Lemma 4.2,

we conclude

t∫
0

B1(s)ds ≤ C4(T) + ε2

t∫
0

||utxx(s)||2ds. (4:28)

Similarly, by Theorem 2.1, Theorem 3.1, Lemma 4.2 and the embedding theorem, we

get that for any ε Î (0,1),

B2 ≤ −
1∫

0

ρ1+θu2txxdx + ε

1∫
0

ρ1+θu2txxdx

+C2(T)

1∫
0

(
ρ2
x u

4
x + ρ2

x u
2
tx + ρ2

x u
2
x + u2xx

)
dx.

(4:29)
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By virtue of assumption (4.1), Theorem 2.1 and Theorem 3.1, we derive that

B3 = C1(T)(‖u‖L∞
∥∥frr∥∥ + ‖ux‖L∞

∥∥fr∥∥ + ∥∥frt∥∥)
≤ C2(T)(

∥∥frr∥∥ +
∥∥fr∥∥ + ∥∥frt∥∥)

which, combined with (4.21) and (4.27)-(4.29), gives

d
dt

||utx(t)||2 +
1∫

0

ρ1+θu2txxdx ≤ ε2(||utxx||2 + ||utxxx||2)

+C2(T)
(||utx||2 + ||ux||2H2 + ||ρx||2H1 + ||frr ||2 + ||fr||2 + ||frt||2

)
.

(4:30)

Integrating (4.30) with respect to t, picking ε small enough, using Theorem 2.1 and

Theorem 3.1, Lemma 4.2 and assumption (4.1), we complete the proof of estimate

(4.20).

Lemma 4.4 Under the assumptions of Theorem 4.1, the following estimates hold for

any t Î [0,T],

||ρxxx(t)||2 + ||ρxxxx(t)|| ≤ C4(T), (4:31)

||uxxx(t)||2H1 + ||utxx(t)||2 +
t∫

0

(||utt||2H1 + ||utxx||2H1

)
(s) ds ≤ C4(T), (4:32)

t∫
0

||uxxxx(s)||2H1ds ≤ C4(T). (4:33)

Proof Differentiating (3.18) with respect to x, we have

(ρθ−1ρxxx)t + Pρρxxx = E1(x, t) (4:34)

where

E1(x, t) = Ex(x, t) − Pρρρxρxx − (θ − 1)(ρθ−2ρxρxx)t. (4:35)

An easy calculation with the interpolation inequality, Theorem 2.1 and Theorem 3.1,

gives

||Ex(t)|| ≤ C2(T)(||ρx(t)||3L6 + ||ρxρxx|| + ||ρxuxxx|| + ||ρxxuxx||
+||ρx||3L∞||ux|| + ||ρx||2L∞||uxx|| + ||utxx|| + +||ρx||L∞||fr| + ||frr ||)

≤ C2(T)(||ρx(t)||H1 + ||ux(t)||H2 + ||utxx|| + ||fr || + ||frr||),
(4:36)

and

||E1|| ≤ C2(T)(||ρx(t)||H1 + ||ux(t)||H2 + ||utxx(t)|| + ||fr|| + ||frr||). (4:37)

By virtue of Theorem 2.1 and Theorem 3.1, we infer from (4.36)-(4.37), (4.20) and

assumption (4.1) that

t∫
0

||E1(s)||2ds ≤ C4(T), ∀t ∈ [0,T]. (4:38)
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Now multiplying (4.34) by rθ-1rxxx in L2[0,1], we obtain

d
dt

||ρθ−1ρxxx||2 + ||ρxxx(t)||2 ≤ C1(T)||E1(T)||2. (4:39)

Integrating (4.39) with respect to t, using Theorem 2.1 and Theorem 3.1, assumption

(4.1) and (4.38), we can get

||ρxxx(t)||2 +
t∫

0

||ρxxx(s)||2ds ≤ C4(T), ∀t ∈ [0,T]. (4:40)

By virtue of Theorem 2.1 and Theorem 3.1, we infer from (4.10), (4.15) and (4.40)

that

||uxxx(t)||2 +
t∫

0

||uxxx(s)||2H1ds ≤ C4(T), ∀t ∈ [0,T]. (4:41)

Differentiating (1.9) with respect to t, using Theorem 2.1 and Theorem 3.1 and Lem-

mas 4.2-4.3, we infer that for any t Î [0, T],

||utxx(t)|| ≤ C2(T)||utt(t)|| + C2(T)(||ux(t)||H1 + ||utx(t)|| + ||ρx(t)||) ≤ C4(T) (4:42)

which, combined with (4.15), (4.40) and (4.42), gives

||uxxxx(t)||2 +
t∫

0

||utxx(s)||2ds ≤ C4(T), ∀t ∈ [0,T]. (4:43)

Differentiating (4.34) with respect to x, we see that(
ρθ−1ρxxxx

)
t + Pρρxxxx = E2(x, t), (4:44)

with

E2(x, t) = E1x(x, t) − Pρρρxρxxx − (θ − 1)
(
ρθ−2ρxρxxx

)
t

and

E1x(x, t) = Exx(x, t) − Pρρρxρxx)x − (θ − 1)
(
ρθ−2ρxρxx

)
tx.

Using the embedding theorem, (1.8), Theorem 2.1, Theorem 3.1 and Lemmas 4.1-4.2,

we can deduce that

||Exx(t)|| ≤ C4(T)(||ux(t)||H3 + ||ρx(t)||H2 + ||fr|| + ||frr || + ||frrr ||), (4:45)

||E1x(t)|| ≤ C4(T)(||ux(t)||H3 + ||ρx(t)||H2 + ||utx(t)||H2 + ||fr|| + ||frr|| + ||frrr ||), (4:46)

||E2(t)|| ≤ C4(T)(||ux(t)||H3 + ||ρx(t)||H2 + ||utx(t)||H2 + ||fr|| + ||frr || + ||frrr ||). (4:47)

Inserting (4.46) into (4.47), we have

||E2(t)|| ≤ C4(T)(||ux(t)||H3 + ||ρx(t)||H2 + ||utx(t)||H1 )

+||uttx(t)|| + ||fr(t)|| + ||frr(t)|| + ||frrr(t)||).
(4:48)
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By virtue of Theorems 2.1, 3.1, Lemmas 4.2-4.3, we derive from (4.40)-(4.43) and

assumption (4.1) that

t∫
0

||E2(s)||2ds ≤ C4(T), ∀t ∈ [0,T]. (4:49)

Multiplying (4.44) by rθ-1rxxxx in L2[0,1], we get

d
dt

||ρθ−1ρxxxx||2 + ||ρxxxx(t)||2 ≤ C1(T)||E2(t)||2. (4:50)

Integrating (4.50) with respect to t, using condition (4.1) and (4.49), we conclude

||ρxxxx(t)||2 +
t∫

0

||ρxxxx(s)||2ds ≤ C4(T), ∀t ∈ [0,T]. (4:51)

Differentiating (1.9) with respect to x three times, using Theorems 2.1, 3.1, Lemmas

4.2-4.3 and the interpolation inequality, we infer

||uxxxxx(t)|| ≤ C4(T)(||utxxx(t)|| + ||ux(t)||H3 + ||ρx(t)||H3 + ||fr(t)||
+||frr(t)|| + ||frrr(t)||).

(4:52)

Thus we conclude from (1.8), (4.27), (4.41), (4.43), (4.51) and assumption (4.1) that

t∫
0

(||uxxxxx||2 + ||utxxx||2)(s) ds ≤ C4(T), ∀t ∈ [0,T]. (4:53)

Thus (4.31) follows from (4.40) and (4.51), we can derive estimate (4.32)-(4.33) from

Theorem 2.1, Theorem 3.1, Lemmas 4.2-4.3, (4.41), (4,43) and (4.53). The proof is

complete.

Proof of Theorem 4.1 Using (1.8),Theorem 2.1, 3.1 and Lemmas 4.2-4.4 and the

proper interpolation inequality, we readily get estimate (4.4)-(4.8) and complete the

proof from Theorem 4.1.

Corollary 4.5 Under assumptions of Theorem 4.1 and some suitable compatibility

conditions, the global solution (r (x,t),u(x,t)) to problem (1.8)-(1.11) is the classical solu-

tion verifying

||ρ(t)||C3+1/2 + ||u(t)||C3+1/2 ≤ C4(T). (116)

Proof By the embedding theorem, we easily prove the corollary from Theorem 4.1.
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