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Abstract
By applying an iterative technique, a necessary and sufficient condition is obtained
for the existence of the unique solution of nonlinear fractional differential equations
involving two Riemann-Liouville derivatives of different fractional orders. Finally, an
example is also given to illustrate the availability of our main results.
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1 Introduction
Recently, the study of fractional differential equations has acquired popularity, see books
[–] for more information. In this paper, we consider the following nonlinear fractional
differential equations:

{
Dαu(t) = f (t,Dαu(t),Dβu(t),u(t)),
Dβu() = , u() = ,

(.)

where t ∈ J = [,T] ( < T < ∞), f ∈ C(J × R
,R), D is the standard Riemann-Liouville

fractional derivative,  < α ≤ ,  < β ≤  and  < α – β ≤ . It is worthwhile to indicate
that the nonlinear term f involves the unknown function’s Riemann-Liouville fractional
derivatives with different orders.
The method of upper and lower solutions coupled with the monotone iterative tech-

nique is an interesting and powerful mechanism. The importance and advantage of the
method needs no special emphasis [, ]. There have appeared some papers dealing
with the existence of the solution of nonlinear Riemann-Liouville-type fractional differ-
ential equations [–] or nonlinear Caputo-type fractional differential equations [–
] by using the method. For example, by employing the method of lower and upper so-
lutions combined with the monotone iterative technique, Lakshmikanthan and Vatsala
[], McRae [] and Zhang [] successfully investigated the initial value problems of
Riemann-Liouville fractional differential equation Dαu(t) = f (t,u(t)), where  < α ≤ .
However, in the existing literature [–], only one case when α ∈ (, ] is considered.

The research, involving Riemann-Liouville fractional derivative of order  < α ≤ , pro-
ceeds slowly and there appear some new difficulties in employing the monotone iterative
method. To overcome these difficulties, we apply a substitution Dαu(t) = y(t). Note that
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the technique has been discussed for fractional problems in papers [, ]. To the best of
our knowledge, it is the first paper, in which the monotone iterative method is applied to
nonlinear Riemann-Liouville-type fractional differential equations, involving two differ-
ent fractional derivatives Dα and Dβ .
We organize the rest of this paper as follows. In Section , by using the monotone iter-

ative technique and the method of upper and lower solutions, the minimal and maximal
solutions of an equivalent problem of (.) are investigated and two explicit monotone it-
erative sequences, converging to the corresponding minimal and maximal solution, are
given. In addition, the uniqueness of the solution for fractional differential equations (.)
is discussed. In Section , an example is given to illustrate our results.

2 Existence results
Lemma . For a given function y ∈ C(J ,R), the following problem

{
Dαu(t) = y(t),
Dβu() = u() = ,

(.)

has a unique solution u(t) = Iαy(t), where I is the fractional integral and Iαy(t) =∫ t


(t–s)α–
�(α) y(s)ds,  < α ≤ ,  < β ≤  and  < α – β ≤ .

Proof One can reduce equation Dαu(t) = y(t) to an equivalent integral equation

u(t) = Iαy(t) + ctα– + ctα– (.)

for some c, c ∈R.
By u() = , it follows c = . Consequently, the general solution of (.) is

u(t) = Iαy(t) + ctα–. (.)

Thus, we have

Dβu(t) = Iα–βy(t) + c
�(α)

�(α – β)
tα–β–

=
∫ t



(t – s)α–β–

�(α – β)
y(s)ds + c

�(α)
�(α – β)

tα–β–. (.)

By the condition Dβu() = , it follows that c = . Therefore, we have u(t) = Iαy(t).
Conversely, by a direct computation, we can getDαu(t) = y(t) and Dβu(t) = Iα–βy(t). It is

easy to verify u(t) = Iαy(t) satisfies (.).
This completes the proof. �

Combined with Lemma ., we see that (.) can be translated into the following system

y(t) = f
(
t, y(t), Iα–βy(t), Iαy(t)

)
, (.)

where y(t) =Dαu(t), ∀t ∈ J and Iα , Iα–β are the standard fractional integrals.
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Now, we list for convenience the following condition:

(H) There exist y, z ∈ C(J ,R) satisfying y ≤ z such that

{
y(t)≤ f (t, y(t), Iα–βy(t), Iαy(t)),
z(t) ≥ f (t, z(t), Iα–βz(t), Iαz(t)).

(H) There exists a functionM ∈ C(J , (–, +∞)) such that

f
(
t,u(t), Iα–βu(t), Iαu(t)

)
– f

(
t, v(t), Iα–βv(t), Iαv(t)

) ≥ –M(t)(u – v)(t),

where y ≤ v ≤ u≤ z, ∀t ∈ J .
(H) There exist functions N ,K ,L ∈ C(J , [, +∞)) such that

f
(
t,u(t), Iα–βu(t), Iαu(t)

)
– f

(
t, v(t), Iα–βv(t), Iαv(t)

)
≤ N(t)(u – v)(t) +K(t)Iα–β(u – v)(t) + L(t)Iα(u – v)(t),

where y ≤ v ≤ u≤ z, ∀t ∈ J .

Theorem . Assume that (H) and (H) hold. Then problem (.) has the minimal
and maximal solution y∗, z∗ in the ordered interval [y, z]. Moreover, there exist ex-
plicit monotone iterative sequences {yn}, {zn} ⊂ [y, z] such that limn→∞ yn(t) = y∗(t) and
limn→∞ zn(t) = z∗(t), where yn(t), zn(t) are defined as

yn(t) =


 +M(t)
[
f
(
t, yn–(t), Iα–βyn–(t), Iαyn–(t)

)
+M(t)yn–(t)

]
,

∀t ∈ J ,n = , , . . . ,

zn(t) =


 +M(t)
[
f
(
t, zn–(t), Iα–βzn–(t), Iαzn–(t)

)
+M(t)zn–(t)

]
,

∀t ∈ J ,n = , , . . . ,

(.)

and

y ≤ y ≤ · · · ≤ yn ≤ · · · ≤ y∗ ≤ z∗ ≤ · · · ≤ zn ≤ · · · ≤ z ≤ z. (.)

Proof Define an operator Q : [y, z] → C(J ,R) by x = Qη, where x is the unique solution
of the corresponding linear problem corresponding to η ∈ [y, z] and

Qη =


 +M(t)
[
f
(
t,η(t), Iα–βη(t), Iαη(t)

)
+M(t)η(t)

]
. (.)

Then, the operator Q has the following properties:

(a) y ≤ Qy, Qz ≤ z;

(b) Qh ≤ Qh, ∀h,h ∈ [y, z],h ≤ h.
(.)
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Firstly, we show that (a) holds. Let y =Qy, p = y – y. By (H) and the definition of Q,
we know that

p(t) =


 +M(t)
[
f
(
t, y(t), Iα–βy(t), Iαy(t)

)
+M(t)y(t)

]
– y(t)

≥ 
 +M(t)

[
y(t) +M(t)y(t)

]
– y(t)

= .

Thus, we can obtain p(t) ≥ , ∀t ∈ J . That is, y ≤ Qy. Similarly, we can prove that
Qz ≤ z. Then, (a) holds.
Secondly, let q =Qh –Qh, by (.) and (H), we have

q(t) =


 +M(t)
[
f
(
t,h(t), Iα–βh(t), Iαh(t)

)
+M(t)h(t)

]

–


 +M(t)
[
f
(
t,h(t), Iα–βh(t), Iαh(t)

)
+M(t)h(t)

]

≥ 
 +M(t)

[
–M(t)(h – h)(t) +M(t)(h – h)(t)

]
= .

Hence, we have q(t) ≥ , ∀t ∈ J . That is, Qh ≥ Qh. Then, (b) holds.
Now, put

yn =Qyn–, zn =Qzn–, n = , , . . . . (.)

By (.), we can get

y ≤ y ≤ · · · ≤ yn ≤ · · · ≤ zn ≤ · · · ≤ z ≤ z.

Obviously, yn, zn satisfy

yn(t) = f
(
t, yn–(t), Iα–βyn–(t), Iαyn–(t)

)
–M(t)(un – yn–)(t),

zn(t) = f
(
t, zn–(t), Iα–βzn–(t), Iαzn–(t)

)
–M(t)(zn – zn–)(t).

(.)

Employing the same arguments used in Ref. [], we see that {yn}, {zn} converge to their
limit functions y∗, z∗, respectively. That is, limn→∞ yn(t) = y∗(t) and limn→∞ zn(t) = z∗(t).
Moreover, y∗(t), z∗(t) are solutions of (.) in [y, z]. (.) is true.
Finally, we prove that y∗(t), z∗(t) are the minimal and the maximal solution of (.) in

[y, z]. Let w ∈ [y, z] be any solution of (.), then Qw = w. By y ≤ w ≤ z, (.) and
(.), we can obtain

yn ≤ w ≤ zn, n = , , . . . . (.)

Thus, taking limit in (.) as n → +∞, we have y∗ ≤ w ≤ z∗. That is, y∗, z∗ are the
minimal and maximal solution of (.) in the ordered interval [y, z], respectively.
This completes the proof. �
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Theorem . Let N(t)≥ –M(t). Assume conditions (H)-(H) hold. If

λ(t) =N(t) +
K(t)tα–β

�(α – β + )
+

L(t)tα

�(α + )
< ,

then problem (.) has a unique solution x(t) ∈ [y, z].

Proof By Theorem ., we have proved that y∗, z∗ are the minimal and maximal solution
of (.) and

y(t) ≤ y∗(t)≤ z∗(t) ≤ z(t), ∀t ∈ J .

Now, we are going to show that problem (.) has a unique solution x, i.e., y∗(t) = z∗(t) =
x(t).
Let p(t) = z∗(t) – y∗(t), by (H), we have

 ≤ p(t) ≤ f
(
t, z∗(t), Iα–βz∗(t), Iαz∗(t)

)
– f

(
t, y∗(t), Iα–βy∗(t), Iαy∗(t)

)
≤ N(t)

(
z∗ – y∗)(t) +K(t)Iα–β

(
z∗ – y∗)(t) + L(t)Iα

(
z∗ – y∗)(t)

=N(t)p(t) +K(t)
∫ t



(t – s)α–β–

�(α – β)
p(s)ds + L(t)

∫ t



(t – s)α–

�(α)
p(s)ds

≤
[
N(t) +

K(t)tα–β

�(α – β + )
+

L(t)tα

�(α + )

]
max
t∈J

p(t)

� λ(t)max
t∈J

p(t),

which implies that maxt∈J p(t) ≤ . Since p(t) ≥ , then it holds p(t) = . That is, y∗(t) =
z∗(t). Therefore, problem (.) has a unique solution x ∈ [y, z]. �

Let x(t) be the unique solution of (.). Noting that x ∈ [y, z] and u(t) = Iαx(t), we can
easily obtain the following theorem.

Theorem . Let all conditions of Theorem . hold. Then problem (.) has a unique
solution u ∈ [Iαy, Iαz], ∀t ∈ J .

3 Example
Consider the following problem:

{
D 

 u(t) = t
 [ –D 

 u(t)] + t
 D


 u(t) + t

 [ –D 
 u(t)] + t

u
(t),

D 
 u() = , u() = ,

(.)

where t ∈ [, ].
Let D 

 u(t) = y(t), then D 
 u(t) = Iy(t), u(t) = I 

 y(t). So, (.) can be translated into the
following problem

y(t) =
t


[
 – y(t)

] + t


y(t) +

t


[
 – Iy(t)

] + t


(
I

 y(t)

), (.)
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Noting that α = 
 , β = 

 , then

f
(
t, y, Iα–βy, Iαy

)
=

t


[ – y] +
t


y +

t


[
 – Iy

] + t


(
I

 y

).
Take y(t) = , z(t) = , we have

{
y(t) = ≤ t

 +
t
 = f (t, y(t), Iα–βy(t), Iαy(t)),

z(t) = ≥ t
 y +

t
 ( – t) + t

π = f (t, z(t), Iα–βz(t), Iαz(t)).

Hence, condition (H) holds.
For y ≤ y ≤ z ≤ z, we have

f
(
t, z, Iα–βz, Iαz

)
– f

(
t, y, Iα–βy, Iαy

)
=

t


[
( – z) – ( – y)

]
+
t


(z – y)

+
t


[(
 – Iz

) – (
 – Iy

)] + t


[(
I

 z

) – (
I

 y

)]

≥ –
t – t


(z – y)

and

f
(
t, z, Iα–βz, Iαz

)
– f

(
t, y, Iα–βy, Iαy

) ≤ –
t


(z – y) +

t


I(z – y) +

t


√

π
I

 (z – y).

TakeM(t) = t–t
 , N(t) = K(t) = t

 , L(t) =
t


√

π
. Through a simple calculation, we have

λ(t) =
t


+
t


+

t 
π

< .

Then, all conditions of Theorem . are satisfied. In consequence, the problem (.) has a

unique solution u∗ ∈ [, t




√

π
].
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