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Abstract

Antimicrobial peptides (AMPs), produced by a wide range of organisms, have attracted attention due to their potential use
as novel antibiotics. The majority of these peptides are cationic and are thought to function by permeabilizing the bacterial
membrane, either by making pores or by dissolving it (‘carpet’ model). A key hypothesis in the literature is that antimicrobial
and hemolytic activity correlate with binding affinity to anionic and zwitterionic membranes, respectively. Here we test this
hypothesis by using binding free energy data collected from the literature and theoretical binding energies calculated from
implicit membrane models for 53 helical AMPs. We indeed find a correlation between binding energy and biological activity,
depending on membrane anionic content: antibacterial activity correlates best with transfer energy to membranes with
anionic lipid fraction higher than 30% and hemolytic activity correlates best with transfer energy to a 10% anionic
membrane. However, the correlations are weak, with correlation coefficient up to 0.4. Weak correlations of the biological
activities have also been found with other physical descriptors of the peptides, such as surface area occupation, which
correlates significantly with antibacterial activity; insertion depth, which correlates significantly with hemolytic activity; and
structural fluctuation, which correlates significantly with both activities. The membrane surface coverage by many peptides
at the MIC is estimated to be much lower than would be required for the ‘carpet’ mechanism. Those peptides that are active
at low surface coverage tend to be those identified in the literature as pore-forming. The transfer energy from planar
membrane to cylindrical and toroidal pores was also calculated for these peptides. The transfer energy to toroidal pores is
negative in almost all cases while that to cylindrical pores is more favorable in neutral than in anionic membranes. The
transfer energy to pores correlates with the deviation from predictions of the ‘carpet’ model.
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Introduction

Antimicrobial peptides (AMPs) are found in a wide variety of

organisms such as plants, insects, and vertebrates, providing a

host-defense mechanism against invading microbial species [1–4].

These peptides usually exhibit selectivity against prokaryotic

pathogen cells over the host cells [5–7]. Some show selectivity

for fungi, cancer cells and parasites [8,9]. AMPs are thought to be

less likely to elicit resistance than traditional antibiotics, and this

gives them potential for clinical applications [10]. Some AMPs

have been found to have intracellular targets, but the majority are

thought to kill bacteria by disrupting the cell membrane [11–14]

either by pore formation [15] or by detergent-like disintegration

(the ‘carpet’ model)[16]. Even when AMPs target intracellular

sites, they still have to cross the cell membrane. Experiments with

several AMPs have shown their ability to translocate across cell

and liposome membranes, a property they share with cell-

penetrating peptides[17]. Thus, understanding the process of

translocation and pore formation could have wide-ranging

implications.

Despite the vast amount of biological and biophysical data

collected on AMPs, unifying concepts are still lacking. It is not yet

possible to look at the sequence and even the structure and

thermodynamic properties of a peptide and predict whether it is

antimicrobial or cell-penetrating. Some peptides are helical, others

contain beta structures, and still others are unstructured. Even

random copolymers that lack a regular folding pattern have been

shown to possess antimicrobial activity[18]. Thus, secondary

structure does not provide any guidance. Several bioinformatics

methods have been proposed to identify and predict the activity of

AMPs based on simple descriptors like hydrophobicity, amphi-

pathicity, charge, or helicity [19–21]. They are partially successful

[7,22–27] but the lack of connection to a physical mechanism

places limits in their applicability and ultimate utility.

An intuitive idea is that the biological activity of a peptide

should be related to its affinity for the target membrane. Most, but

not all, AMPs are cationic, and this provides an intuitive

rationalization for their targeting bacteria: bacterial membranes

are negatively charged, whereas the outer leaflet of eukaryotic

membrane is neutral [7,28,29]. This hypothesis is supported by a

lot of anecdotal evidence and has been stated most explicitly in

recent work [30,31]. If the ‘carpet’ model were universally valid,

one would expect a perfect correlation of biological activity with

membrane binding affinity. However, this correlation might break

down in practice due to presence of other steps, such as membrane

insertion and pore formation. For instance, the cationic melittin
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exhibits higher affinity for negatively charged membranes but its

permeabilizing activity is higher for zwitterionic vesicles [32,33]. A

peptide could, in principle, bind very strongly (especially if inserted

perpendicularly to the membrane surface) without causing any

damage to the membrane or compromising its barrier proper-

ties[34]. Another reason for lack of correlation with membrane

binding affinity could be the complexity of the biological process:

for example, to get to the plasma membrane AMPs need to

traverse either the outer membrane of gram negative bacteria or

the cell wall of gram positive bacteria [35]. The activity of a

peptide could be affected by these steps (if they are rate-limiting)

rather than the interaction with the plasma membrane.

Recent work in our group showed that the hemolytic activity of

a series of four peptides correlated with a theoretical estimate of

the binding affinity to a zwitterionic bilayer [36]. The correlation

was observed whether one used the binding energy to the planar

bilayer, the binding energy to the pore, or the difference between

the two. The goal of the present work is to perform a systematic,

larger-scale test of this hypothesis. First we examine the correlation

between experimental affinity and biological activity data across a

wide variety of helical AMPs. Then we complement these data

with computational studies using an implicit membrane model

which can account for the effect of membrane surface charge[37].

Computational studies have the advantage that they are

performed under the same conditions and provide structural

information, within the uncertainties, of course, of the theoretical

treatment. A set of 53 helical peptides that have known biological

activities and 3D structures were considered and their interfacial

binding energy to zwitterionic and anionic membranes was

calculated by molecular dynamics (MD) simulations.

There are several challenges in the compilation of experimental

data. One difficulty is that the reported binding free energies are

not always comparable. Most studies analyze the data using the

‘‘single set of sites’’ model, i.e. treating the membrane as a receptor

with many, equivalent, and independent binding sites. Others use

a simple mass action law[30] while others use a partitioning

formalism[38,39]. The Seelig group reports free energies that have

been corrected for generic electrostatic effects using the Gouy-

Chapman theory[40]. To be comparable, data have to be

converted to the same standard state (see Section S1). Biological

activity data present even more severe challenges. The calculated

MIC values are sensitive to a variety of conditions: the bacterial

strain, the culture medium[41], the salt concentration[42], the

bacterial concentration[43], etc. As a result, MIC values for the

same peptide and for the same bacterium reported by different

laboratories are often very different. For example, the MIC of

magainin against E. Coli has been reported as 0.4,2.8 mM[42] or

38 mM[44]. These uncertainties will introduce significant scatter in

any attempt to correlate data on a large scale. However, some

signal should still be visible.

We found that the surface charge difference between bacterial

and eukaryotic membranes is indeed an important determinant of

peptide selectivity: antibacterial activity correlates best with

transfer energy to a membrane containing over 30% anionic

lipid; hemolytic activity correlates best with transfer energy to a

membrane containing 10% anionic lipid. Other physical descrip-

tors, in addition to membrane binding energy, were also found to

correlate with biological activity: surface area occupation of the

peptide is an important descriptor for antibacterial activity;

insertion depth is an important factor in hemolytic activity, while

structural flexibility affects both antibacterial activity and hemo-

lytic activity. The membrane surface coverage by many peptides at

the MIC is estimated to be much lower than would be required by

a ‘carpet’ mechanism. The peptides suggested in the literature to

form pores are highly likely to have lower surface coverage than

those suggested to act by the ‘carpet’ model. Using implicit

membrane modeling, we were also able to calculate the transfer

energy to pores. Formation of a toroidal pore is more likely than

barrel-stave pore for most peptides. The deviation from predic-

tions of the ‘carpet’ model was found to correlate with transfer

energy to pores.

Results and Discussion

a) Configurations of antimicrobial peptides at the
membrane interface

Antimicrobial peptides exhibit wide structural diversity. Even

after limiting the range to helical peptides, the peptide can be as

short as 13 residues (IsCT) or as long as 42 residues (moricin); it

can be highly helical (d-hemolysin) or mainly unfolded (SMAP29);

it can also be highly linear (mastoparan M) or have multiple

flexible hinges (moricin); the charge can range from -1

(alamethicin) to +12 (CAP18).

As a result, the behavior of the peptides at the membrane

interface is quite diverse. Figure 1 shows several lowest energy

conformations from the last 2ns of 4 ns of implicit membrane

simulations on 30% anionic membranes, using the protocol

described in the Materials and Methods section. The peptide can

insert deep into the hydrophobic core (8 Å, alamethicin) or only

penetrate shallowly (1 Å, such as fowlicidin-2); the tilt angle of the

peptide can range from 80u (pardaxin) to 120u (such as fowlicidin-

1). The structure can be quite rigid (rmsf , 0.9 Å, such as

mastoparan M) or can exhibit large fluctuations (rmsf . 5 Å, such

as moricin). The conformations on neutral membranes are similar,

except the binding energy is less negative and the peptide inserts

less deeply into the membrane.

b) Correlation between theoretical transfer energy and
experimental binding free energy

Thermodynamic data for membrane binding in the literature

are reported in a variety of standard states. For comparison

between them they need to be converted to the same standard

state. Section S1 in the supplementary material describes how this

is done and presents a compilation of data on AMPs.

The membrane binding free energy can be broken up into the

following contributions (see Section S1): a) the change in average

effective energy, D,W., which includes intramolecular and

solvation free energy changes, b) translational and rotational

entropy changes, c) the free energy of folding, if the soluble form is

disordered and the membrane-bound form has secondary

structure, and d) the disaggregation free energy, if the peptide is

aggregated in solution [45]. Using an implicit model it is relatively

straightforward to obtain D,W.: for each peptide, we place it on

the membrane or in water and calculate the difference in average

effective energy in MD simulations. However, for peptides that are

unfolded or aggregated in solution this simple approach is not

sufficient.

For peptides that are disordered in solution and fold into a helix

upon membrane binding, a useful approach might be to calculate

the free energy of the transition from membrane-bound helix to a

helix in solution. This value should be added to the free energy of

helix unfolding in solution, which for these peptides should be a

small number, not more than 2–3 kcal/mol [37]. The transla-

tional-rotational entropy of peptide adsorption to a membrane has

been estimated as 1.3 kcal/mol [46] and is likely to be similar for

different peptides. The effective energy of membrane binding of

the helix is estimated from the average transfer energy, ,DW.,

obtained by averaging the difference in effective energy between

Activity Determinants of Helical AMPs
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Figure 1. Typical conformations of antimicrobial peptides on anionic membranes. The lowest energy conformations in the last 2ns of 4 ns
implicit simulations on 30% anionic membranes are shown. The grey areas indicate the hydrophobic core of the membrane. The dotted lines indicate
the location of the phosphate groups. The colors on the peptides indicate the residue type: Red: acidic; Blue: basic; white: polar; green: uncharged
polar. Moricin (*): an alternative conformation of moricin (1kv4) with the same total energy.
doi:10.1371/journal.pone.0066440.g001

Table 1. Comparison of the experimental binding free energy with D,W. and ,DW..

Peptide PDBid Lipids DGc
0 ,DW. D,W. Ref.

Alamethicin 1amt DOPC –5.77 –8.660.2 –8.260.4 [89]

Mastoparan X 2czp POPC –4.7 –4.260.8 –4.060.6 [17]

d-hemolysin 2kam POPC –6.0 –12.660.5 –17.667.7 [30]

CM-15 2jmy DMPC –4.72 –8.360.9 –5.161.8 [90]

DMPG –5.49 –15.560.3 –14.163.2

Dermadistinctin K 2k9b egg PC –3.97 –3.161.7 –2.563.1 [91]

LL-37 2k6o SOPC –6.16 –12.760.4 –1.863.8 [92]

SOPC/POPG(7:3) –8.79* –19.161.9 –6.963.6

Magainin 2mag POPC –3.7 –5.460.6 –1.863.1 [93]

POPC:POPG(3:1) –5.98 –10.761.0 –7.662.8

Melittin 2mlt DOPC –5.1 –13.160.7 –5.461.2 [94]

POPC/POPG(8:2) –8.2 –18.662.5 –17.064.1 [95]

Pardaxin 1xc0 POPC –6.21 –22.160.8 –7.062.3 [96]

*Interpolated from other anionic fractions.
doi:10.1371/journal.pone.0066440.t001
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membrane and aqueous phase for every conformation generated

during the membrane simulation. ,DW. has the added

advantage of a lower statistical uncertainty than D,W..

According to this rationale, ,DW. should be systematically

more negative than the experimental binding free energy by a few

kcal/mol.

We pursued both approaches and computed ,DW. from 4-ns

simulations on the membrane and D,W. from separate 100-ns

simulations both on the membrane and in solution. The results are

listed and compared with the experimental binding free energies in

Table 1. ,DW. is more negative than the DG in all cases except

for Dermadistinctin K and mastoparan X. The values of D,W.

are almost always smaller in magnitude than ,DW. and in most

cases closer to the values of DG. In the long simulations used to

compute D,W., we observed that most peptides maintained

their initial structure on the membrane but became partially or

completely unfolded in water. Only Dermadistinctin K and

mastoparan X stayed mainly helical in water. This may indicate

that, although these peptides are unstructured in solution [47,48],

the free energy of helix unfolding we neglected in ,DW. may be

smaller in these two cases than for the other peptides.

Scatter plots that compare DG with , DW. and D,W. are

shown in figure 2. A strong linear relationship can be found

between ,DW. and DGexp:

DGexp~0:196+0:045 �vDWw{3:43+0:60, R2~0:62 (1)

The correlation between DG and D,W. is much weaker (Fig.

2b). Extending some of the simulations up to 1000 ns did not

improve the results significantly. Excluding the points that clearly

do not fit (CM-15(*), Melittin(*), pardaxin), a linear relationship

between D,W. and DGexp can also be established but with

higher uncertainty:

DGexp~0:341+0:176 �vDWw{3:80+0:97, R2~0:32 (2)

All-atom explicit simulations also exhibit significant deviations

from experimental binding free energies. Several cases are listed in

Table S4 and compared to transfer energies using the present

implicit model. In some cases, the binding free energies calculated

from explicit simulations are comparable to ,DW.. In other

cases, the ,DW. from implicit simulations is closer to the

experimental value than the explicit simulation result. As

explained above, an important missing factor in these calculations

is conformational entropy. For b antimicrobial peptides which

have relative rigid structure, the transfer energy ,DW. is closer

to the binding free energy.

Even though not directly comparable with experimental

binding free energy, ,DW. can still be quite useful in practice

thanks to its linear relationship with DGexp. In addition,

calculating ,DW. requires much less computing effort.

c) Correlation between experimental membrane binding
free energy and biological activity

To examine the relationship between membrane partition and

biological activity, we collected from the literature minimal

inhibitory concentrations (MIC) for antibacterial activity and

50% hemolysis concentrations (EC50) for hemolytic activity.

Tables S2 and S3 list the collected data. Table S1 lists

experimental binding free energies from the literature. Because

concentrations are exponentially related to energies (see Eq. 14),

we plot the natural log of MIC and EC50 against the binding

energy to neutral or anionic membranes in Figure 3. There is

considerable scatter in the data, but some correlations are visible.

The linear correlation coefficient (R) between the ln(MIC) and

binding energy to anionic membrane is 0.46 and 0.62 for anionic

lipid fraction 25–30% and 50% respectively. The correlation for

100% anionic membrane, however, is negative largely due to a

single data point: CM-15 is quite effective even though its

membrane binding was measured to be rather weak. The binding

energy to neutral membrane has a weak negative correlation

(R = –0.32) with the ln(MIC).

The linear correlation coefficient between the ln(EC50) and

neutral membrane affinity is 0.60. Similar correlation is observed

between ln(EC50) and anionic membrane affinity (R = 0.57 and

0.91 for anionic lipid fraction 25–30% and 50% respectively).

d) Correlation between theoretical transfer energy and
biological activity

For many peptides, the experimental binding free energy is not

available, especially to anionic lipids. These are obtained here

theoretically using an implicit membrane model. We ran MD

simulations at different anionic fractions (anfr) and calculated the

correlation coefficient (R) between ,DW. and natural log of

biological effective concentrations (figure 4a). Antibacterial activity

against all three organisms correlates best with transfer energy to

$ 30% anionic lipid membrane and quickly diminishes as the

anionic fraction approaches 0%. The correlation to hemolytic

Figure 2. Correlation between theoretical binding energy and
experimental binding energy DGexp. Binding energy values that
are measured in anionic membranes are marked with (*). Upper panel,
, D W.. Lower panel, D , W..
doi:10.1371/journal.pone.0066440.g002
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activity is largely independent of anionic fraction; it is actually

somewhat larger for 10% anionic fraction. It is difficult to say

whether this slight increase in correlation is significant. It is worth

noting, however, that the erythrocyte membrane contains around

30% phosphatidylserine (PS) in the inner leaflet[49]. Considering

that the antimicrobial peptides can form pores, translocate

through the membrane or induce lipid flip-flop in the membrane,

it is conceivable that they could interact with the anionic lipids in

the inner leaflet. In addition, the outer leaflet of erythrocyte

membrane contains glycoproteins and glycolipids possessing

anionic sialic acid groups [50,51]. Specific scatter plots of the

data are shown in figure 4 b&c. The linear correlation is slightly

Figure 3. Correlation between experimental binding energy and biological activity. The lines are the best fit lines. a) DGanionic in 25–100%
anionic lipid and antibacterial activity against E. Coli. b) DGneutral and hemolytic activity. c) DGneutral and antibacterial activity. d) DGanionic and
hemolytic activity. The data points are chosen from Table S1. The unit of MIC and EC50 is mM.
doi:10.1371/journal.pone.0066440.g003

Figure 4. Correlation between transfer energy and biological effective concentrations. a) The effect of anionic lipid fraction (Anfr) on the
correlation coefficient(S) between transfer energy ,DW. and biological effective concentrations. b) ln(MIC) against E. Coli c). ln(EC50) against red
blood cells. The ,DW. and effective concentration values shown here are listed in Table S2.The unit of MIC and EC50 is mM. Red lines in b) and c) are
the best fit lines.
doi:10.1371/journal.pone.0066440.g004

Activity Determinants of Helical AMPs
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lower, due to the increased sample size and the difference between

,DW. and DG, but still is statistically significant.

These data, together with those of the previous section lead to

similar conclusions: a) there is a statistically significant correlation

between binding energies and biological activities, b) electrostatic

interactions are important for antimicrobial activity but much less

so for hemolytic activity, and c) the scatter in the plots shows that

membrane affinity is likely not the sole determinant of activity.

e) Test of the ‘carpet’ model
The ‘carpet’ model of AMP action proposes that peptides

accumulate on the membrane surface until a critical point is

reached at which the membrane disintegrates[16]. It has received

considerable support from solid state NMR experiments [52]. It is

possible, however, that these experiments detect a major, surface-

bound fraction rather than a minor fraction that forms pores [53].

In this simple model, AMP activity depends on only two

parameters: the membrane affinity of the peptide and the critical

surface coverage that a certain type of membrane can withstand.

The latter is not known, but it is reasonable to assume that it will

fall in the range 50–90%. In Methods we derive a simple equation

relating the MIC or the EC50 to these two parameters. If we insert

Eq. 1 into Eq. 15 and Eq. 16, we obtain:

ln (MIC � As)~
0:196vDWw

RT
{

3:43

RT
z

ln
f �

1{f �
z ln AL{ ln vLz ln (1|106)

ð3Þ

ln (EC50 � As{AL
f �½L�
1{f �

)~
0:196vDWw

RT
{

3:43

RT
z

ln
f �

1{f �
z ln AL{ ln vLz ln (1|106)

ð4Þ

where the last term is a conversion factor frommM to M. Figure

5a plots the calculated ,DW. against ln(MIC*As) and eq.3 with

AL = 65 Å and vL = 0.76 M21 [31] and different values of f*. The

f* = 0.9 line is close to the upper points in the plot, corresponding

to peptides that are rather inactive compared to their computed

binding affinity. A large number of points fall below the f* = 0.5

line, i.e. they are more active than the ‘carpet’ model predicts.

This can be an indication that these peptides act by a more

efficient mechanism, for example pore formation. Figure 5b plots

the ,DW. against ln (EC50 � As{AL
f �½L�
1{f �

) assuming

[L] = 20 mM [54]. Because when f* = 0.5–0.9, some peptides

haveEC50 � AsƒAL

f �½L�
1{f �

, we only plot the case of f* = 0.2. For

many peptides large values of f* are simply not feasible under the

conditions of the hemolysis experiments.

It is interesting to compare the position of each peptide in these

graphs to experimental data suggesting their mechanism of action.

In table S5, we collected information on the mechanism of various

peptides suggested in the literature. It should be noted that most of

these proclamations are based on circumstantial evidence that may

be in conflict with another. For example, LL-37 was found to

orient mainly parallel to membrane surface by Polarized ATR-

FTIR spectroscopy[55] but partly perpendicular to the membrane

surface by oriented CD spectroscopy[56]. Another example is

pardaxin, which was originally referred to as a pore forming

peptide[57] but more recent experiments suggested that it could

adopt the ‘carpet’ mechanism in the presence of anionic lipids or

cholesterol [58–60]. Sometimes, the conflict is reconcilable:

magainin is suggested to act through the ‘carpet’ mechanism on

eukaryotic cell membranes but not on bacterial membranes[61].

However, the stable pore formed in anionic membranes is

preceded by formation of a large opening [62], similar to the

ones thought to occur in the ‘carpet’ mechanism. Also, many of

the suggestions are based on in vitro experiments that may not be

entirely relevant to in vivo activities.

Keeping these caveats in mind, we marked the data points on

figure 5 according to the proposed mechanism for each peptide.

The peptides proposed to act by the ‘carpet’ mechanism are

marked by green color and those proposed to be ‘pore forming’

are marked by red color. In general, the former peptides are less

active and lie above the f* = 0.5 line while most pore-forming

peptides lie below this line. A few outliers can be observed,

primarily gaegurin-4 (2g9l) and LL37 (2k6o). The mechanism of

LL-37 (2k6o) is controversial: it has been suggested to form

pores[56] but also to act as a ‘carpet’[55,63–65].

Figure 5. Biological activity of peptides plotted against theoretical transfer energy. a) activity against E. Coli. b) activity against red blood
cells. The lines correspond to the theoretical expectation from the ‘carpet’ model for different value of the critical surface fraction covered. The red
points are the peptides proposed to adopt the ‘pore forming’ mechanism. The green points are the peptides proposed to adopt the ‘carpet’
mechanism. The black points are the peptides that have unknown mechanism.
doi:10.1371/journal.pone.0066440.g005
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f) Correlation between transfer energy to pores and
deviation from the ‘carpet’ model

Pore formation is a complex process with many contributions:

peptide-lipid interaction, possibly peptide-peptide interaction, and

the lipid deformation energy. But since forming a lipidic pore is

energetically unfavorable[66], if a peptide tends to induce pore

formation, the transfer energy of a single peptide to lipidic pores

should be favorable. In previous work [36], four antimicrobial

peptides were found to bind more strongly to toroidal pores than

to the planar membrane. Here we extend this work to a larger

number of peptides and to anionic pores [67]. We calculated the

transfer energy of the peptides to pre-formed cylindrical and

toroidal pores in neutral, 10% anionic and 30% anionic

membrane of radius R0 = 13Å. The values are shown in Table

S6. We observed that all peptides have favorable transfer energy to

anionic toroidal pores. Transfer energy to cylindrical pores in

anionic membranes is only favorable for a few peptides. In neutral

membrane, the transfer energy to both pores is favorable for most

peptides. Pardaxin (1xc0) has unfavorable transfer energy to any

type of pore in neutral and 10% anionic membranes, even though

a pore formation mechanism was proposed for it[57]. The peptide

changed into a hairpin like structure in toroidal pores. It may be

that the peptide adopts a specific structure that we have not been

able to sample and that this is a metastable structure. Peptide-

peptide interactions, which we haven’t taken into account in this

study, may also contribute to stabilizing the pore [68].

If pore formation makes the peptide more effective than the

‘carpet’ model would predict, we should observe that the reduction

in ln(MIC*AS) and ln (EC50 � As{AL
f �½L�
1{f �

)from the value

expected for the ‘carpet’ model is positively correlated with the

transfer energy to pores. Figure 6 shows that this indeed is the

case: the more negative the DDW, the more likely the ln(MIC*As)

or ln (EC50 � As{AL
f �½L�
1{f �

) to be lower than the values

predicted by the ‘carpet’ model using f* = 0.9 or f* = 0.2 (to make

sure all peptides have EC50 � AswAL
f �½L�
1{f �

; similar correlation

can be observed if f* = 0.9 was used for hemolytic activity but with

much fewer data points). The correlation is significant (p-Value #

0.1) except between Dln(MIC*AS) and DDWtor. Interestingly, the

transfer energy to cylindrical pores is more highly correlated with

Dln(MIC*As) than the transfer energy to toroidal pores, even

though the latter is more favorable. This might be due to

simplifications in the analysis, for example, toroidal pores induced

by different peptides may have different curvature K0 and

inhomogeneity factor h, but we are assuming they are constant

in our simulations.

g) Correlation between other physical descriptors and
biological activity

Empirical correlations between peptide physicochemical prop-

erties and their antimicrobial activities have been investigated in

the past [19,21,24,69–71]. MD simulations offer additional

descriptors that go beyond peptide sequence and secondary

structure. The correlations between these descriptors and the

biological effective concentrations are shown in Table 2. The

Spearman correlation coefficient is used here because it is not

affected by the actual mathematical relationship between effective

concentration and descriptor. Because the MIC and EC50

Figure 6. The correlation between transfer energy to pores and deviation of ln(MIC*AS) and ln (EC50 � As{AL
f �½L�
1{f �

) from

predictions of the ‘carpet’ model. cyl: the pore is a cylindrical pore with R = 13Å. tor: the pore is a toroidal pore with R = 13Å, K = 15Å, h = 0.6. The

anionic fractions of the lipids are 10% and 30% respectively for ln(MIC*As) and ln (EC50 � As{AL

f �½L�
1{f �

). The red lines are the best fitted lines. For

ln (EC50 � As{AL

f �½L�
1{f �

), [L] is assumed to be 20 mM and f* is assumed to be 0.2.

doi:10.1371/journal.pone.0066440.g006
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increase when the activity of the peptide decreases, positive

correlation in table 2 means unfavorable effect on the activity.

Not surprisingly, the electrostatic interaction is crucial for

selectivity: ncharge correlates significantly with antibacterial activity

but not so well with hemolytic activity. Peptide size (nres) also

correlates positively with the biological activity as previosly

revealed[72]. As found by previous studies [24,69], amphipathicity

is an important factor determining the activity of the peptide, even

surpassing in importance the overall hydrophobicity[73]. Another

quantity can be determined is the hydrophobic quadrupole

moment, which can serve as measure of imperfect amphipathicity

[36]. We list the hydrophobic quadrupole moment in Table S7

and show several peptides with various hydrophobic quadrupole

moments in Figure S1. The peptides that have high hydrophobic

quadrupole moment have either a kinked structure or their

nonpolar surface twined around the helix wheel. A peptide with

such type of structure should have better contacts with curved

surfaces such as toroidal pores. In contrast, peptides with low

hydrophobic quadrupole moment have balanced polar and

nonpolar residues. Indeed, our study indicates that the hydropho-

bic quadrupole is also an important determinant of biological

activity.

MD simulation provides additional information that could help

us identify important new activity determinants. As described in

previous sections, the transfer energy DW correlates with both

antibacterial and hemolytic activity. We observed that antibacte-

rial activity and hemolytic activity are affected differently by

membrane insertion, tilt angle and As. The membrane insertion

(both insertion volume V and insertion depth, the latter showing

stronger correlation) positively correlates with the hemolytic

activity but not antibacterial activity, consistent with the result

for the tilt angle; the closer the tilt angle is to 90o, the less active the

peptide is against erythrocytes. The surface area occupation As is

positively correlated with antibacterial activity but not hemolytic

activity. It has been found that the angle subtended by polar

residues is important to both antimicrobial activity and hemolytic

activity[74]. Decreasing the angle will increase both the insertion

into the membrane and the membrane surface area occupation of

the peptide. The fact that the electric dipole of the peptide is

unfavorably correlated with hemolytic activity is also consistent

with this trend: increasing the peptide dipole increases interactions

with the head groups and enhances the binding to membrane

interface while at the same time reducing the insertion into

membrane hydrophobic core.

The effect of helicity and structural flexibility is sometimes

ambiguous in experiments. Increasing the number of proline

residues in a peptide significantly reduced its channel-forming

activity and thus both antimicrobial and hemolytic activities [75].

Table 2. Correlation between the biological effective concentrations and biophysical descriptors.

MIC EC50

E.Coli. Red Blood Cell

Npept = 44 Npept = 19

ncharge The net charge of the peptides. –0.46 (1.7E-03) –0.13 (5.9E-01)

nres Number of residues. –0.36 (1.3E-02) –0.23 (3.4E-01)

H Hydrophobicity. –0.09 (5.8E-01) –0.08 (7.4E-01)

mH Hydrophobic moment. –0.45 (2.4E-03) –0.56 (1.3E-02)

QH Hydrophobic quadrupole moment. –0.39 (8.2E-03) –0.45 (5.1E-02)

DW Transfer energy of peptide from water to membrane surface. 0.46 (1.7E-03) 0.30 (2.1E-01)

V The immersed volume of peptide in the hydrophobic core of the membrane. –0.15 (3.4E-01) –0.22 (3.6E-01)

Depth The penetration depth of peptide residue into the hydrophobic core. Calculated as the
distance between the deepest residue and the membrane surface.

–0.14 (3.7E-01) –0.48 (3.7E-02)

Tilt The angle between peptide helix axis and membrane normal. 0.05 (7.6E-01) 0.29 (2.2E-01)

As Area of peptide occupied on the membrane surface. –0.40 (7.6E-03) 0.12 (6.3E-01)

Delec The electric dipole possessed by the peptide. –0.25 (9.6E-02) 0.39 (0.9E-01)

Helix% The percentage of helical structure. 0.25 (9.8E-02) 0.05 (8.3E-01)

nhelix The number of helical residues. –0.13 (3.9E-01) –0.25 (3.0E-01)

,nhbond. The number of hydrogen bonds per residue that were formed inside the peptide. –0.02 (8.8E-01) –0.02 (9.2E-01)

nhbond The number of hydrogen bonds. –0.28 (6.5E-02) –0.08 (7.4E-01)

rmsf The maximum fluctuation of any residue in the simulation.* –0.42 (4.3E-03) –0.17 (4.9E-01)

The p values are given in the parenthesis (two tails T-test, probability that the actual correlation is below the given value). The descriptors were calculated from 30%
anionic membrane simulations and 100% neutral membrane simulations respectively for correlating with MIC and EC50.
*If the average maximum fluctuation is used, the correlation is slightly lower.
doi:10.1371/journal.pone.0066440.t002

Figure 7. The predicted biological activity compared with the
actual biological activity. a) the ln(MIC) calculated for E.Coli.
membrane. b) the ln(EC50) calculated for Erythrocyte membrane.
doi:10.1371/journal.pone.0066440.g007
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The increased flexibility and reduced helicity of D-amino acid

containing peptides normally abrogated their hemolytic activity

but did not diminish their antibacterial activity [76–79]. Recent

research however showed that proline-containing peptides have

higher antibacterial activity and lower hemolytic activity [80]. We

observed that the structural flexibility (reflected by the structural

fluctuation in the MD simulations) is positively correlated with

both antibacterial and hemolytic activities. This may be due to a

lower entropy cost upon membrane binding, and thus a lower

membrane binding free energy. Alternatively, flexibility might be

required at subsequent steps, such as pore formation. The number

of helical residues (nhelix) and hydrogen bonds (nhbond) are

positively correlated with the biological activities. However,

increasing the helical percentage has a negative effect on the

biological activities, possibly because structural flexibility is

reduced. The average number of hydrogen bonds per residue

(,nhbond.) also has no correlation with biological activity.

Hemolytic activity generally correlates more with helix formation

and antibacterial activity correlates more with structural flexibility.

Using the above data, we can also establish a relationship

between biological activity and biophysical factors using multiple

linear regression:

ln½MIC�~12:63z0:01821 � DW30%anionic{0:03737 � AS

z3:919E{5 � A2
S{0:2741 � depthz0:3614 � sin (tilt)

{0:1310 � rmsf {0:2430 � nch arg e, R2~0:46

ð5Þ

ln½EC50�~11:93z0:1574 � DW10%anionic

z0:01342 �Delec{0:1814 � depth{1:223 � rmsf

{0:08303 � helix%{0:1410 � nch arg e, R2~0:79

ð6Þ

In the above equation, adding or dropping a descriptor will

reduce the correlation. The minimal set of parameters one needs

to describe the biological activities is quite different for antibac-

terial activity and hemolytic activity. Predicted values using the

above equations are plotted against the actual values in Figure 7.

Compared to other QSAR studies, the correlation of predicted

ln(MIC) with actual values is rather low. The mean square error is

6 1.5. Considering that the protocol of MIC/EC50 measurement

allows a difference in concentration of 2 fold and the fact that our

data points belong to different peptide families, the observed error

is reasonable.

Conclusions

Using experimental data and theoretical calculations we tested

the hypothesis that antimicrobial and hemolytic activity correlate

with the binding energy to the corresponding membranes. We

found that such correlations do indeed exist, but they are weak,

suggesting the involvement of factors other than membrane

affinity. Electrostatic interactions of the peptides with the

membrane do play an important role in the selectivity of the

peptides. Interestingly, we found that the binding to a 10% anionic

membrane correlates best with hemolytic activity, highlighting the

importance of lipid translocation and small amounts of anionic

lipids in the erythrocyte membrane.

Accurate calculation of membrane binding free energies is not

possible at present, with either explicit or implicit solvation

methods. However, the linear relationship between implicit

membrane transfer energies and experimental binding free energy

allowed us to estimate the membrane concentration at the MIC or

EC50 for a large number of peptides. For many peptides this

concentration was found to be much lower than one would expect

for a ‘carpet’ mechanism. The previous finding that AMPs bind

more strongly to toroidal pores than to the planar membrane is

here confirmed for a larger number of peptides. Interestingly, the

deviation of the MIC from the value expected for the ‘carpet’

model was found to correlate with the transfer energy from planar

membrane to the pores.

The implicit membrane simulations can be used to obtain

additional structural parameters and investigate their correlation

with biological activity. Such parameters include the membrane

surface coverage, the depth of insertion, the tilt angle and the

flexibility. Deeper insertion into the membrane was found to

correlate with hemolytic activity, while flexibility was found to

correlate with antimicrobial activity. A new parameter that

correlates with both activities is the hydrophobic quadrupole, a

measure of imperfect amphipathicity.

Materials and Methods

a) Implicit membrane model
In the EEF1 [81] and IMM1[82] implicit solvation models, the

effective energy (Weff) of a solute is the sum of the intramolecular

energy of the solute (E) and its solvation free energy (DGslv). E is

calculated from a modified version of the CHARMM19 force

field, and DGslv is obtained as the sum of atomic contributions,

each calculated from a Gaussian solvent exclusion model.

The solvation parameters are expressed as a linear combination

of the values for water and cyclohexane (mimicking hydrocarbon

core):

DG
ref
i (z)~f (z)DG

ref ,water
i z(1{f (z))DG

ref ,chex
i ð7Þ

where f(z) is a switching function that depends on the position

along the z axis (assumed to be the membrane normal):

f (z0)~
z0 n

1zz0 n
, z0~

jzj
T=2

ð8Þ

where T is the thickness of the membrane hydrophobic core. To

describe the effect of anionic lipid on peptide binding, the

electrostatic interaction between solute atom i and the membrane

is calculated from:

WGC~
X

i

qi � W(zi) ð9Þ

where Q(z) is obtained using the Gouy-Chapman theory[37].

The model was extended to pores in neutral [36,83] and anionic

membranes [67]. Two pore shapes are defined: cylindrical and

toroidal. The first is a cylindrical hole inside the membrane filled

with water. No head group is present at the pore wall so that this

type of pore can mimic barrel-stave pores. In the later, the lipid

head groups are bent to line the pore wall and its radius changes

with the z coordinate:
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R~R0zK0(
z

T=2
)2 ð10Þ

In anionic pores, the Q(z) was calculated by solving the Poisson-

Boltzman equation. The head group dipoles were mimicked by a

double layer of charges [67]. In this approach an additional

parameter h is introduced as the homogeneity factor, which is the

ratio of the head group density at the center of the pore to that on

the planar membrane. All-atom simulations showed that this

parameter is about 0.6 to 0.7 in pure toroidal pores.

b) MD simulations
MD simulations of AMPs were conducted in planar membranes

with anionic lipid fraction ranging from 0% to 100% in

physiological salt solutions (0.1 M monovalent salt), using the

membrane model presented in the previous section. The structures

of the studied peptides were obtained from the PDB database. For

NMR structures (most common) the lowest energy model for each

peptide was selected and energy minimized using the steepest

descent method for 300 steps. The peptides were placed on the

membrane surface with their long axis parallel to the surface and

rotated with the nonpolar residues facing the membrane. Four

simulations with different random initial velocities were carried

out. Each simulation consisted of 2 ns equilibration followed by 2

ns production. The latter was used for analysis. To calculate the

D,W., we simulated the peptide for 100 ns and used the last 50

ns for analysis. All simulations were carried out using the

CHARMM program [84].

AMPs were also simulated inside cylindrical and toroidal pores

using the standard IMM1 model for neutral pores [36] and the

numerical Poisson-Boltzmann approach for anionic pores [67]. All

pores have a radius of R0 = 13 Å. The toroidal pores have K0 =

15 Å and h = 0.6. Two anionic fractions were studied: 10% and

30%. The peptides were placed adjacent to the pore wall with

their long axis parallel to the pore axis and their nonpolar residues

facing the pore wall. Four simulations with different random initial

velocities were carried out. Each simulation consisted of 3 ns

equilibration followed by 3 ns production. The latter was used for

analysis. The transfer energy to the pores, DDW, was calculated as

the difference between the ,DW. to the pore and the ,DW. to

the planar membrane. To be consistent with the pore simulations,

the ,DW. to planar membrane was calculated using the Poisson-

Boltzmann potential [67] instead of the Gouy-Chapmann theory.

c) Calculation of physical descriptors from MD
simulations

A list of the physical descriptors considered is shown in table 2.

The first five are standard properties that can be obtained from the

sequence.The overall hydrophobicity (H), hydrophobic dipole

moment (mH) and hydrophobic quadrupole moment (Q) of the

peptides were calculated using the method and the consensus scale

introduced by Eisenberg[85]. The original PDB structures were

used to calculate these values. The net charge (ncharge) was

calculated as the sum of the charges of all ionizable groups at pH

7.

Additional descriptors were obtained from the MD simulations.

The binding energy of the peptides to the membrane was

estimated by the average effective energy change (DWw-.m) upon

transferring the peptide from the membrane surface (Wmemb) to

water (Wwater), with conformation fixed. The immersed volume V

was calculated by constructing a grid lattice around the peptide

and counting the number of grids (0.1 Å) that are occupied by

peptide atoms and at the same time are inside the membrane (z,

T/2). The occupied area As was calculated as the volume of

peptide inside a 1 Å slab centered at the membrane surface (z = T/

2) divided by the slab thickness.

The tilt angle of the peptide was calculated as the angle between

the principal axis of the peptide and the membrane normal (z

axis). The insertion depth was calculated as the distance of the

lowest residue of the peptide to the membrane surface. It is a

negative value when the peptide has parts that are buried inside

the membrane. The helix percentage was calculated using DSSP

[86]. The electric dipole of the peptide can be calculated using the

coor dipole command of CHARMM. Because the charged

residues are neutralized in EEF1 and IMM1, we added back the

charge to the charged residues before the calculation. The origin

of the coordinate system was transferred to the peptide mass center

when calculating the electric dipole. The number of hydrogen

bonds nhbond was calculated with cutoff distance 2.5 Å and cutoff

angle 100u. The maximum fluctuation of the peptide (rmsf) is

defined as the maximum value of the root mean square fluctuation

of each residue.

d) Data set
For comparison between experimental free energy and theo-

retical binding energy, 11 peptides were simulated and their DW

was calculated. Experimental binding free energies (DG) were

collected from the literature and summarized in Table S1. All

binding free energy values were converted to the molarity standard

state (DGc
0
, see Section S1).

The study was then extended to a total of 53 helical or partially

helical peptides with known PDB structure selected from the APD

database[87]. Large antimicrobial peptides (.50 residues) and

beta structured peptides were not included in this study to avoid

the complexity of additional structural variables. The activities of

the peptides against E. Coli, P. Aeruginosa (typical Gram-negative

bacteria), and S. Aureus (typical Gram-positive bacterium) were

collected from literature data. These three organisms are most

commonly used for measuring antimicrobial activity. A table

listing the PDB id and activity of studied peptides can be found in

the supplementary material (Table S2), where peptides are

grouped by their origin and family. All the data collected come

from experiments with standard or a variation of broth

microdilution assay[88]. However, different colony formation

units (CFU) are normally used in different studies so we listed the

CFU conditions together with the MIC values in table S2. Data

reported inmg/ml were converted to mM.

For comparing hemolytic activity, the peptide concentrations

required to generate a certain extent of hemolysis are also listed in

Table S2. Although the hemolytic assays were carried out in a

standardized way, the incubation time and cell suspension

concentration vary in different studies. These conditions are also

listed in Table S2. Only the concentration to generate 50%

hemolysis (EC50) was used to determine the relationship between

hemolytic activity and peptide physical descriptors.

e) Relationship between MIC and membrane binding
affinity in the ‘carpet’ model

The MIC is the lowest overall peptide concentration at which

bacterial growth ceases. If this is related to actions of the peptide

on the membrane, the critical factor is the concentration of the

peptide on the membrane. The higher the membrane binding

affinity, the higher this concentration will be. The link between

MIC and peptide concentration on the membrane has been

worked out by Melo et al. [31]:
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MIC~P� : L(
1

KpvL

z½L�) ð11Þ

where P*:L is the critical molar ratio of membrane bound

peptide to lipid, Kp is the partition coefficient, and vL is the molar

lipid volume. In a typical antibacterial assay, [L] is around

2 nM[54] to 58 nM[31] but the MIC is of the order ofmM and

P*:L is in the range of 1:10 to 1:100; [L] is thus negligible. Because

DGc
0 = –RTln([PL] /[Pw]), we can expand the previous equation

into:

MIC~P� : L
1

vL exp ({
DG0

c

RT
)

ð12Þ

This is equivalent to assuming that the unbound peptide

concentration is equal to the MIC. In the ‘carpet’ model, it is

reasonable to assume that the membrane loses its integrity when

the peptide covers a critical fraction (f*) of area of the lipids. f can

be calculated as:

f ~
npAS

npASznLAL

ð13Þ

Thus the critical P*:L is:

P� : L~
f �AL

(1{f �)AS

ð14Þ

and

MIC � AS~
f �AL

(1{f �)vL

exp (
DG0

c

RT
) ð15Þ

For the ‘carpet’ model, we expect f * to be a constant value. In

implicit simulations, As can be easily obtained andDG0
c can be

estimated from the transfer energy DW (DG0
c ~bDWzc, see

Results).

Hemolysis assays are done at much higher lipid concentra-

tions(20 mM [54] to 89 mM [31]) and [L] in Eq. 11 cannot be

neglected. In this case we obtain:

MIC � AS{½L�AL
f �

1{f �
~

f �AL

(1{f �)vL

exp (
DG0

c

RT
) (16)
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