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1 Introduction
In , Diaz and Osler [] presented a discrete fractional difference operator based on
an infinite series. In , Miller and Ross [] introduced the definitions of noninteger-
order differences and sums. Since then, the theory of fractional difference equations has
been studied by several scholars. In recent years, some papers [–] on discrete fractional
calculus were published, which helped to build up the theory of fractional difference equa-
tions. For example, Atici and Eloe [] discussed the properties of the generalized falling
function, the corresponding power rule for fractional delta operators, and the commuta-
tivity of fractional sums.

Very recently, the oscillation theory as a part of the qualitative theory of fractional dif-
ferential equations and fractional difference equations has been developed. We refer the
reader to [–] and the references therein. In particular, we notice that a few papers
[–] studied the oscillation of fractional partial differential equations that involve the
Riemann-Liouville fractional partial derivatives.

Motivated by the papers [–], we investigate the forced oscillation of the fractional
partial difference equation of the form

�α
nu(m, n) = a(n)Lu(m, n) – q(m, n)u(m, n) + h(m, n), (m, n) ∈ � ×Na, ()

where m = (m, m, . . . , m�), � is a convex connected solid net (for the definition of a con-
vex connected solid net, we refer to []), and

� = N(, N) ×N(, N) × · · · ×N(, N�), ()
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N(, Ni) = {, , . . . Ni}, i = , , . . . ,�, L is the discrete Laplacian on � defined as

Lu(m, n) =
�∑

i=

�
mi

u
(
(m, . . . , mi–, mi – , mi+, . . . , m�), n

)
, ()

�α
nu(m, n) is the Riemann-Liouville fractional difference operator of order α of u with

respect to n, α ∈ (, ) is a constant, Na = {a, a + , a + , . . .}, and a ≥  is a real number.
Throughout this paper, we always assume that
(A) a(n) ≥ , n ∈Na; q(m, n) ≥ , q(n) = minm∈� q(m, n), (m, n) ∈ � ×Na; and

h : � ×Na →R.
Consider one of the two following boundary conditions:

(B) �N u(m – , n) + g(m, n)u(m, n) = , (m, n) ∈ ∂� ×Na,

or

(B) �N u(m – , n) = φ(m, n), (m, n) ∈ ∂� ×Na,

where

∂� =
�⋃

i=

{
(m, . . . , mi–, , mi+, . . . , m�), (m, . . . , mi–,

Ni + , mi+, . . . , m�)
}

, mi ∈N(, Ni),  ≤ i ≤ �, ()

�N u(m – , n) is the normal difference at (m, n) ∈ ∂� ×Na defined by

�N u(m – , n) =
∑

all m± /∈�

(
�m

(
u(m, n)

)
– �mu(m – , n)

)
=

∑

all m± /∈�

�
mu(m, n),

N is the unit exterior normal vector to ∂�, m +  := {m + , m, . . . , m�} ∪ · · · ∪ {m, . . . ,
m�–, m� + }, m –  := {m – , m, . . . , m�} ∪ · · · ∪ {m, . . . , m�–, m� – }, and g(m, n) ≥
,φ(m, n) ≥ , (m, n) ∈ ∂� × Na. For the details on ∂� and �N u(m – , n), we refer to
the monograph [] and paper [], respectively.

The function u(m, n) is said to be a solution of problem ()-(B) (or ()-(B)) if it satisfies
() for (m, n) ∈ � ×Na and satisfies (B) (or (B)) for (m, n) ∈ ∂� ×Na.

The solution u(m, n) of problem ()-(B) (or ()-(B)) is said to be oscillatory in � ×Na

if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory.

2 Preliminaries
In this section, we present some preliminary results of discrete fractional calculus and
partial differences.

Definition . ([]) Let  < ν < . The νth fractional sum of f is defined by

�–ν
a f (t) =


	(ν)

t–ν∑

s=a
(t – s – )(ν–)f (s), ()
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where f is defined for s ∈ Na, �–ν
a f is defined for s ∈ Na+ν = {a + ν, a + ν + , a + ν + , . . .},

	 is the gamma function, and

t(ν) =
	(t + )

	(t +  – ν)
.

Definition . Let  < ν < . The νth fractional sum with respect to n of u(m, n) is defined
by

�–ν
n u(m, n) =


	(ν)

n–ν∑

s=a
(n – s – )(ν–)u(m, s). ()

Definition . ([]) Let μ >  and k – < μ < k, where k denotes a positive integer, k = �μ�.
Set ν = k – μ. The μth fractional difference is defined as

�μf (t) = �k–ν f (t) = �k�–ν f (t), ()

where �μ� is the ceiling function of μ.

Definition . Let  < μ <  and ν =  – μ. The μth fractional partial difference with
respect to n of a function u(m, n) is defined as

�μ
n u(m, n) = �–ν

n u(m, n) = �n�
–ν
n u(m, n). ()

Lemma . ([]) Let f be a real-valued function defined on Na, and let μ,ν > . Then the
following equalities hold:

�–ν
[
�–μf (t)

]
= �–(μ+ν)f (t) = �–μ

[
�–ν f (t)

]
; ()

�–ν�f (t) = ��–ν f (t) –
(t – a)(ν–)

	(ν)
f (a). ()

Lemma . For n ∈ Na, let

E(n) =
n–+α∑

s=n

(n – s – )(–α)x(n), n ∈Na,α ∈ (, ). ()

Then

�E(n) = 	( – α)�αx(n). ()

Proof By Definition ., from () we have

E(n) =
n–+α∑

s=n

(n – s – )(–α)x(s) =
n–(–α)∑

s=n

(n – s – )((–α)–)x(s)

= 	( – α)�–(–α)x(n). ()
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Using Definition ., from () it follows that

�E(n) = 	( – α)��–(–α)x(n) = 	( – α)�αx(n).

The proof of Lemma . is complete. �

Lemma . (Discrete Gaussian formula []) Let � be a convex connected solid net. Then

∑

m∈�

Ly(m, n) =
∑

m∈∂�

�N y(m – , n). ()

Lemma . ([]) For ε > ,

lim
t→∞

	(t)tε

	(t + ε)
= . ()

For convenience, we introduce the following notations:

U(n) =
∑

m∈�

u(m, n), H(n) =
∑

m∈�

h(m, n), �(n) =
∑

m∈∂�

φ(m, n). ()

3 Oscillation of problem (1)-(B1)
Theorem . For n ∈Na, if

lim inf
n→∞

n–∑

s=n

H(s) = –∞, ()

and

lim sup
n→∞

n–∑

s=n

H(s) = +∞, ()

where H(n) is defined as in (), then every solution u(m, n) of problem ()-(B) is oscillatory
in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. Summing equation () over �, we have

∑

m∈�

�α
nu(m, n) = a(n)

∑

m∈�

Lu(m, n) –
∑

m∈�

q(m, n)u(m, n)

+
∑

m∈�

h(m, n), n ∈Na. ()

The discrete Gaussian formula and (B) yield

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

–g(m, n)u(m, n) ≤ , n ∈Na. ()
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From assumption (A) we have

∑

m∈�

q(m, n)u(m, n) ≥ q(n)
∑

m∈�

u(m, n), n ∈Na. ()

Combining ()-(), we obtain

�αU(n) + q(n)U(n) ≤ H(n), n ∈Na, ()

where U(n) is defined as in (). It follows from () that

�αU(n) ≤ H(n), n ∈Na. ()

Using Lemma ., from () we have

�G(n) ≤ 	( – α)H(n), ()

where

G(n) =
n–+α∑

s=n∗
(n – s – )(–α)U(n), n ∈ Na.

Summing both sides of () from n∗ to n – , we obtain

G(n) ≤ G
(
n∗) + 	( – α)

n–∑

s=n∗
H(s). ()

Taking n → ∞ in (), we have

lim inf
n→∞ G(n) = –∞,

which contradicts with G(n) > .
Case . u(m, n) < , n ≥ n∗. As in the proof of Case , we obtain (). The discrete Gaus-

sian formula and (B) yield

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

–g(m, n)u(m, n) ≥ , n ∈Na. ()

From assumption (A) we have

∑

m∈�

q(m, n)u(m, n) ≤ q(n)
∑

m∈�

u(m, n), n ∈Na. ()

Combining (), (), and (), we obtain

�αU(n) + q(n)U(n) ≥ H(n), n ∈Na. ()
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Then we have

�αU(n) ≥ H(n), n ∈Na. ()

Using the above-mentioned method in Case , we easily obtain a contradiction. This com-
pletes the proof of Theorem .. �

Theorem . If

lim inf
n→∞ (n – a)–α

{n–α∑

s=a
(n – s – )(α–)H(s)

}
= –∞ ()

and

lim sup
n→∞

(n – a)–α

{n–α∑

s=a
(n – s – )(α–)H(s)

}
= +∞, ()

where H(n) is defined as in (), then every solution u(m, n) of problem ()-(B) is oscillatory
in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. As in the proof of Theorem ., we obtain (). Applying the
operator �–α to inequality (), we have

�–α�α
nU(n) ≤ �–αH(n). ()

By Lemma . it follows from the left-hand side of () that

�–α�α
nU(n) = �–α��–(–α)U(n)

= ��–α�–(–α)U(n) –
(n – a)(α–)

	(α)
�–(–α)U(a)

= U(n) –
C

	(α)
(n – a)(α–), ()

where �–(–α)U(a) = �–(–α)U(n)|n=a = C is a constant. Applying Definition . to the
right-hand side of (), we have

�–αH(n) =


	(α)

n–α∑

s=a
(n – s – )(α–)H(s). ()

Combining ()-(), we get

U(n) ≤ C

	(α)
(n – a)(α–) +


	(α)

n–α∑

s=a
(n – s – )(α–)H(s). ()
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It follows from () that

	(α)(n – a)–αU(n) ≤ C(n – a)(α–)(n – a)–α

+ (n – a)–α

n–α∑

s=a
(n – s – )(α–)H(s). ()

Using Lemma ., we obtain

lim
n→∞(n – a)–α(n – a)(α–)

= lim
n→∞(n – a)–α 	(n – a + )

	(n – a +  + ( – α))

= lim
n→∞(n – a)–α (n – a)	(n – a)

(n – a +  – α)	(n – a + ( – α))

= lim
n→∞

n – a
n – a +  – α

	(n – a)(n – a)–α

	(n – a + ( – α))

= . ()

Noting () and taking n → ∞ in (), we have

lim inf
n→∞

{
(n – a)–αU(n)

} ≤ –∞,

which contradicts with U(n) > .
Case . u(m, n) < , n ≥ n. As in the proof of Theorem ., we obtain the fractional

difference inequality (). Then using the above-mentioned method, we easily obtain a
contradiction. This completes the proof of Theorem .. �

4 Oscillation of problem (1)-(B2)
Theorem . For n ∈Na, if

lim inf
n→∞

n–∑

s=n

(
�(s) + H(s)

)
= –∞ ()

and

lim sup
n→∞

n–∑

s=n

(
�(s) + H(s)

)
= +∞, ()

where �(n) and H(n) are defined as in (), then every solution u(m, n) of problem ()-(B)
is oscillatory in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. As in the proof of Theorem ., we obtain (). Using the
discrete Gaussian formula and noting the boundary condition (B), it follows from ()
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that

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

φ(m, n), n ∈ Na. ()

Combing (), (), and (), we have

�αU(n) + q(n)U(n) ≤ �(n) + H(n), n ∈Na. ()

The remainder of the proof is similar to that of Case  in Theorem .. We omit it here.
Case . u(m, n) < , n ≥ n∗. In this case, we easily obtain (), (), and (). Then we

have

�αU(n) + q(n)U(n) ≥ �(n) + H(n), n ∈Na. ()

The remainder of the proof is similar to that of Case  in Theorem .. We omit it here,
too. The proof of Theorem . is complete. �

Theorem . If

lim inf
n→∞ (n – a)–α

{n–α∑

s=a
(n – s – )(α–)(�(s) + H(s)

)
}

= –∞ ()

and

lim sup
n→∞

(n – a)–α

{n–α∑

s=a
(n – s – )(α–)(�(s) + H(s)

)
}

= +∞, ()

where �(n) and H(n) are defined as in (), then every solution u(m, n) of problem ()-(B)
is oscillatory in � ×Na.

5 Examples
Example . Consider the fractional partial difference equation

�


n u(m, n) = nLu(m, n) –

n
m

u(m, n)

+
{

m


+


[
(–)n+en+ – (–)nen – 

]}
, (m, n) ∈ N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) = , n ∈N. ()

Here α = 
 , a(n) = n, q(m, n) = n

m , h(m, n) = m
 + 

 [(–)n+en+ – (–)nen – ]. It is easy
to see that q(n) = 

 n and

H(n) =
∑

m∈N(,)

h(m, n) = (–)n+en+ – (–)nen.
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Therefore,

n–∑

s=n

H(s) =
n–∑

s=n

{
(–)s+es+ – (–)ses} = (–)nen – (–)n en , n ∈ N. ()

It follows from () that

lim inf
n→∞

n–∑

s=n

H(s) = –∞

and

lim sup
n→∞

n–∑

s=n

H(s) = +∞.

Using Theorem ., we obtain that every solution of problem ()-() is oscillatory in
N(, ) ×N.

Example . Consider the fractional partial difference equation

�


n u(m, n) = 	(n)Lu(m, n) –

	(n + 
 )

m	(n)
u(m, n)

+



	

(



)
m +

n


, (m, n) ∈N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) = , n ∈N. ()

Here α = 
 , a(n) = 	(n), q(m, n) = 	(n+ 

 )
m	(n) , h(m, n) = 

	( 
 )m + n

 . It is easy to see that

q(n) =
	(n + 

 )
	(n)

, H(n) =
∑

m∈N(,)

h(m, n) =



	

(



)
+ n.

Therefore,

n–α∑

s=

(n – s – )(α–)H(s) =
n– 

∑

s=

(n – s – )(– 
 )

(



	

(



)
+ s

)
> , n ∈N, ()

which shows that condition () of Theorem . does not hold. Indeed, u(m, n) = mn( 
 ) is

a nonoscillatory solution of problem ()-().

Example . Consider the fractional partial difference equation

�


n u(m, n) =




Lu(m, n) –
	( 

 )	(n + 
 )

n	(n)
u(m, n)

+ 	

(



)
m –

n	(n)
	(n + 

 )
, (m, n) ∈N(, ) ×N, ()
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with boundary condition

�N u(, n) = �N u(, n) =
n	(n)
	(n + 

 )
, n ∈N. ()

Here α = 
 , a(n) = 

 , q(m, n) = 	( 
 )	(n+ 

 )
n	(n) , h(m, n) = 	( 

 )m – n	(n)
	(n+ 

 )
,φ(m, n) = n	(n)

	(n+ 
 )

.
Therefore,

q(n) =
	( 

 )	(n + 
 )

n	(n)
, H(n) =

∑

m∈N(,)

h(m, n) = 	

(



)
–

n	(n)
	(n + 

 )
,

�(n) =
∑

m∈{,}
φ(m, n) =

n	(n)
	(n + 

 )
.

It is easy to see that

n–∑

s=

[
�(s) + H(s)

]
=

n–∑

s=

[
	

(



)
+

s	(s)
	(s + 

 )

]
> , n ∈N. ()

Thus, this time, condition () of Theorem . is false. Indeed, we easily see that u(m, n) =
mn( 

 ) is a nonoscillatory solution of the problem ()-().

Example . Consider the fractional partial difference equation

�


n u(m, n) = nLu(m, n) –

n
m

u(m, n)

+
{

m


+


[
(–)n+en+ – (–)nen – 

]}
, (m, n) ∈N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) =



[
(–)n+en+ – (–)nen], n ∈ N. ()

Here α = 
 , a(n) = n, q(m, n) = n

m , h(m, n) = m
 + 

 [(–)n+en+ – (–)nen – ], and
φ(m, n) = 

 [(–)n+en+ – (–)nen]. It is easy to see that q(n) = n
 ,

H(n) =
∑

m∈N(,)

h(m, n) = (–)n+en+ – (–)nen,

and

�(n) =
∑

m∈{,}
=



[
(–)n+en+ – (–)nen].

Therefore,

n–∑

s=n

(
H(s) + �(s)

)
=




n–∑

s=n

{
(–)s+es+ – (–)ses}

=


{

(–)nen – (–)n en
}

, n ∈N. ()
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It follows from () that

lim inf
n→∞

n–∑

s=n

(
H(s) + �(s)

)
= –∞

and

lim sup
n→∞

n–∑

s=n

(
H(s) + �(s)

)
= +∞.

We easily see that the conditions of Theorem . are satisfied. Then every solution of
problem ()-() is oscillatory in N(, ) ×N.
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